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Abstract

This paper describes team GMU-WLV
submission to the TSAR shared-task on
multilingual lexical simplification. The goal
of the task is to automatically provide a
set of candidate substitutions for complex
words in context. The organizers provided
participants with ALEXSIS, a manually
annotated lexical simplification dataset in
English, Portuguese, and Spanish. Instances
in ALEXSIS were split between a small
trial set with a dozen instances in each of
the three languages of the competition and a
test set with over 300 instances in the three
aforementioned languages. To cope with the
lack of training data, participants had to either
use alternative data sources or pre-trained
language models. We experimented with
monolingual models: BERTimbau, ELECTRA,
and RoBERTA-large-BNE. Our best system
achieved 1st place out of sixteen systems for
Portuguese, 8th out of thirty-three systems for
English, and 6th out of twelve systems for
Spanish.

1 Introduction

Text simplification (TS) is an important NLP
application that consists of applying automatic
methods to make texts more accessible to various
target populations, such as children (Kajiwara
et al., 2013), second language learners (Lee and
Yeung, 2018), individuals with low-literacy levels
(Watanabe et al., 2009; Gasperin et al., 2009),
and individuals with reading disabilities (Devlin
and Tait, 1998; Carroll et al., 1998; Rello et al.,
2013). The core component of TS systems is
lexical simplification (LS) which addresses the
simplification of single complex words, complex
multi-word expressions or both.

LS is a multi-stage process. In the first step,
systems need to recognize words that are likely
considered to be hard to understand by a given
target population. This step is known as complex

word identification (CWI) (Paetzold and Specia,
2016) or lexical complexity prediction (LCP)
(Shardlow et al., 2020, 2021; North et al., 2022c).
The second step in LS systems is to provide suitable
candidate substitutions for complex words also
known as substitute generation (SG) (Qiang et al.,
2020; North et al., 2022a; Ferres and Saggion,
2022). These candidate substitutions are then
filtered in regards to their suitability, known as
substitute selection (SS) (Shardlow, 2014; Paetzold
and Specia, 2017b), and then ranked in accordance
to their simplicity, referred to as substitute ranking
(SR) (Specia et al., 2012; Paetzold and Specia,
2017a; Maddela and Xu, 2018). The most
appropriate candidate is then selected to replace
the complex word.

While most of the work in LS deals with
English, recent advances in multilingual and
cross-lingual NLP models have motivated the
study of multilingual models and datasets for
LS with the goal of improving performance for
languages other than English (Yimam et al.;
Finnimore et al., 2019; Štajner et al., 2022). The
Text Simplification, Accessibility, and Readability
(TSAR-2022) shared-task (Saggion et al., 2022)
follows this trend by providing participants with
a multilingual LS dataset containing annotated
data in English, Portuguese, and Spanish following
the ALEXIS protocol (Ferres and Saggion, 2022).
In this paper, we present team GMU-WLV’s
submissions to TSAR-2022 where we evaluate
multiple models for this task. We describe prior
methods of SG (Section 2), the task and data
(Section 3), our model architecture (Section 4), and
results (Section 5).

2 Related Work

As discussed by Paetzold and Specia (2017b),
various approaches have been used for LS. Early
approaches relied on predefined lists of complex
words with candidate substitutions (Ong et al.,
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2008; Kandula et al., 2010). WordNet (Fellbaum,
2010) is another widely used resource. Numerous
SG systems take the synonyms provided by
WordNet as valid simplifications of a complex
word (Devlin and Tait, 1998; Carroll et al., 1998,
1999) while others use WordNet’s list of hyponyms
and hypernyms to identify and rank suitable
replacements (Sinha, 2012; Nunes et al., 2013).
Finally, some combine WordNet with other datasets
consisting of linguistic features indicative of a
word’s complexity, such as the Psycholinguistic
Database (Wilson, 1988).

More recent approaches have used transformer-
based models that are able to more effectively
capture and utilize contextual information as
described by Vaswani et al. (2017). Qiang
et al. (2020) used a pretrained BERT model to
generate candidate substitutions using masked
language modelling (MLM) (Devlin et al., 2019).
Ferres and Saggion (2022) experimented with
multiple pre-trained multilingual and monolingual
transformers for MLM to generate Spanish
candidate substitutions, including BETO (Cañete
et al., 2020), mBERT (Devlin et al., 2019),
BERTIN (De la Rosa and Fernández, 2022),
RoBERTa-base-BNE, and RoBERTA-large-BNE
(Fandiño et al., 2022).

3 Task and Data

The TSAR-2022 shared task was hosted at
the Empirical Methods in Natural Language
Processing (EMNLP) conference. Participants
were tasked with creating an LS system that returns
an ordered list of a maximum of 10 potential
candidate substitutions for a given complex word.
TSAR-2022 supplied participants with datasets
in English, Portuguese (North et al., 2022a),
and Spanish (Ferres and Saggion, 2022) each
having their own track within the competition
(Saggion et al., 2022). The task received 33,
17 and 16 entries in the English, Spanish, and
Portuguese tracks respectively. The datasets
contained excerpts from journalistic texts and
Wikipedia articles. The English and Spanish
datasets contained extracts from WikiNews and
Wikipedia articles, whereas the Portuguese dataset
contained extracts from locally sourced Brazilian
newspapers. The Portuguese dataset is the only
variety-specific dataset of the three containing only
Brazilian Portuguese texts.

The three datasets are comparable in terms

of size. The English dataset consisted of 386
instances, the Spanish dataset contained 381
instances, and the Portuguese dataset had 386
instances. Each dataset was split into trial and
test sets and were provided to the participants with
the trial set being released approximately 2 months
prior. The trial set had only 10-12 instances per
language, whereas the test set contained 369-376
instances per language. The test set did not contain
the candidate substitution for each instance’s
complex word. The datasets were formatted as
follows: <sentence><complex.word>, providing
the original context for each complex word.

4 GMU-WLV: System Description

We approached this task with two model
architectures inspired by the performance of large
pre-trained monolingual transformers (Ferres and
Saggion, 2022). We submitted two unsupervised
models for each track due to the limited size of
the development and train sets. The first model
consisted of a pre-trained monolingual transformer
with substitute ranking of the probabilities
produced by MLM, which we name GMU-WLV-
vanilla. The second model consisted of the same
transformer model but with Zipf frequency for
additional substitute ranking, which we name
GMU-WLV-zipf. Both GMU-WLV-vanilla and
GMU-WLV-zipf models conducted MLM similar
to that described in Qiang et al. (2020). We masked
the complex word of the original sentence and fed
both the original sentence and the masked sentence
separated by a [SEP] token to predict the masked
token or in this case, the candidate substitution.

RoBERTA-large-BNE1 was seen to perform well
for Spanish by Ferres and Saggion (2022). As such,
we selected several large pre-trained monolingual
models for each track. For English, we used
ELECTRA2 (Clark et al., 2020), for Spanish
we used RoBERTA-large-BNE (Fandiño et al.,
2022), and for Portuguese we used the BERTimbau
model3 (Souza et al., 2020). RoBERTA-large-BNE
was pre-trained on the National Library of Spain
(Biblioteca Nacional de España) corpus (Fandiño
et al., 2022) containing 135 billion Spanish
tokens extracted from crawling all .es domains.
ELECTRA was pre-trained on English Wikipedia
data with a vocabulary size of 30522 tokens (Clark

1https://huggingface.co/BSC-TeMU/roberta-large-bne
2https://huggingface.co/google/electra-base-generator
3https://huggingface.co/neuralmind/bert-large-

portuguese-cased
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Top-k=1 Top-k=5 Top-k=10
Track Rank Model Accuracy MAP Potential Accuracy MAP Potential Accuracy MAP Potential

PT

1 GMU-WLV-vanilla 0.254 0.481 0.481 0.446 0.197 0.757 0.505 0.115 0.84
2 Central-1 0.174 0.369 0.369 0.286 0.134 0.564 0.324 0.077 0.61
4 LSBert-Baseline 0.158 0.326 0.326 0.326 0.131 0.58 0.401 0.078 0.674

12 GMU-WLV-zipf 0.07 0.216 0.216 0.324 0.124 0.655 0.505 0.084 0.84
16 UoM&MMU-2 0.045 0.136 0.136 0.136 0.071 0.297 0.168 0.042 0.361

EN

1 UniHD-2 0.429 0.81 0.81 0.751 0.449 0.981 0.842 0.281 0.995
5 LSBert-Baseline 0.303 0.598 0.598 0.611 0.296 0.877 0.684 0.176 0.946
8 GMU-WLV-vanilla 0.249 0.517 0.517 0.523 0.263 0.834 0.633 0.16 0.898

26 GMU-WLV-zipf 0.08 0.282 0.282 0.41 0.159 0.74 0.633 0.12 0.898
33 twinfalls-3 0.011 0.046 0.046 0.067 0.028 0.23 0.107 0.018 0.362

ES

1 PresiUniv-1 0.204 0.37 0.37 0.361 0.15 0.647 0.402 0.083 0.726
6 GMU-WLV-vanilla 0.182 0.353 0.353 0.413 0.166 0.679 0.492 0.099 0.772
9 LSBert-Baseline 0.095 0.288 0.288 0.25 0.135 0.611 0.348 0.08 0.747

12 GMU-WLV-zipf 0.068 0.236 0.236 0.307 0.126 0.617 0.492 0.083 0.772
17 OEG_UPM-1 0.043 0.103 0.103 0.141 0.059 0.334 0.217 0.039 0.446

Table 1: A snapshot of SG performances on the PT, EN, and ES tracks per Saggion et al. (2022). We list our two
models (GMU-WLV-vanilla and GMU-WLV-zipf), the LSBert-Baseline, as well as the highest and lowest scoring
entries in each track for comparison. Run numbers are provided with a hyphen (e.g. -1) next to the model/team
name. Our best system in each track is presented in bold.

et al., 2020). BERTimbau was pre-trained on the
Brazilian Web as Corpus (Wagner Filho et al.,
2018) that contains 2.7 billion Portuguese tokens
annotated with tagging and parsing information and
being derived from a diverse selection of Brazilian
websites.

In regards to Zipf frequency ranking, we used the
wordfreq Python library (Speer et al., 2018) to rank
candidate substitutions. Inspired by previous work
in CWI and LCP (Zampieri et al., 2016; Quijada
and Medero, 2016; Shardlow et al., 2021), we pose
that those candidate substitutions with a higher Zipf
frequency would be considered more familiar to
the user and therefore would be considered less
complex than compared to those with a lower Zipf
frequency.

5 Results

The results obtained by GMU-WLV-vanilla are
presented in Table 1 and Table 2. GMU-WLV-
vanilla’s top-k = 1 accuracy placed it first among
the sixteen submissions in the Portuguese track,
whereas for the English and Spanish tracks, its
top-k = 1 accuracy placed it eighth among thirty-
three submissions and sixth among seventeen
submissions respectively.

The accuracies achieved by our GMU-WLV-
vanilla model for its top-k = [1, 2, 3] candidate
substitutions for Portuguese were 0.254, 0.372
and 0.396 respectively (Table 2). Their MAP
scores were 0.481, 0.364 and 0.282, whereas
their potential scores were 0.481, 0.642 and 0.687
respectively. As such, a positive correlation

was found between performance and number of
candidate substitutions generated with this positive
correlation increasing up to top-k = 10 candidate
substitutions (Table 1). For the English track,
our GMU-WLV-vanilla model generated top-k =
[1, 2, 3] candidate substitutions with accuracies
of 0.249, 0.354 and 0.448 respectively. Their
MAP scores were 0.517, 0.414 and 0.352, whereas
their potential scores were 0.517, 0.649, and
0.753 respectively. For the Spanish track, the
accuracies achieved by this model’s top-k = [1,
2, 3] candidate substitutions were 0.182, 0.264 and
0.329 respectively. Their MAP scores were 0.353,
0.266 and 0.22, whereas their potential scores were
0.353, 0.497, and 0.568 respectively. A positive
correlation was therefore found to exist between
performance and number of candidate substitutions
generated, regardless of the language in question.

The performance of our second model: GMU-
WLV-zipf was less promising (Table 1). GMU-
WLV-zipf ranked twelfth among the sixteen
submissions in the Portuguese track, it was placed
twenty-sixth among thirty three submissions for
the English track, and twelfth among seventeen
submissions for the Spanish track. GMU-WLV-zipf
performed noticeably worst on the Portuguese track
in comparison to our GMU-WLV-vanilla model. Its
top-k = [1, 2, 3] candidate substitutions achieved
accuracies of 0.07, 0.136, and 0.216 respectively
(Table 2). Their MAP scores were 0.216, 0.18
and 0.156, whereas its potential scores were 0.216,
0.382 and 0.513 respectively.

GMU-WLV-zipf also performed less well on
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GMU-WLV-vanilla GMU-WLV-zipf
Track Top-k=n Accuracy MAP Precision Recall Potential Accuracy MAP Precision Recall Potential

PT

1 0.254 0.481 0.481 0.072 0.481 0.07 0.216 0.216 0.029 0.216
2 0.372 0.364 0.404 0.118 0.642 0.136 0.18 0.222 0.059 0.382
3 0.396 0.282 0.329 0.141 0.687 0.216 0.156 0.221 0.089 0.513
4 0.43 0.232 0.287 0.16 0.727 0.273 0.14 0.22 0.12 0.612
5 0.446 0.197 0.255 0.176 0.757 0.324 0.124 0.207 0.138 0.655
6 0.46 0.172 0.233 0.193 0.783 0.39 0.113 0.203 0.163 0.741
7 0.489 0.155 0.22 0.211 0.799 0.43 0.104 0.197 0.185 0.781
8 0.495 0.139 0.202 0.221 0.807 0.462 0.098 0.195 0.213 0.81
9 0.5 0.127 0.191 0.234 0.824 0.481 0.091 0.187 0.23 0.826

10 0.505 0.115 0.178 0.242 0.84 0.505 0.084 0.178 0.242 0.84

EN

1 0.249 0.517 0.517 0.064 0.517 0.08 0.282 0.282 0.033 0.282
2 0.354 0.414 0.446 0.107 0.649 0.169 0.223 0.263 0.062 0.44
3 0.448 0.352 0.412 0.146 0.753 0.249 0.19 0.255 0.09 0.563
4 0.496 0.304 0.377 0.178 0.81 0.33 0.174 0.259 0.122 0.662
5 0.523 0.263 0.338 0.2 0.834 0.41 0.159 0.256 0.15 0.74
6 0.547 0.23 0.305 0.214 0.842 0.472 0.148 0.253 0.176 0.786
7 0.574 0.207 0.283 0.232 0.858 0.512 0.139 0.249 0.2 0.828
8 0.603 0.19 0.269 0.249 0.874 0.566 0.132 0.247 0.227 0.86
9 0.619 0.174 0.254 0.262 0.89 0.617 0.126 0.244 0.252 0.885

10 0.633 0.16 0.239 0.272 0.898 0.633 0.12 0.239 0.272 0.898

ES

1 0.182 0.353 0.353 0.047 0.353 0.068 0.236 0.236 0.031 0.236
2 0.264 0.266 0.302 0.08 0.497 0.13 0.189 0.223 0.057 0.372
3 0.329 0.22 0.273 0.107 0.568 0.188 0.156 0.206 0.079 0.465
4 0.375 0.191 0.257 0.135 0.641 0.253 0.14 0.209 0.105 0.56
5 0.413 0.166 0.237 0.154 0.679 0.307 0.126 0.202 0.126 0.617
6 0.438 0.148 0.22 0.169 0.715 0.364 0.113 0.195 0.147 0.679
7 0.462 0.132 0.203 0.179 0.739 0.408 0.106 0.191 0.169 0.715
8 0.47 0.12 0.19 0.19 0.753 0.435 0.098 0.182 0.184 0.728
9 0.486 0.11 0.178 0.2 0.766 0.473 0.091 0.177 0.199 0.761

10 0.492 0.099 0.173 0.204 0.772 0.492 0.083 0.173 0.204 0.772

Table 2: Full list of our models’ performances for different number of top-k candidate substitutions generated on the
PT, EN, and ES tracks.

the English and Spanish tracks with its top-k
= [1, 2, 3] candidate substitutions achieving
less impressive results across all evaluation
metrics. For the English track, these candidate
substitutions achieved accuracies of 0.08, 0.169,
and 0.249, MAP scores of 0.282, 0.223, and 0.19,
and potential scores of 0.282, 0.44, and 0.563
respectively (Table 2). For the Spanish track, these
candidate substitutions showed accuracies of 0.068,
0.13, and 0.188, MAP scores of 0.236, 0.189, and
0.156, and potential scores of 0.236, 0.372, and
0.465 respectively.

6 Discussion

We believe that our GMU-WLV-vanilla model’s
performance on the Portuguese track was a result
of it being a large pre-trained model trained
only on Brazilian Portuguese data (Souza et al.,
2020). GMU-WLV-vanilla model’s competitive
performance on the English and Spanish tracks
was also likely due to the use of large monolingual
models.

We were hoping that multilingual models may

be able to transfer useful information learned from
the vector representations of multiple or similar
languages, such as Spanish, to the target language,
for instance, Portuguese. However, during our
experimentation, multilingual models, such as
mBERT (Devlin et al., 2019) or XLM-R (Conneau
et al., 2020), were found to produce candidate
substitutions in languages other than the target
language. Removing these words still resulted
in a list of candidate substitutions that appeared
to be less suitable than those produced by the
monolingual models. This was also found to be the
case after having applied Zipf frequency ranking.

We had previously theorised that ranking
candidate substitutions per their zipf-frequency
would produce a list of candidate substitutions
ordered from most to least familiar for a specific
or general target audience. Nevertheless, given
that the performance of our GMU-WLV-zipf model
was worst than that of our GMU-WLV-vanilla
model, we concluded that zipf-frequency ranking
was not in alignment with the annotators’ notion of
simplicity, regardless of language.
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Table 2 shows that the top-k = 5 candidate
substitutions ordered without zipf-frequency
ranking achieved on average +0.114, +0.090, and
+0.086 better accuracy, MAP, and potential scores
across all three languages. The problem with Zipf
frequency ranking is that it assumes that shorter
words are innately less complex since they are
more frequent than longer words and therefore
make better simplifications. This is not always the
case as it does not take into consideration context.
Consider the following example shown in both
Spanish (a) and English (b):

(a). El sistema prehispánico se colapsó bajo la
conquista española en el siglo XVI.

(b). The pre-Hispanic system collapsed under the
Spanish conquest in the 16th century.

Given the complex word “colapsó” (collapsed),
our GMU-WLV-zipf model generated several
candidate substitutions, including “hizo” (made),
“puso” (put), “detuvo” (stopped), and “acabara”
(finished). Without taking the meaning of the
complex word or its context into consideration,
“hizo” (made) or “puso” (put) would be the most
logical candidate substitutions as they are shorter
and more common in comparison to the other
candidates. However, they do not have the desired
meaning in this context. On the other hand,
“detuvo” (stopped) or “acabara” (finished) are more
semantically similar to the complex word despite
being longer and less common. For this reason,
zipf-frequency is not always a useful feature for
substitute ranking.

7 Conclusion and Future Work

This paper presents GMU-WLV’s submission
to the TSAR shared-task on multilingual
lexical simplification. Our GMU-WLV-vanilla
model came first place at generating candidate
substitutions for Portuguese, eighth for English,
and sixth for Spanish. We demonstrate the
importance of relying upon monolingual
models for SG with pretrain models, such
as BERTimbau and RoBERTA-large-BNE,
performing exceptionally well. We also show
that the use of zipf-frequency ranking for
substitute ranking may result in inferior candidate
substitutions being selected for simplification.

Transfer learning allows for the utilization
of large pre-existing datasets to under-resourced

NLP-related tasks, such as LS of Portuguese or
Spanish. We hope to experiment with transfer
learning on a number of datasets related to
LS but are not formatted in such a way as
to allow for the direct training of SG models,
including datasets such as the CompLex dataset
(Shardlow et al., 2020), a large pre-exsisting
dataset containing continuous lexical complexity
values, or the binary comparative CompLex dataset
(North et al., 2022b), a somewhat smaller dataset
consisting of comparative judgements between
lexical complexities. We hypothesize that transfer
learning will substantially increase the performance
of our models.
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