
Knowledge Base Index Compression via Dimensionality
and Precision Reduction

Vilém Zouhar, Marius Mosbach, Miaoran Zhang and Dietrich Klakow
Department of Language Science & Technology, Saarland Informatics Campus,

Saarland University, Germany
{vzouhar,mmosbach,mzhang,dklakow}@lsv.uni-saarland.de

Abstract

Recently neural network based approaches to
knowledge-intensive NLP tasks, such as ques-
tion answering, started to rely heavily on the
combination of neural retrievers and readers.
Retrieval is typically performed over a large
textual knowledge base (KB) which requires
significant memory and compute resources, es-
pecially when scaled up. On HotpotQA we sys-
tematically investigate reducing the size of the
KB index by means of dimensionality (sparse
random projections, PCA, autoencoders) and
numerical precision reduction.

Our results show that PCA is an easy solu-
tion that requires very little data and is only
slightly worse than autoencoders, which are
less stable. All methods are sensitive to pre-
and post-processing and data should always be
centered and normalized both before and after
dimension reduction. Finally, we show that it
is possible to combine PCA with using 1bit per
dimension. Overall we achieve (1) 100× com-
pression with 75%, and (2) 24× compression
with 92% original retrieval performance.

1 Introduction

Recent approaches to knowledge-intensive NLP
tasks combine neural network based models with a
retrieval component that leverages dense vector rep-
resentations (Guu et al., 2020; Lewis et al., 2020;
Petroni et al., 2021). The most straightforward ex-
ample is question answering, where the retriever
receives as input a question and returns relevant
documents to be used by the reader (both encoder
and decoder), which outputs the answer (Chen,
2020). The same approach can also be applied in
other contexts, such as fact-checking (Tchechmed-
jiev et al., 2019) or knowledgable dialogue (Dinan
et al., 2018). Moreover, this paradigm can also
be applied to systems that utilize e.g. caching of
contexts from the training corpus to provide better
output, such as the k-nearest neighbours language
model proposed by Khandelwal et al. (2019) or

the dynamic gating language model mechanism by
Yogatama et al. (2021). All these pipelines are gen-
eralized as retrieving an artefact from a knowledge
base (Zouhar et al., 2021) on which the reader is
conditioned together with the query.

Crucially, all of the previous examples rely on
the quality of the retrieval component and the
knowledge base. The knowledge base is usually
indexed by dense vector representations1 and the
retrieval component performs maximum similar-
ity search, commonly using the inner product or
the L2 distance, to retrieve documents2 from the
knowledge base. Only the index alone takes up a
large amount of size of the knowledge base, mak-
ing deployment and experimentation very difficult.
The retrieval speed is also dependent on the di-
mensionality of the index vector. An example of a
large knowledge base is the work of Borgeaud et al.
(2021) which performs retrieval over a database of
1.8 billion documents.

This paper focuses on the issue of compressing
the index through dimensionality and precision re-
duction and makes the following contributions:

• Comparison of various unsupervised index
compression methods for retrieval, including
random projections, PCA, autoencoder, preci-
sion reduction and their combination.

• Examination of effective pre- and post-
processing transformations, showing that cen-
tering and normalization are necessary for
boosting the performance.

• Analysis on the impact of adding irrelevant
documents and retrieval errors. Recommenda-
tions for use by practicioners.

In Section 3, we describe the problem scenario
and the experimental setup. We discuss the results

1Sparse representations via BM25 (Robertson et al., 1995)
are also commonly used but not the focus of this work.

2We refer to the retrieved objects as documents though
they commonly range from spans of text (e.g. 100 tokens) to
the full documents.



of different compression methods in Section 4. We
provide further analysis in Section 5 and conclude
with usage recommendations in Section 6. The
repository for this project is available open-source.3

2 Related Work

Reducing index size. A thorough overview of
the issue of dimensionality reduction in informa-
tion retrieval in the context of dual encoders has
been done by Luan et al. (2021). Though in-depth
and grounded in formal arguments, their study is
focused on the limits and properties of dimension
reduction in general (even with sparse representa-
tions) and the effect of document length on perfor-
mance. In contrast to their work, this paper aims to
compare more methods and give practical advice
with experimental evidence.

A baseline for dimensionality reduction has been
recently proposed by Izacard et al. (2020) in which
they perform the reduction while training the docu-
ment (and query) encoder by adding a low dimen-
sional linear projection layer as the final output
layer. Compared to our work, their approach is
supervised.

In the concurrent work of Ma et al. (2021), PCA
is also used to reduce the size of the document
index. Compared to our work, they perform PCA
using the combination of all question and document
vectors. We show in Figures 4 and 6 that this is not
needed and the PCA transformation matrix can be
estimated much more efficiently. Moreover, we use
different unsupervised compression approaches for
comparison and perform additional analysis of our
findings.

An orthogonal approach to the issue of memory
cost has been proposed by Yamada et al. (2021).
Instead of moving to another continuous vector
representation, their proposed method maps orig-
inal vectors to vectors of binary values which are
trained using the signal from the downstream task.
The pipeline, however, still relies on re-ranking
using the uncompressed vectors. This method is
different from ours and in Section 4.4 we show that
they can be combined.

Finally, He et al. (2021) investigate filtering and
k-means pruning for the task of kNN language
modelling. This work also circumvents the issue
of having to always perform an expensive retrieval
of a large data store by determining whether the
retrieval is actually needed for a given input.

3github.com/zouharvi/kb-shrink

Effect of normalization. Timkey and van Schijn-
del (2021) examine how dominating embedding di-
mensions can worsen retrieval performance. They
study the contribution of individual dimensions find
that normalization is key for document retrieval
based on dense vector representation when BERT-
based embeddings are used. Compared to our work,
they study pre-trained BERT directly, while we fo-
cus on DPR.

3 Setup

3.1 Problem Statement and Evaluation

Given a query q, the following set of equations sum-
marizes the conceptual progression from retrieving
top k relevant documents Z = {d1, d2, . . . , dk}
from a large collection of documents D so that
the relevance of d with q is maximized. For this,
the query and the document embedding functions
fQ : Q → Rd and fD : D → Rd are used to map
the query and all documents to a shared embedding
space and a similarity function sim : Rd×Rd → R
approximates the relevance between query and doc-
uments. Here, we consider either the inner product
or the L2 distance as sim.4 Finally, to speed up
the similarity computation over a large set of doc-
uments and to decrease memory usage (fD is usu-
ally precomputed), we apply dimension reduction
functions rQ : Rd → Rd′ and rD : Rd → Rd′ for
the query and document embeddings respectively.
Formally, we are solving the following problem:

Z = arg top-k
d∈D

rel.(q, d) ,with (1)

rel.(q, d) ≈ sim(fQ(q), fD(d)) (2)

≈ sim(rQ(fQ(q)), rD(fD(d))) (3)

The approximation in (2) was shown to work
well in practice for inner product and L2 distance
(Lin, 2021). In this case, fQ is commonly fine-
tuned for a specific downstream task. For this rea-
son, it is desirable in (3) for the functions rQ and
rD to be differentiable so that they can propagate
the signal. These dimension-reducing functions
need not be the same because even though they
project to a shared vector space, the input distribu-
tion may still be different. Similarly to the query
and document embedding functions, they can be
fine-tuned.

4Cosine similarity could also be used but for computation
reasons we skip it. Results are the same as for inner product
and L2 distance when the vectors are normalized.

https://github.com/zouharvi/kb-shrink


Task Agnostic Representation. When dealing
with multiple downstream tasks that share a single
(large) knowledge base, typically only fQ is fine-
tuned for a specific task while fD remains fixed
(Lewis et al., 2020; Petroni et al., 2021). This as-
sumes that the organization of the document vector
space is sufficient across tasks and that only the
mapping of the queries to this space needs to be
trained.5 Hence, this work is motivated primarily
by finding a good rD (because of the dominant size
of the document index), though we note that rQ is
equally important and necessary because even with-
out any vector semantics, the key and the document
embeddings must have the same dimensionality.

R-Precision. To evaluate retrieval performance
we compute R-Precision averaged over queries:
(relevant documents among top k passages in Z)/r,
k = number of passages in relevant documents, in
the same way as Petroni et al. (2021). Following
previous work, we consider the inner product (IP)
and the L2 distance as the similarity function.

3.2 Data
As knowledge base we use documents from En-
glish Wikipedia and follow the setup described by
Petroni et al. (2021). We mark spans (original arti-
cles split into 100 token pieces, 50 million in total)
as relevant for a query if they come from the same
Wikipedia article as one of the provenances.6 In
order to make our experiments computationally fea-
sible and easy to reproduce we experiment with a
modified version of this knowledge base where we
keep only spans of documents that are relevant to
at least one query from the training or validation
set of our downstream tasks. As downstream tasks,
we use HotpotQA (Yang et al., 2018) for all main
experiments and Natural Questions (Kwiatkowski
et al., 2019) to verify that the results transfer to
other datasets as well. This leads to over 2 mil-
lion encoded spans for HotpotQA (see Table 6 for
dataset sizes). The 768-dimensional embeddings
(32-bit floats) of this dataset (both queries and doc-
uments) add up to 7GB (146GB for the whole un-
pruned dataset).

3.3 Uncompressed Retrieval Peformance
To establish baselines for uncompressed perfor-
mance we use models based on BERT (Devlin et al.,

5Guu et al. (2020) provide evidence that this assumption
can lead to worse results in some cases.

6Spans of the original text which help in answering the
query.
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Figure 1: Comparison of different BERT-based embed-
ding models and versions when using faster but slightly
inaccurate nearest neighbour search. [CLS] is the spe-
cific token embedding from the last layer while (Avg) is
all token average.

2019). We consider (1) vanilla BERT, (2) Sentence-
BERT (Reimers and Gurevych, 2019) and (3) DPR
(Karpukhin et al., 2020), which was specifically
trained for document retrieval. To obtain document
embeddings, we use either the last hidden state rep-
resentation at [CLS] or the average across tokens
of the last layer.

Our first experiment compares the retrieval per-
formance of the different models on HotpotQA.
The result is shown in Figure 1. In alignment with
previous works (Reimers and Gurevych, 2019) an
immediately noticeable conclusion is that vanilla
BERT has a poor performance, especially when tak-
ing the hidden state representation for the [CLS]
token. Next, to make computation tractable, we
repeat the experiment using FAISS (Johnson et al.,
2019).7 We find that the performance loss across
models is systematic, which warrants the use of
this approximate nearest neighbour search for com-
parisons and all our following experiments will use
FAISS on the DPR-CLS model.

Pre-processing Transformations. Figure 1 also
shows that model performance, especially for DPR,
depends heavily on what similarity metric is used
for retrieval. This is because none of the models
produces normalized vectors by default.

Figure 2 shows that performing only normaliza-
tion ( x

||x|| ) sometimes hurts the performance but
when joined with centering beforehand ( x−x̄

||x−x̄|| ),
it improves the results (compared to no pre-

7IndexIVFFlat, nlist=200, nprobe=100.
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Figure 2: Effect of data centering and normalization on
performance (evaluated with FAISS).

processing) in all cases. The normalization and
centering is done for queries and documents sep-
aratedly. Moreover, if the vectors are normalized,
then the retrieved documents are the same for L2

and inner product. 8

Nevertheless, we argue it still makes sense to
study the compression capabilities of L2 and the
inner product separately, since the output of the
compression of normalized vectors need not be
normalized.

4 Compression Methods

Having established the retrieval performance of the
uncompressed baseline, we now turn to methods
for compressing the dense document index and the
queries.

Note that we consider unsupervised methods on
already trained index, for maximum ease of use and
applicability. This is in contrast to supervised meth-
ods, which have access to the query-doc relevancy
mapping, or to in-training dimension reduction (i.e.
lower final layer dimension).

4.1 Random Projection

The simplest way to perform dimension reduction
for a given index x ∈ Rd is to randomly preserve
only certain d′ dimensions and drop all other di-
mensions:

fdrop.(x) = (xm1 , xm2 , . . . , xmd′ )

8argmaxk −||a−b||2 = argmaxk −⟨a,a⟩2−⟨b, b⟩2+
2 · ⟨a, b⟩ = argmaxk 2 · ⟨a, b⟩ − 2 = argmaxk ⟨a, b⟩

Another approach is to greedily search which di-
mensions to drop (those that, when omitted, either
improve the performance or lessen it the least):

pi(x) = (x0, x1, . . ., xi−1, xi+1, . . ., x768)

Li = R-Prec(pi(Q), pi(D))

m = sortdesc.
L ([1 . . . 768])

fgreedy drop.(x) = (xm1 , xm2 , . . . , xmd′ )

The advantage of these two approaches is that
they can be represented easily by a single R768×d

matrix. We consider two other standard random
projection methods: Gaussian random projection
and Sparse random projection (Fodor, 2002). Such
random projections are suitable mostly for inner
product (Kaski, 1998) though the differences are
removed by normalizing the vectors (which also
improves the performance).
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Figure 3: Dimension reduction using different random
projections methods. Presented values are the max of
3 runs (except for greedy dimension dropping, which
is deterministic), semi-transparent lines correspond to
the minimum. Embeddings are provided by centered
and normalized DPR-CLS. Final vectors are also post-
processed by centering and normalization.

Results. The results of all random projection
methods are shown in Figure 3. Gaussian ran-
dom projection seems to perform equally to sparse
random projection. The performance is not fully
recovered for the two methods. Interestingly, sim-
ply dropping random dimensions led to better per-
formance than that of sparse or Gaussian random
projection. The greedy dimension dropping even
improves the performance slightly over random
dimension dropping in some cases before saturat-
ing and is deterministic. As shown in Table 2, the
greedy dimension dropping with post-processing
achieves the best performance among all random



projection methods. Without post-processing, L2

distance works better compared to inner product.

4.2 Principal Component Analysis

Another natural candidate for dimensionality reduc-
tion is principal component analysis (PCA) (F.R.S.,
1901). PCA considers the dimensions with the
highest variance and omits the rest. This leads
to a projection matrix that projects the original
data onto the principal components using an or-
thonormal basis T . The following loss is mini-
mized L = MSE(T′Tx,x). Note that we fit PCA
on the covariance matrix of either the document
index, query embeddings or both and the trained
dimension-reducing projection is then applied to
both the document and query embeddings.

Results. The results of performing PCA are
shown in Figure 4. First, we find that the un-
compressed performance, as well as the effect
of compression, is highly dependent on the data
pre-processing. This should not be surprising
as the PCA algorithm assumes centered and pre-
processed data. Nevertheless, we stress and demon-
strate the importance of this step. This is given by
the normalization of the input vectors and also that
the column vectors of PCA are orthonormal.

Second, when the data is not centered, the PCA
is sensitive to what it is trained on. Figure 4 show
systematically that training on the set of available
queries provides better performance than training
on the documents or a combination of both. Subse-
quently, after centering the data, it does not matter
anymore what is used for fitting: both the queries
and the documents provide good estimates of the
data variance and the dependency on training data
size for PCA is explored explicitly in Section 5.1.
The reason why queries provide better results with-
out centering is that they are more centered in the
first place, as shown in Table 1.

Avg. L1 (std) Avg. L2 (std)

Documents 243.0 (20.1) 12.3 (0.6)
Queries 137.0 (7.5) 9.3 (0.2)

Table 1: Average L1 and L2 norms of document
and query embeddings from DPR-CLS without pre-
processing.

In all cases, the PCA performance starts to
plateau around 128 dimensions and is within 95%
of the uncompressed performance. Finally, we note
that while PCA is concerned with minimizing re-

construction loss, Figure 4 shows that even after
vastly decreasing the reconstruction loss, no sig-
nificant improvements in retrieval performance are
achieved. We further discuss this finding in Sec-
tion 5.4.

Component Scaling. One potential issue of PCA
is that there may be dimensions that dominate the
vector space. Mu et al. (2017) suggest to simply
remove the dimension corresponding to the high-
est eigenvalue though we find that simply scaling
down the top k eigenvectors systematically outper-
forms standard PCA. For simplicity, we focused
on the top 5 eigenvectors and performed a small-
scale grid-search of the scaling factors. The best
performing one was (0.5, 0.8, 0.8, 0.9, 0.8) and Ta-
ble 2 shows that it provides a small additional boost
in retrieval performance.

4.3 Autoencoder
A straightforward extension of PCA for dimen-
sionality reducing is to use autoencoders, which
has been widely explored (Hu et al., 2014; Wang
et al., 2016). Usually, the model is described by
an encoder e : Rd → Rb, a function from a higher
dimension to the target (bottleneck) dimension and
a decoder r : Rb → Rd, which maps back from
the target dimension to the original vector space.
The final (reconstruction) loss is then commonly
computed as L = MSE((r ◦ e)(x),x). To reduce
the dimensionality of a dataset, only the function
e is applied to both the query and the document
embedding. We consider three models with the
bottleneck:

1. A linear projection similar to PCA but without
the restriction of orthonormal columns:

e1(x) = L768
128

r1(x) = L128
768

2. A multi-layer feed forward neural network
with tanh activation:
e2(x) = L768

512 ◦ tanh ◦L512
256 ◦ tanh ◦L256

128

r2(x) = L128
256 ◦ tanh ◦L256

512 ◦ tanh ◦L512
768

3. The same encoder as in the previous model
but with a shallow decoder:
e3(x) = L768

512 ◦ tanh ◦L512
256 ◦ tanh ◦L256

128

r3(x) = L128
768

Compared to PCA, it is able to model non-
pairwise interaction between dimensions (in case
of models 2 and 3 also non-linear interaction).
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Figure 4: Dimension reduction using PCA (top) and Autoencoder (bottom) trained either on document index,
query embeddings or both. Each figure corresponds to one of the four possible combinations of centering and
normalizing the input data. The output vectors are not post-processed. Reconstruction loss (MSE, average for both
documents and queries) is shown in transparent colour and computed in original data space. Horizontal lines show
uncompressed performance. Embeddings are provided by DPR-CLS.

Results. We explore the effects of training data
and pre-processing with results for the first model
shown in Figure 4. Surprisingly, the Autoencoder is
even more sensitive to proper pre-processing than
PCA, most importantly centering which makes the
results much more stable.

The rationale for the third model is that we
would like the hidden representation to require as
little post-processing as possible to become the
original vector again. The higher performance
of the model with shallow decoder, shown in Ta-
ble 2 supports this reasoning. An alternative way
to reduce the computation (modelling dimension
relationships) in the decoder is to regularize the
weights in the decoder. We make use of L1 reg-
ularization explicitly because L2 regularization is
conceptually already present in Adam’s weight de-
cay. This improves each of the three models.

Similarly to the other reconstruction loss-based
method (PCA), without post-processing, inner
product works yields better results.

4.4 Precision Reduction

Lastly, we also experiment with reducing index
size by lowering the float precision from 32 bits
to 16 and 8 bits. Note that despite their quite high
retrieval performance, they only reduce the size by
2 and 4 respectively (as opposed to 6 by dimension
reduction via PCA to 128 dimensions). Another

drawback is that retrieval time is not affected be-
cause the dimensionality remains the same.

Using only one bit per dimension is a special
case of precision reduction suggested by Yamada
et al. (2021). Because we use centered data, we can
define the element-wise transformation function as:

fα(xi) =

{
1− α xi ≥ 0

0− α xi < 0

Bit 1 would then correspond to 1 − α and 0 to
0−α. While Yamada et al. (2021) use values 1 and
0, we work with 0.5 and −0.5 in order to be able
to distinguish between certain cases when using
IP-based similarity.9 As shown in Table 2, this in-
deed yields a slight improvement. When applying
post-processing, however, the two approaches are
equivalent. While this method achieves extreme
32x compression on the disk and retains most of
the retrieval performance, the downside is that if
one wishes to use standard retrieval pipelines, these
variables would have to be converted to a supported,
larger, data type.10

9When using 0 and 1, the IP similarity of 0 and 1 is the
same as 0 and 0 while for −0.5 and 0.5 they are −0.25 and
0.25 respectively.

10The Tevatron toolkit (Gao et al., 2022) supports mixed
precision training with 16-bit floats.



Method Compression Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.609 0.240 0.618 (100%)

Gaussian Projection (128) 6× 0.413 0.453 0.468 (76%)

Sparse Projection (128) 6× 0.398 0.448 0.457 (74%)

Dimension Dropping (128) 6× 0.426 0.466 0.478 (77%)

Greedy Dimension Dropping (128) 6× 0.447 0.478 0.504 (82%)

PCA (128) 6× 0.577 0.562 0.579 (94%)

PCA (128, scaled top 5) 6× 0.586 0.572 0.592 (96%)

Autoencoder (128, single layer) 6× 0.585 0.569 0.588 (95%)

Autoencoder (128, full) 6× 0.564 0.560 0.588 (95%)

Autoencoder (128, shallow decoder) 6× 0.599 0.582 0.599 (97%)

Autoencoder (128, single layer) + L1 6× 0.600 0.587 0.601 (97%)

Autoencoder (128, full) + L1 6× 0.573 0.569 0.589 (95%)

Autoencoder (128, shallow decoder) + L1 6× 0.601 0.591 0.601 (97%)

Precision 16-bit 2× 0.612 0.610 0.615 (100%)

Precision 8-bit 4× 0.613 0.610 0.614 (99%)

Precision 1-bit (offset 0.5) 32× 0.559 0.556 0.561 (91%)

Precision 1-bit (offset 0) 32× 0.530 0.556 0.561 (91%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.459 0.458 0.461 (75%)

PCA (128) + Precision 8-bit 24× 0.558 0.553 0.567 (92%)

Table 2: Overview of compression method performance (from 768) using either L2 or inner product for retrieval.
Inputs are based on centered and normalized output of DPR-CLS and the outputs optionally post-processed again.
Performance is measured by R-Precision on HotpotQA.

4.5 Combination of PCA and Precision
Reduction

Finally, reducing precision can be readily combined
with dimension reduction methods, such as PCA
(prior to changing the data type). The results in
Figure 5 show that PCA can be combined with
e.g. 8-bit precision reduction with negligible loss
in performance. As shown in the last row of Ta-
ble 2, this can lead to the compressed size be 100x
smaller while retaining 75% retrieval performance
on HotpotQA and 89% for NaturalQuestions (see
Table 7).

5 Analysis

5.1 Model Comparison

The comparison of all discussed dimension reduc-
tion methods is shown in Table 2. It also shows the
role of centering and normalization post-encoding
which systematically improves the performance.
The best performing model for dimension reduction
is the autoencoder with L1 regularization and either
just a single projection layer for the encoder and de-
coder or with the shallow decoder (6x compression
with 97% retrieval performance). Additionally, Ap-
pendix B compares training and evaluation speeds
of common implementations.
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Figure 5: Combination of PCA and precision reduction.
Compression ratio is shown in text. 16-bit and 32-bit
values overlap with 8-bit and their compression ratios
are not shown. Measured on HotpotQA with DPR-CLS.

5.2 Data size

A crucial aspect of the PCA and autoencoder meth-
ods is how much data they need for training. In
the following, we experimented with limiting the
number of training samples for PCA and the linear
autoencoder. Results are shown in Figure 6.

While Ma et al. (2021) used a much larger train-
ing set to fit PCA, we find that PCA requires very



128 103.0 104.0 105.0 106.0 107.0107.5

Docs count (log scale)

0.40

0.45

0.50

0.55

0.60

R
-P

re
ci

si
on

PCA (training docs)

Auto. (training docs)

Uncompressed

PCA (eval docs)

Auto. (eval docs)

Uncomp. (eval docs)

Figure 6: Dependency of PCA and autoencoder per-
formance (evaluated on HotpotQA dev data, trained
on document encodings, pre- and post-processing) by
modifying the training data (solid lines) and by adding
irrelevant documents to the retrieval pool (dashed lines).
Black crosses indicate the original training size. Verti-
cal bars are 95% confidence intervals using t-distibution
(across 6 runs with random model initialization and
sampling). Note the log scale on the x-axis and the
truncation of the y-axis.

few samples (lower-bounded by 128 which is also
the number of dimensions used for this experiment).
This is because in the case of PCA training data is
used to estimate the data covariance matrix which
has been shown to work well when using a few
samples (Tadjudin and Landgrebe, 1999). Addi-
tionally, we find that overall the autoencoder needs
more data to outperform PCA.

Next, we experimented with adding more (poten-
tially irrelevant) documents to the knowledge base.
For this, we kept the training data for the autoen-
coder and PCA to the original size. The results are
shown as dashed lines in Figure 6. Retrieval perfor-
mance quickly deteriorates for both models (faster
than for the uncompressed case), highlighting the
importance of filtering irrelevant documents from
the knowledge base.

5.3 Retrieval errors

So far, our evaluation focused on quantitative com-
parisons. In the following, we compare the dis-
tribution of documents retrieved before and after
compression to investigate if there are systematic
differences. We carry out this analysis using Hot-

potQA which, by design, requires two documents
in order to answer a given query. We compare re-
trieval with the original document embeddings to
retrieval with PCA and 1-bit compression.

We find that there are no systematic differences
compared to the uncompressed retrieval. This is
demonstrated by the small off-diagonal values in
Figure 7. This result shows that if the retriever
working with uncompressed embeddings returns
two relevant documents in the top-k for a given
query, also the retriever working with the com-
pressed index is very likely to include the same
two documents in the top-k. This is further shown
by the Pearson correlation in Table 4. This sug-
gests that the compressed index can be used on
downstream tasks with predictable performance
loss based on the slightly worsened retrieval perfor-
mance. Furthermore, there do not seem to be any
systematic differences even between the two vastly
different compression methods used for this exper-
iment (PCA and 1-bit precision). This indicates
that, despite their methodological differences, the
two compression approaches seem to remove the
same redundances in the uncompressed data. We
leave a more detailed exploration of these findings
for future work.
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Figure 7: Distribution of the number of retrieved docu-
ments for HotpotQA queries before and after compres-
sion: PCA (128) and 1-bit precision with R-Precisions
(centered & normalized) of 0.579 and 0.561, respec-
tively.

5.4 Pitfalls of Reconstruction Loss

Despite PCA and autoencoder being the most suc-
cessful methods, low reconstruction loss provides
no theoretical guarantee to the retrieval perfor-
mance. Consider a simple linear projection that can
be represented as a diagonal matrix that projects to
a space of the same dimensionality. This function
has a trivial inverse and therefore no information
is lost when it is applied. The retrieval is however



disrupted, as it will mostly depend on the first di-
mension and nothing else. This is a major flaw of
approaches that minimize the vector reconstruction
loss because the optimized quantity is different to
the actual goal.

R =


1099 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 R−1 =


10−99 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Distance Learning. The task of dimensionality
reduction has been explored by standard statistical
methods by the name manifold learning. The most
used method is t-distributed stochastic neighbor
(t-SNE) embedding built on the work of Hinton
and Roweis (2002) or multidimensional scaling
(Kruskal, 1964; Borg and Groenen, 2005). They
organize a new vector space (of lower dimension-
ality) so that the L2 distances follow those of the
original space (extensions to other metrics also ex-
ist). Although the optimization goal is more in
line with our task of vector space compression with
the preservation of nearest neighbours, methods of
manifold learning are limited by the large computa-
tion costs11 and the fact that they do not construct
a function but rather move the discrete points in
the new space to lower the optimization loss. This
makes it not applicable for online purposes (i.e.
adding new samples that need to be compressed as
well).

The main disadvantage of the approaches based
on reconstruction loss is that their optimization
goal strays from what we are interested in, namely
preserving distances between vectors. We tried to
reformulate the problem in terms of deep learn-
ing and gradient-based optimization to alleviate
the issue of speed and extensibility of standard
manifold learning approaches. We try to learn a
function that maps the original vector space to a
lower-dimensional one while preserving similari-
ties. That can be either a simple linear projection A
or generally a more complex differentiable function
f :

L = MSE(sim(f(ti), f(tj)), sim(ti, tj))

After the function f is fitted, both the training
and new data can be compressed by its application.
As opposed to manifold learning which usually

11The common fast implementation for t-SNE, Barnes-Hut
(Barnes and Hut, 1986; Van Der Maaten, 2013) is based on
either quadtrees or octrees and is limited to 3 dimensions.

leverages specific properties of the metrics, here
they can be any differentiable functions. The opti-
mization was, however, too slow, underperforming
(between sparse projection and PCA) and did not
currently provide any benefits.

We also tried to use unsupervised contrastive
learning by considering close neighbours in the
original space as positive samples and distant neigh-
bours as negative samples but reached similar re-
sults.

6 Discussion

In this section we briefly discuss the main con-
clusions from our experiments and analysis in the
form of recommendations for NLP practicioners.

Importance of Pre-/post-processing. As our re-
sults show, for all methods (and models), centering
and normalization should be done before and after
dimension reduction, as it boosts the performance
of every model.

Method recommendation. While most compres-
sion methods achieve similar retrieval performance
and compression ratios (cf. Table 2 and Table 7),
PCA stands out in the following regards: (1) It re-
quires only minimal implementation effort and no
tuning of hyper-parameters beyond selecting which
principal components to keep; (2) as our analysis
shows, the PCA matrix can be estimated well with
only 1000 document or query embeddings. It is not
necessary to learn a transformation matrix on the
full knowledge base; (3) PCA can easily be com-
bined with precision reduction based approaches.

7 Summary

In this work, we examined several simple unsu-
pervised methods for dimensionality reduction for
retrieval-based NLP tasks: random projections,
PCA, autoencoder and precision reduction and their
combination. We also documented the data require-
ments of each method and their reliance on pre-
and post-processing.

Future work. As shown in prior works, dimen-
sion reduction can take place also during training
where the loss is more in-line with the retrieval
goal. Methods for dimension reduction after train-
ing, however, rely mostly on reconstruction loss,
which is suboptimal. Therefore more research for
dimension reduction methods is needed, such as
fast manifold or distance-based learning.
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Hyperparameters

Batch size 128
Optimizer Adam
Learning rate 10−3

L1 regularization 10−5.9

Table 3: Hyperparameters of autoencoder architectures
described in Section 4.3. L1 regularization is used only
when explicitly mentioned.

A Pre-processing

Another common approach before any feature se-
lection is to use z-scores (x−x̄

σ ) instead of the orig-
inal values. Its boost in performance is however
similar to that of centering and normalization. The
effects of each pre-processing step are in Table 5.
The significant differences in performance show
the importance of data pre-processing (agnostic to
model selection).

B Speed

Despite the autoencoder providing slightly better
retrieval performance and PCA being generally eas-
ier to use (due to the lack of hyperparameters),
there are several tradeoffs in model selection. Once
the models are trained, the runtime performance
(encoding) is comparable though for PCA it is a
single matrix projection while for the autoencoder
it may be several layers and activation functions.

Depending on the specific library used for im-
plementation, however, the results differ. Figure 8
shows that the autoencoder (implemented in Py-
Torch) is much slower than any other model when
run on a CPU but the fastest when run on a GPU.
Similarly, PCA works best if used from the Py-
Torch library (whether on CPU or GPU) and from

12PyTorch 1.9.1, scikit-learn 0.23.2, RTX 2080 Ti (CUDA
11.4), 64×2.1GHz Intel Xeon E5-2683 v4, 1TB RAM.

Uncompressed PCA 1bit

Uncompressed 1.00
PCA 0.87 1.00
1bit 0.81 0.80 1.00

Table 4: Correlation of the number of retrieved docu-
ments for HotpotQA queries in different retrieval modes:
uncompressed, PCA (128) and 1-bit precision with R-
Precisions (centered & normalized) of 0.618, 0.579 and
0.561, respectively.

IP L2

DPR-CLS 0.609 0.240

Center 0.630 0.353
Z-Score 0.632 0.525
Norm. 0.463
Center + norm. 0.618
Z-Score + norm. 0.621

Table 5: Effect of pre-processing transformations on
embeddings produced by DPR-CLS. Means and stan-
dard deviations are computed separately for documents
and queries. Transformation into z-scores includes cen-
tering.

Dataset Train Dev Doc.

HP 69k 6k 49.7 Mio.
HP (pruned) 69k 6k 2.1 Mio.
NQ (pruned) 78k 2k 1.6 Mio.

Table 6: Number of training and dev queries and docu-
ments for HotpotQA and Natural Questions. Train and
dev columns are queries.

the standard Scikit package. Except for Scikit,
there seems to be little relation between the tar-
get dimensionality and computation time.

C Comparison on Natural Questions

We also show the major experiments in Ta-
ble 7 (table structure equivalent to that for the
pruned dataset in Table 2) on Natural Question
(Kwiatkowski et al., 2019) with identical dataset
pre-processing. The performance is overall larger
because the task is different and the set of docu-
ments is lower (1.5 million spans) but compara-
tively the trends are in line with the previous con-
clusions of the paper.
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Figure 8: Speed comparison of PCA and autoencoder (model 3) implemented in PyTorch and Scikit12split into
training and encoding parts. Models were trained on documents and queries jointly (normalized). Error bars are
95% confidence intervals using t-distribution (5 runs).

Method Compression Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.934 0.758 0.920 (100%)

Gaussian Projection 6× 0.825 0.848 0.855 (93%)

Sparse Projection 6× 0.826 0.848 0.856 (93%)

Dimension Dropping 6× 0.840 0.863 0.867 (94%)

Greedy Dimension Dropping 6× 0.845 0.873 0.873 (95%)

PCA 6× 0.908 0.907 0.910 (99%)

PCA (scaled top 5) 6× 0.916 0.910 0.920 (100%)

Autoencoder (single layer) 6× 0.915 0.910 0.914 (99%)

Autoencoder (full) 6× 0.903 0.907 0.910 (99%)

Autoencoder (shallow decoder) 6× 0.916 0.918 0.919 (100%)

Autoencoder + L1 (single layer) 6× 0.918 0.918 0.921 (100%)

Autoencoder + L1 (full) 6× 0.909 0.910 0.913 (99%)

Autoencoder + L1 (shallow decoder) 6× 0.918 0.917 0.919 (100%)

Precision 16-bit 2× 0.921 0.917 0.920 (100%)

Precision 8-bit 4× 0.920 0.921 0.922 (100%)

Precision 1-bit (offset 0.5) 32× 0.902 0.902 0.904 (98%)

Precision 1-bit (offset 0) 32× 0.892 0.902 0.904 (98%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.854 0.862 0.858 (93%)

PCA (128) + Precision 8-bit 24× 0.906 0.904 0.909 (99%)

Table 7: Overview of compression method performance (from 768) using either L2 or inner product for retrieval.
Inputs are based on (1) original and (2) centered and normalized output of DPR-CLS. Performance is measured by
R-Precision on NaturalQuestions.
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