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Abstract

While both extractive and generative readers
have been successfully applied to the Ques-
tion Answering (QA) task, little attention has
been paid toward the systematic comparison of
them. Characterizing the strengths and weak-
nesses of the two readers is crucial not only
for making a more informed reader selection in
practice but also for developing a deeper under-
standing to foster further research on improv-
ing readers in a principled manner. Motivated
by this goal, we make the first attempt to sys-
tematically study the comparison of extractive
and generative readers for question answering.
To be aligned with the state-of-the-art, we ex-
plore nine transformer-based large pre-trained
language models (PrLMs) as backbone archi-
tectures. Furthermore, we organize our find-
ings under two main categories: (1) keeping
the architecture invariant, and (2) varying the
underlying PrLMs. Among several interesting
findings, it is important to highlight that (1)
the generative readers perform better in long
context QA, (2) the extractive readers perform
better in short context while also showing bet-
ter out-of-domain generalization, and (3) the
encoder of encoder-decoder PrLMs (e.g., T5)
turns out to be a strong extractive reader and
outperforms the standard choice of encoder-
only PrLMs (e.g., RoBERTa). We also study
the effect of multi-task learning on the two
types of readers varying the underlying PrLMs
and perform qualitative and quantitative diag-
nosis to provide further insights into future di-
rections in modeling better readers.

1 Introduction

Question Answering (QA) is an important task
to evaluate the reading comprehension capac-
ity of an intelligent system and can be directly
applied to real applications such as search en-
gines (Kwiatkowski et al., 2019) and dialogue sys-
tems (Reddy et al., 2019; Choi et al., 2018). This

∗Work done during internship at Salesforce Research.

paper studies extractive QA which is a specific
type of QA; i.e., answering the question using a
span from the context (Rajpurkar et al., 2016; Fisch
et al., 2019). Extractive readers (Seo et al., 2017;
Devlin et al., 2019) are widely used to tackle such
a task, where the goal is to classify start and end
positions of the answer in the context. Generative
readers (Raffel et al., 2020; Lewis et al., 2020c;
Izacard and Grave, 2021) have also shown remark-
able performance, where the goal is to generate
answers by autoregressively predicting tokens.

Both the state-of-the-art extractive and genera-
tive readers are based on large pretrained language
models (PrLMs) and show good performance on
different datasets. However, a systematic compar-
ison between them has been largely unexplored.
Such a comparison reveals the strengths and weak-
nesses of each reader, which in turn can provide
more principled guidance on which reader and
PrLM should be applied in which cases, and also
open up future research opportunities grounded on
identified concrete challenges to improve reader
models. However fair comparisons between these
have been difficult to perform mainly because 1)
the PrLMs for extractive and generative are dif-
ferent, i.e., extractive readers are usually built on
top of encoder-only PrLM while generative ones
are based on encoder-decoder PrLMs, and 2) the
size of generative and extractive readers are not
the same, which can greatly affect the performance.
We design two main set of controlled experiments
to address such challenges in comparing extractive
and generative readers in a principled manner.

In the first set of experiments, we compare ex-
tractive and generative readers using the same
PrLMs. Specifically, T5 (Raffel et al., 2020) gener-
ative reader is compared with T5 extractive reader
and similarly for BART (Lewis et al., 2020a). This
allows a fair comparison of different answer predic-
tion approaches without being affected by different
architecture or prior knowledge of PrLMs. More-
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over, we challenge the conventional formulation
of extractive readers, which are often built upon
encoder-only PrLMs, by leveraging the encoder of
encoder-decoder PrLMs as a variable alternative.
More concretely, we use the encoders of T5 and
BART models to explore their capacity as an ex-
tractive reader to better understand the effect of
different pre-training strategies on the final QA per-
formance.

While the aforementioned comparison strategy
adopts the same PrLMs, it remains unclear how
generative readers compare with the conventional
extractive readers that are built upon encoder-only
PrLMs. Thus, in the second experiment, we
compare different architecture PrLMs, including
T5, BART, ELECTRA (Clark et al., 2020) and
RoBERTa (Liu et al., 2019), to draw more gener-
alizable and grounded conclusions. All models in
this suite of experiments have similar sizes, thus
reducing the impact of model size on performance.

With these two experiments, we present a
systematic comparison of extractive and gener-
ative readers using nine readers on the MRQA
task (Fisch et al., 2019), a collection of multiple
extractive QA datasets. This evaluation results in
five insightful findings:

1. The first experiment reveals that the choice of
PrLM affects the performance. Specifically, for
T5, the generative reader is better than the ex-
tractive one, but for BART, extractive readers
are better than the generative ones.

2. The second experiment shows that on average,
extractive readers performs better than the gen-
erative ones, with the extractive reader built on
the encoder of T5 performing the best among
the different types of PrLMs.

3. Extractive readers perform better in short con-
text and have better generalization on out-of-
domain datasets and rare answers, but the gener-
ative readers perform better in the long context.

4. The encoder of encoder-decoder PrLMs are also
good extractive readers. Extractive readers built
on top of the encoder of BART or T5 are better
than encoder-only PrLMs, like RoBERTa.

5. While the inference length is usually chosen to
be the same as in the training time, we find that
longer inference length has a positive effect for
all PrLMs. Using longer lengths for long con-
texts leads to greater gains than short contexts.

Our work presents an in-depth study of extractive
and generative readers for QA task, an important

NLP task toward building intelligent systems. Our
findings shed light on key considerations behind
reader selection and would be helpful for formulat-
ing future research on advancing reader models.

2 Related Work

Pretrained Language Models Here, we mainly
discuss two types of pre-trained models based on
transformers architecture (Vaswani et al., 2017),
autoencoder and encoder-decoder models, which
are widely used for QA tasks. Autoencoder only re-
lies on the encoder part in the original transformer,
and in the pretraining time, the input is a cor-
rupted sentence, for example, a sentence with mask
tokens, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) and ELECTRA (Clark
et al., 2020). Both RoBERTa and ELECTRA has
the same architecture as BERT but perform bet-
ter than BERT on many tasks. RoBERTa mainly
benefits from larger training corpus consisting of
news, books, stories, and web text. ELECTRA
adapts GAN-style training (Mirza and Osindero,
2014) and aims to detect if a token is replaced
or is from the original text. Large ELECTRA is
trained on similar data as RoBERTa. BART (Lewis
et al., 2020b) and T5 (Raffel et al., 2020) belong to
encoder-decoder architecture. BART is pretrained
on the same data as RoBERTa, while T5 is pre-
trained on Colossal Clean Common Crawl Corpus
as well as the multiple downstream tasks.

Question Answering Systems We focus on QA
systems that are built upon PrLMs. Extractive QA
readers assume that answers can be found in the
context and aim to predict the corresponding start
and end tokens from the context (Fisch et al., 2019;
Li et al., 2019; Clark et al., 2020; Karpukhin et al.,
2020). Differently, generative QA readers are not
restricted to the input context, where they can freely
generate answers token by token using the entire vo-
cabulary in an autoregressive manner (Raffel et al.,
2020). Generative readers are more often used in
open domain (Lewis et al., 2020c; Izacard and
Grave, 2021; Xiong et al., 2021) and unified set-
tings (Khashabi et al., 2020; Tafjord and Clark,
2021). Fajcik et al. (2021) combines extractive
and generative readers by adding a classification
module to decide which reader predicts answers.
Cheng et al. (2021) proposes a unified system of ex-
tractive and generative readers, but different from
(Fajcik et al., 2021), the output is computed by both
extractive and generative readers.
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3 Model

We mainly study the QA models based on PrLMs
with extractive and generative approaches.

3.1 Extractive Reader
In extractive reader, an encoder firstly receives the
concatenation of a question q :{q1, . . . , qt} and a
context c :{c1, . . . , cm}, where qi and cj are to-
kens in question and context, respectively. Then,
it produces h : [h1| · · · |hm] ∈ Rd×m, where hj
corresponds to the d-dimensional contextual repre-
sentation of context token cj . We then stack two
linear layers on top of the contextual representa-
tions to independently predict the probability of
each context token being start and end positions
of the correct answer. More formally, given a tu-
ple (q, c,a), where a is an answer, the training
objective is to minimize the following loss function

LExt = − log(Pstart,s)− log(Pend,e) (1)

where Pstart,Pend ∈ Rm are defined by

Pstart = softmax(wstarth) (2)

Pend = softmax(wendh) (3)

where wstart and wend denote for the linear lay-
ers to predict start and end tokens, Pstart,s and
Pend,e denote the probability of the ground truth
start and end tokens of answer a, respectively.
In testing time, the answer span is decoded by
argmaxi,j{Pstart,i ×Pend,j}.

In this work, we have two variants of extrac-
tive readers. One is encoder-only models to get
the contextual representation of each token. We
call such kind of reader as E-Extractive reader.
Apart from taking the conventional PrLMs such
as RoBERTa and ELECTRA, we also apply the
encoder part in T5 and BART to be E-Extractive
reader. The other one is using the encoder-decoder
models where the decoder is to obtained the con-
textual representation of each token in the context
in an autoregressive way (see §3.2). We use both
BART and T5 PrLMs and term this kind of reader
as ED-Extractive reader.

3.2 Generative Reader
We consider a generative reader consisting of an
encoder and a decoder where the decoder is used
to generate answers in an autoregressive way. Spe-
cially, the encoder takes a question q and a context
c as input and outputs contextual representation

Dataset Training size Avg. tokens in Q Avg. tokens in C
In-domain datasets
SQuAD 86,588 11.53 144.15
NewsQA 74,160 7.60 581.61
TriviaQA 61,688 15.81 782.59
SearchQA 117,384 17.46 744.44
HotpotQA 72,928 18.89 237.67
NQ 104,071 9.18 158.80

Out-of-domain datasets
DROP - 11.18 215.16
RACE - 11.82 347.90
BioASQ - 11.53 252.83
TextbookQA - 11.07 663.36
RE - 9.26 30.02
DuoRC - 8.63 732.92

Table 1: Statistics of In-domain (IID) and out-of-
domain (OOD) datasets of MRQA benchmark.

h. Then, the decoder takes the previously gener-
ated answer tokens as input and performs attention
over h and then generates the next token. Formally,
given a tuple (q, c,a), the training objective is to
minimize the following loss function

LGen =
K∑

i=1

logP(ai | h, a:i) (4)

where K is the number of tokens in answer a, ai
is the ith token in a, and a0 corresponds to a spe-
cial beginning of sequence (BOS) token. In the
inference time, we use the greedy search method
to autoregressively generate the answer.

4 Experiments

4.1 Dataset
We conduct experiments on MRQA benchmark
which provides six in-domain (IID) datasets, and
six out-of-domain (OOD) datasets for generaliza-
tion evaluation. MRQA covers different domains
(e.g. News and biomedical) and different types of
questions, (e.g. single hop and multi-hop). Table
1 shows the statistic of each IID and OOD dataset.
Some datasets have long context and others are
short context. More details about MRQA are pre-
sented in Appendix A.

4.2 Learning Strategy
Single Task Learning: we use each IID datasets
to train extractive and generative readers. Multi-
Task Learning: we consider training with all (six)
IID datasets as multi-task learning for two rea-
sons. As (Su et al., 2019) showed that different
IID datasets share a low similarity, therefore, they
may require different reasoning skills. In addition,
Table 1 shows that different datasets have different
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question and context lengths, which may lead to
different difficulties between datasets.

4.3 Experimental Setup

We use Huggingface (Wolf et al., 2020) and Py-
torch (Paszke et al., 2019) implementation for train-
ing each model. All models are trained using
maximum input length of 512 and other details
is provided in Appendix B1. In Table 2, we summa-
rize the size of each evaluated model and the size
of PrLMs are chosen based on a comparable way
and the best computation power. For example, we
choose T5 base model for generative reader since
the large T5 is too larger (737M).
Input Format: Given a question Q and a context
C, the input to extractive readers is {Q [SEP] C}
and the input to generative readers is {question:
Q [SEP] context: C}. We also considered other
input formats, which are reported in Appendix C.
Answer Length of Generative Reader: We set
the maximum generated answer length as 16 for
generative reader. Using longer generation lengths
(32 and 64) do not yield noticeable improvement
as reported in Appendix D.

5 Results and Analysis

We first present the study of using different infer-
ence length for each model since it guides us to
choose the best performance of each model. Then,
we compare the generative and extractive readers
using the same PrLMs and the different PrLMs.
Last, we present a detail analysis to diagnose the
difference among extractive and generative reader.
F1 is used to measure performance. Note that since
we test each model on 12 datasets, the observation
and conclusion we draw are mostly based on the
average across all datasets.

5.1 The Effect of Context Length

While all models are trained with 512 maximum
length, the inference length can be longer than this.
We experiment with three lengths, 512, 1024, and
the full length of input question and context. Due to
the tokenization and pretraining maximum length
of each PrLM, ELECTRA only allows 512 maxi-
mum inference length, RoBERTa and BART allows
1024, and T5 allows the full length of input.

1While we fix the training hyperparameters for all the mod-
els for the sake of experimental efficiency, the performance of
our setting is close to the original results.

We present the average performance of each
model on both IID and OOD in Table 32, from
which three trends are observed. (1) When using
512 inference length, ELECTRA is the best model
in single-task learning on IID datasets and multi-
task in both IID and OOD datasets. (2) Increasing
the inference length actually improves all models’
performance. (3) The length affects the T5 mod-
els more significantly than others, for example, in
single-task learning, the largest improvement of
length 1024 for T5 model on IID and OOD datasets
are 2.77% and 5.49%, while for other models, the
largest improvement of length 1024 compared to
512 are 1.32% and 1.65%. The performance of
using 512 and 1024 are given in Appendix E, and
we present the performance of each dataset using
the best input length in the following sections.

5.2 Comparison within Same PrLMs

We compare different readers when using the same
PrLMs. Two PrLMs, T5 and BART, are considered,
where T5-base model is applied to each T5 reader,
and BART-large model is applied to each BART
reader. We have three comparison as there are
two types of extractive and one type of generative
readers (§3). We present the average performance
in each comparison and the detail performance on
each datasets are given in Appendix F.

ED-Extractive and E-Extractive Since the E-
Extractive reader is only use the encoder part of the
PrML without the decoder, the size of E-Extractive
reader is less than the ED-Extractive. But even
under this disadvantage, surprisingly, we find that
the encoder part actually perform well on QA tasks.
In Figure 1 , the red and green bars compare the
ED-Extractive and E-Extractive reader. For BART
model, the E-Extractive reader outperforms ED-
Extractive reader on average on IID and OOD
datasets in single task learning as well as multi-
task learning. This indicates that the decoder in
BART is not crucial for the extractive reader. On
the other hand, for T5, the ED-Extractive reader
outperforms E-Extractive reader on average on both
IID and OOD datasets. This suggests that the de-
coder in T5 still plays a role to yield better perfor-
mance. But the performances are similar even that
the E-Extractive reader has less parameters.

2Note that in single-task learning, the performance on
OOD are extracted from the best performance of each single-
task model on every dataset and this applies to all other tables
in this paper.
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T5 E-Ext T5 E-Ext T5 ED-Ext T5 ED-Gen Bart E-Ext Bart ED-Ext Bart ED-Gen ELECTRA RoBERTa
Size base large base base large large large large large

# Params (M) 110 335 223 223 204 406 406 334 354

Table 2: Size and parameters of readers. ED: encoder-decoder, Ext for extractive, Gen for generative approach.

Model
In-domain Avg. Out-of-domain Avg.

512 1024 Full 512 1024 Full

Single Task Learning

T5 E-Ext (B) 74.42 75.80 77.93 55.89 58.06 58.65
T5 E-Ext (L) 76.46 78.67 80.85 60.74 63.67 64.49

T5 ED-Ext (B) 74.75 77.06 79.11 57.11 59.19 59.99
T5 ED-Gen (B) 77.91 80.68 81.02 56.26 61.75 61.82
BART E-Ext (L) 77.78 79.10 - 59.67 61.32 -

BART ED-Ext (L) 77.10 77.34 - 59.29 59.21 -
BART ED-Gen (L) 69.89 70.24 - 49.65 53.51 -

RoBERTa (L) 77.59 77.89 - 60.32 60.47 -
ELECTRA (L) 78.71 - - 60.19 - -

Multi-Task Learning

T5 E-Ext (B) 75.74 76.65 78.99 58.94 61.55 61.98
T5 E-Ext (L) 77.10 79.30 81.55 63.04 66.10 66.78

T5 ED-Ext (B) 75.92 77.38 79.93 59.23 61.86 62.64
T5 ED-Gen (B) 78.06 80.89 81.16 57.82 63.56 63.68
BART E-Ext (L) 77.75 79.13 - 63.27 64.06 -

BART ED-Ext (L) 77.26 77.55 - 62.14 62.68 -
BART ED-Gen (L) 78.11 78.55 - 57.41 60.54 -

RoBERTa (L) 77.86 78.02 - 63.70 63.58 -
ELECTRA (L) 78.52 - - 63.83 - -

Table 3: Result of each model using three inference
length. Bold number means the highest value of each
model with three inference length for IID and OOD
datasets. L: large PrLMs, B: base PrLMs

Figure 1: Left for single-task and right for multi-tasks
settings. For T5, ED-Ext performs better than E-Ext
reader; for BART, E-Ext is better than ED-Ext reader
even though the former has less parameters.

ED-Extractive and ED-Generative Reader
Here, the model size of extractive reader and
generative reader are almost the same (see Table 2)
and also the pre-owned knowledge of two readers
are the same since both readers use the encoder and
decoder parts. In Figure 2, the red and blue bars
compare the ED-Extractive and ED-Generative
reader. For T5, generative models performs better
than the extractive one on four cases, IID and OOD
datasets and single- and multi-tasks learning. For

BART PrLM, in single-task learning, the extractive
model is much better than the generative model.
This probably explains why in most of the previous
work, when BART is applied to extractive QA
tasks, it is used as extractive reader even though it
belongs to encoder-decoder model family3. The
story for multi-task learning is different, and we
find that the BART generative reader benefits
significantly from multi-task learning and even
outperforms the BART ED-extractive reader on
IID datasets. It indicates that the decoder in BART
requires larger and more diversified datasets to
learn the QA task.

Figure 2: Left for single-task and right for multi-tasks
settings. For T5, ED-Gen performs better than ED-Ext;
For BART, ED-Ext is better than ED-Gen in single task
learning, but worse in multi-task learning on IID.

E-Extractive and Generative Reader In this
comparison, the extractive reader has less advan-
tage than the generative ones since the decoder has
been removed in E-Extractive reader. In Figure 3,
the green and blue bars compare the E-Extractive
and ED-Generative reader. For T5 model, the gen-
erative reader are better than the extractive ones
in both single- and multi-tasks and IID and OOD
datasets. But again, this disadvantages of extractive
readers might come from the smaller model size as
we discussed in previous comparison. For BART
model, E-Extractive reader outperforms generative
reader significantly on both IID and OOD datasets
and the advantage of E-Extractive reader are much
more significantly in single-task learning scenario.
To summarize,
1. The encoder part itself in both T5 and BART

can perform well as an extractive reader.
3The original BART paper takes BART as an extractive

and also the implementation of using BART for QA in Hug-
gingface library do the same.
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Figure 3: Left for single-task and right for multi-tasks
settings. For T5, ED-Gen is better than E-Ext reader;
for BART, E-Ext is better than ED-Gen reader even
though the former has less parameters.

2. The comparison among three types of reader
using BART and T5 suggests that although
both PrLMs are of encoder-decoder architecture,
three types of readers behave quite differently.
This might caused by different pre-training ob-
jectives and knowledge.

3. For BART model, the E-Extractive reader out-
performs ED-Extractive reader and generative
reader regardless of less parameters, thus should
be used as an extractive reader.

4. The BART generative reader requires large and
diversified datasets to learn the QA task and thus
benefits significantly from multi-task learning.

5. For T5, the performance of generative reader
consistently outperforms two types of extractive
reader. The deficiency of T5-Extractive reader
might be caused by less parameters.

5.3 Comparison within Different PrLMs

The previous section compares the generative and
extractive readers using the same PrLMs and both
PrLMs are encoder-decoder models. On one hand,
such comparison reduces the impacts of PrLMs
architecture and pre-owned knowledge. On the
other hand, it raises two concerns. First, whether
extractive readers using an encoder-decoder PrLMs
are good for representatives of extractive readers?
After all, encoder-only PrLMs are more standard
choice for extractive readers in most previous work.
Second, whether the smaller size of the extractive
reader cause its deficiency compared to the gen-
erative one, particularly that the T5 E-Extractive
reader is half size of the T5 generative reader in
previous comparison.

To clear out the first concern, here, we present
the comparison cross different PrLMs including
standard encoder-only models for extractive read-
ers. To address the second concern, we carefully
select the model size so that each model is of rela-
tive comparable size.

The Selection of Each Model’s size We use the
encoder in T5 large model for the T5 E-Extractive
reader so that it is of similar size as RoBERTa and
ELECTRA extractive readers (∼330M)4. When us-
ing BART PrLMs for extractive reader, we only use
BART E-Extractive reader but not ED-Extractive
reader because the former performs better even
though it has less parameters (204M) than the later
one has larger size. T5 generative reader is also
smaller (223M), but this is better than using T5
large generative reader to compare with others,
which is way too larger than other readers (737M).
For BART generative reader, it is larger than other
readers (406M). One potential issue for the above-
mentioned setting is that even though we choose
the best comparison setting, still each model size
are different, and thus if a model perform inferior
than others, it might due to the smaller model size.
However, the following conclusion we draw does
not effect by this issue.

Are Encoder-decoder PrLMs Good for Extrac-
tive Readers? Based on Table 4, we find that
encoder-decoder PrLMs outperform encoder-only
PrLMs as extractive readers on average. Both
T5 and BART E-Extractive readers perform better
than RoBERTa and ELECTRA on IID and OOD
datasets under single- as well as multi-task learn-
ing regardless of less parameters of T5 and BART.
This observation is exciting since instead of using
standard encoder-only PrLMs for extractive reader,
encoder-decoder PrLMs are actually better choice.

Which reader generalize better on OOD? The
extractive reader generalize better on OOD datasets.
In both single- and multi-task learning, T5 E-
Extractive reader shows the best performance, es-
pecially beating the BART generative reader even
though the latter one has more parameters. BART
E-Extractive reader also generalize well on OOD,
and it also beats the BART generative reader even
though the former has less parameters than the later.

Which PrLM is the best? Based on Table 4, we
see that T5 is the best among four PrLMs in both
single- and multi-tasks learning scenario on IID as
well as OOD datasets. We observe two advantages
of T5 over other PrLMs. First, T5 is much better
than ELECTRA and RoBERTa on NewsQA data.
In both single- and multi- task learning, RoBERTa

4Note that the T5 PrLM is already trained on SQuAD,
while others do not. However, based on the results on SQuAD,
T5 does not have advantage over other models on this dataset.
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Model
In-domain Datasets Out-of-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 ED-Gen 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART ED-Gen 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

T5 E-Ext 92.47 72.63 76.09 83.24 80.67 80.00 80.85 53.14 52.06 71.26 61.92 85.78 62.80 64.49
BART E-Ext 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
ELECTRA 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 52.31 86.69 55.75 60.47

Multi-Task Learning

T5 ED-Gen 91.41+0.66 71.29−0.36 80.01+0.40 86.46+0.25 79.70−0.19 78.09+0.05 81.16+0.14 51.20+3.12 49.66+0.77 68.72+1.36 62.90+2.60 85.84+0.90 63.76+2.41 63.68+1.86

BART ED-Gen 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

T5 E-Ext 92.84+0.37 73.51+0.88 77.37+1.28 82.89−0.35 81.92+1.25 80.74+0.74 81.55+0.70 59.10+5.96 54.01+1.95 71.13−0.13 64.90+2.98 86.53+0.75 65.01+2.21 66.78+2.29

BART E-Ext 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

ELECTRA 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa 93.41+0.77 59.56−0.39 72.23−0.74 80.98−0.64 82.37+1.16 79.55+0.60 78.02+0.13 64.47+8.59 51.81+4.09 69.15+4.68 53.68+1.37 86.31−0.38 56.06+0.31 63.58+3.11

Table 4: Comparison of readers based on the different PrLMs by F1 Score. Inference length of T5 is full
length of context, 512 for ELECTRA, and 1024 for BART and RoBERTa. TQA: TriviaQA; SQA:SearchQA;
HQA:HotpotQA; NQ: NaturalQuestions; TbQA:TextbookQA; RE:RelationExtraction. Bold numbers denote for
the best result and underline numbers for the second best.

and ELECTRA achieve around 60% F1 score on
NewsQA, while both T5 extractive and generative
reader achieved higher than 70% F1 score, yielding
more than 10% improvements. Second, T5 is better
at long context dataset. In IID, TQA and SQA, T5
ED-Generative reader outperforms other readers at
least 3.30% and 3.67% in single-task, 7.05% and
4.43% in multi-task learning. On OOD datasets,
TbQA and DuoRC, T5 E-Extractive reader is better
than others at least by 9.61% and 1.45% in single-
task, 8.61% and 3.06% in multi-task. We would
like to mention that this advantage of T5 is condi-
tioned on using full inference length, when using
short input length such as 512, this advantage does
not exhibit as we shown in §5.1.

Which PrLM benefits more from Multi-task
Learning? While multi-task learning is in gen-
eral beneficial for all PrLMs, we find BART ben-
efits the most from multi-task learning, especially
for the generative reader. For example, on IID
datasets. BART generative reader improves more
than 8% on average while all other readers im-
proves less than 1%. Similarly for OOD datasets,
the improvement of multi-task learning on BART
generative reader are more significant than other
readers. To summarize,
1. Encoder-decoder PrLMs can be in fact used as

extractive readers, they are even better than the
conventional choice (encoder-only PrLMs) of
extractive readers on average.

2. Extractive readers perform better than the gen-
erative readers on OOD datasets, especially for
the ones based on the encoder-decoder PrLMs.

3. T5 is the best among four PrLMs since it per-
forms better on the news domain and the long

context. And the advantage of T5 is conditioned
on using full inference length.

4. While in general multi-task learning turns out to
be useful for all PrLMs, BART PrLM benefits
the most.

5.4 In-Depth Diagnosis
We investigate the behavior of extractive and gener-
ative models in long and short context and predict-
ing answers which include rare characters. Multi-
task models in §5.3 are chosen for comparison.

5.4.1 Long and Short Context
As we discussed in previous section that genera-
tive readers have advantage over extractive coun-
terparts. To further support this trend, we divide
the testing sets into five subsets, where we count
the total words in question and context, and choose
five thresholds, 2/4/6/8/10 hundreds. It is worth
to mention that since all extractive readers use the
window-stride strategy (i.e. if the input length is
longer than the maximum length, then the input is
segmented into multiple inputs), so that the entire
context is observable for extractive readers.

From Figure 4, we have two observations. First,
on IID datasets, for questions and contexts with less
than 600 words, the extractive ones always perform
better than the generative ones (the dash lines are
higher than the solid ones), but when the length are
more than 600 words, the generative ones consis-
tently outperform the extractive ones. This suggests
that the extractive readers performs better in the
short context while the generative readers perform
better in long context. Second, on OOD datasets,
T5 generative reader still presents advantage in the
long context (more than 600 words), while BART
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Figure 4: Comparison among generative and extractive readers on different length of the question and context.
Left part for IID and right part for OOD datasets. Dash line for extractive and solid line for generative readers.

generative reader performs worse than the extrac-
tive one in both short and long context. But the
gap between the BART generative and extractive
readers is less on the long context compared to the
short context. It might suggest that the extractive
reader has better generalization capacity than the
generative one thus the advantage of generative
reader in long context is weakened.

5.4.2 Rare Characters in Answer
We find that some answers of testing sets include
rare characters such as ń and ł (119 are found), thus
we divide the testing sets into two subsets, one is
the normal answer set where the answer does not
have rare characters5, the other one is with rare
characters. The percentage of rare cases for IID
and OOD datasets is 1.4% and 2%, respectively.

From Table 5, we have two observations. First,
in normal case, the performance of extractive and
generative readers are relatively comparable on
both IID and OOD datasets, but in rare case, the ex-
tractive readers are better than the generative ones
This suggests that the extractive reader has better
generalization than the generative ones. Second,
we see that the rare tokens has worse impact on
T5 than BART generative readers in both in- and
out-of-domain datasets. Further investigation finds
that 94 out of 119 rare characters can not be rep-
resented by T5 tokenizer (i.e. T5 tokenizer uses
‘<unk>’ special tokens to represent these charac-
ters), and tends to ignore these special characters
in the generation time as the two examples shown
in Table 6. Differently, BART tokenizer can rep-
resent all rare characters. Improving generative
readers performance in predicting rare answers is

5Rare characters are any characters which are not belongs
to the printable characters in the string library of Python. The
printable characters include lower and upper case alphabets,
digits, punctuation, and white-space.

Answer type Domain Gen Ext

T5 BART T5 BART Ro EL

Rare
IID 68.97 73.64 77.79 78.54 78.64 78.18

OOD 59.25 79.84 85.22 84.95 80.73 86.94

Normal
IID 82.71 80.02 79.98 79.95 80.35 78.18

OOD 68.28 64.19 69.9 66.91 67.75 68.12

Table 5: Compare extractive and generative readers in
terms of rare and normal answers. Ro for RoBERTa
and EL for ELECTRA.

Question Answer Prediction
Who was one of the
most famous people
born in Warsaw?

Maria
Skłodowskacurie

Maria
Skodowska-
Curie

What museum pre-
serves the memory of
the crime?

Katyń Museum Katy Museum

Table 6: Examples of questions with answers contain-
ing rare characters and the prediction of T5-Gen.

an important future work. To summarize,
1. Extractive readers performs better than the gen-

erative reader on short context, but generative
one performs better on long context.

2. Generative readers performs worse in predicting
answers with rare characters, and T5 performs
worse than BART.

6 Conclusion and Future Work

We systematically compare the extractive and gen-
erative readers for QA tasks. Two sets of experi-
ments are designed to control the effects of differ-
ent PrLMs and the size of models. By conducting
experiments on 12 QA datasets, our findings pro-
vide guidelines on how to choose extractive or gen-
erative readers given their strength and weakness.

While current work investigates the pros and
cons of extractive and generative models systemat-
ically, there are some hyperparameters that might
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affect the model performance. For example, it is
known that different prompts in the input effect gen-
erative model performance (Mishra et al., 2021b,a).
Also, it is worth studying the OOD performance
of models deeply. Gokhale et al. (2022) compares
multiple ways to improve the OOD performance
of an extractive model on QA task, and how these
methods affect generative models have not been
well-studied yet. Meanwhile, most of the work in-
cluding this work evaluate OOD performance by
averaging the performance across multiple dataset,
but as mentioned in (Mishra et al., 2020), the eval-
uation should be more carefully designed. Also,
Diagnosing the performance on each OOD dataset
can provide more insights. For example, why mod-
els perform better on BioASQ dataset than most
other datasets (see Table 4), while previous work
have shown that it is hard to transfer general model
to biomedical domain (Luo et al., 2022). Inves-
tigating the reason behind the observations and
improving the generative and extractive models are
interesting research questions for future.
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A More Details of MRQA Datasets

MRQA provides six datasets for training and six
for out-of-domain evaluations. In Table 7, we
present the source of each datasets, and we can see
that the domains are diversified. Figure 5 and 6
show the histogram of the context length of IID and
OOD dataset. The distribution shows that some
datasets are mainly short, some are mainly long,
and others are the combination of short and long.
We use short annotation for some datasets, TQA:
TriviaQA; SQA:SearchQA; HQA:HotpotQA;
NQ: NaturalQuestions; TbQA:TextbookQA;
RE:RelationExtraction.

Dataset Source
SQuAD Wikipedia
NewsQA News article
TQA Trivia and quiz-league websites
SQA Jeopardy! TV show
HQA Wikipedia
NQ Wikipedia
DROP Wikipedia
RACE English reading comprehension exams for mid-

dle and high school
BioASQ Science (PubMed) articles
TbQA Lessons from middle school Life Science,

Earth Science, and Physical Science textbooks
RE Wikiread
DuoRC wikipedia

Table 7: The source of each dataset

B Training Setup

We use Huggingface (Wolf et al., 2020) implemen-
tation and Pytorch (Paszke et al., 2019) to train each
model. All model are trained on 4 GTX1080 GPUs
in 4 epochs with a learning rate of 1e-4, batch size
of 128, random seed 1234. While we fix these hy-
perparameters for all models, we get similar results
as the original paper (i.e. the difference in terms
of F1 are mostly within 2 percent.) In details, on
SQuAD dataset, RoBERTa in (Liu et al., 2019)
and in ours achieves 94.6 and 92.64 F1 scores,
respectively; BART in (Lewis et al., 2020a) and
in ours achieves 94.6 and 92.51 F1 scores, respec-
tively; ELECTRA in (Clark et al., 2020) and in ours
achieves 94.2 and 93.39 F1 scores, respectively; T5
in (Raffel et al., 2020) and in ours achieves 80.88
and 82.56 EM scores, respectively.

C Two Input Format

When fine-tuning generative reader on question an-
swering task, some special words are added before

the real input to denote the type of task. In an ex-
tractive reader, usually, there are no special words
added. Here, we evaluate these two formats for T5
and BART generative reader. Particularly, given
a question Q and a context C, format 1 is to add
the “question:” and “context:” in front of the real
question and context such that the input is {ques-
tion: Q [SEP] context: C}; and format 2 is without
these special words such that the input is {Q [SEP]
C}. To keep the training process be efficient, we
evaluate on two datasets SearchQA and HotpotQA,
instead of all datasets. Table 8 shows that format 1
yields slightly better performance for T5 and much
better performance for BART on SQA datasets, and
thus we use this format for all generative reader.

Model Format
SQA HQA

EM F1 EM F1

T5
1 81.07 86.21 64.04 79.89
2 80.65 85.76 63.23 79.42

BART
1 72.86 78.89 55.77 73.22
2 49.28 58.00 55.72 73.20

Table 8: Comparison between different input format
on two datasets. Format1 means input with “question:”
and “context:” as format1, and format2 means without.

D Answer Length of Generative Reader

For the generative reader, we tried different maxi-
mum lengths of the generated answer: 16, 32, and
64. Table 9 shows that increasing the length of the
target does not make improvement, this might be
because the answer in the testing data is usually
short and thus length of 16 is sufficient.

E Inference Length

We present the results of using 512 and 1024 length
and full length in Table 10, 11, 12 separately. Note
that due the tokenization approach adapted by each
model, for Electra using 1024 or full length is same
as using 512, for RoBERTa and BART, using full
length is the same as length 1024. Furthermore, the
detailed performance of each single task model is
given in Table 14, using the best inference of each
model, i.e. full length for T5, 1024 for RoBERTa
and BART, and 512 for ELECTRA.
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Figure 5: Context Length Histogram of In-domain dataset

F Detailed Comparison Results for Using
Same PrLMs

Table 13 presents the F1 score of each readers when
using the same PrLMs as we discussed in §5.2.
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Figure 6: Context Length Histogram of out-domain dataset

Length
IID Datasets OOD Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

16 91.41 71.29 80.01 86.46 79.7 78.09 81.16 51.2 49.66 68.72 62.9 85.84 63.76 63.68
32 91.41 71.29 80.01 86.46 79.7 78.09 81.16 51.2 49.66 68.72 62.9 85.84 63.76 63.68
64 91.41 71.29 80.01 86.46 79.7 78.09 81.16 51.2 49.66 68.72 62.9 85.84 63.76 63.68

16 88.63 68.91 74.91 82.52 80.53 75.78 78.55 55.2 50.04 63.78 54.81 80.94 58.47 60.54
32 88.72 69.05 74.91 82.52 80.56 75.93 78.61 55.21 50.05 63.74 54.82 80.92 58.49 60.54
64 88.72 69.05 74.91 82.52 80.56 75.93 78.61 55.21 50.05 63.74 54.82 80.92 58.49 60.54

Table 9: Performance of using different Answer length for generative reader. First block is the result for T5 model
and the second block for BART model.
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Model
In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.12 59.38 67.39 77.14 76.95 75.56 74.42 41.17 45.46 64.92 46.69 84.48 52.61 55.89
T5 E-Ext (L) 92.39 59.62 70.22 78.52 80.06 77.93 76.46 52.73 51.38 69.99 49.76 85.78 54.82 60.74

T5 ED-Ext (B) 90.57 58.00 66.87 77.66 78.68 76.69 74.75 45.49 45.56 66.99 48.66 84.91 51.03 57.11
T5 ED-Gen (B) 90.63 66.74 73.45 82.75 78.81 75.10 77.91 48.07 47.54 67.33 46.19 84.94 43.49 56.26
BART E-Ext (L) 92.15 62.31 72.84 79.99 80.52 78.86 77.78 50.91 48.83 68.18 47.19 86.04 56.89 59.67

BART ED-Ext (L) 92.50 58.81 72.11 80.33 80.30 78.57 77.10 54.74 47.13 66.05 47.00 86.15 54.66 59.29
BART ED-Gen (L) 78.72 63.18 69.22 79.39 72.72 56.09 69.89 44.04 43.64 53.79 38.44 72.17 45.84 49.65

ELECTRA (L) 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.67 59.32 72.52 81.34 80.88 78.82 77.59 55.02 48.18 64.66 52.42 86.65 54.98 60.32

Multi-Task Learning

T5 E-Ext (B) 90.76+0.64 61.69+2.31 68.95+1.56 77.58+0.44 78.63+1.68 76.84+1.28 75.74+1.32 47.25+6.08 48.93+3.47 66.70+1.78 52.23+5.54 85.09+0.61 53.42+0.81 58.94+3.05

T5 E-Ext (L) 92.74+0.35 60.50+0.88 70.50+0.28 79.14+0.62 81.28+1.22 78.44+0.51 77.10+0.64 58.68+5.95 53.07+1.69 69.66−0.33 55.04+5.28 86.53+0.75 55.28+0.46 63.04+2.30

T5 ED-Ext (B) 91.03+0.46 60.73+2.73 68.80+1.93 78.10+0.44 79.66+0.98 77.19+0.50 75.92+1.17 48.67+3.18 49.06+3.50 67.46+0.47 50.66+2.00 85.49+0.58 54.05+3.02 59.23+2.12

T5 ED-Gen (B) 91.29+0.66 66.37−0.37 73.99+0.54 82.750.00 78.58−0.23 75.41+0.31 78.06+0.15 51.13+3.06 48.99+1.45 68.65+1.32 47.09+0.90 85.84+0.90 45.23+1.74 57.82+1.56

BART E-Ext (L) 92.42+0.27 61.83−0.48 70.98−1.86 80.12+0.13 82.02+1.50 79.13+0.27 77.75−0.03 58.32+7.41 50.06+1.23 69.62+1.44 55.02+7.83 86.79+0.75 59.83+2.94 63.27+3.60

BART ED-Ext (L) 93.06+0.56 58.72−0.09 70.80−1.31 80.11−0.22 81.78+1.48 79.11+0.54 77.26+0.16 60.19+5.45 48.97+1.84 67.47+1.42 53.24+6.24 86.75+0.60 56.22+1.56 62.14+2.85

BART ED-Gen (L) 88.58+9.86 66.18+3.00 75.21+5.99 83.38+3.99 79.88+7.16 75.41+19.32 78.11+8.22 55.07+11.03 49.91+6.27 63.69+9.90 46.75+8.31 80.94+8.77 48.11+2.27 57.41+7.76

ELECTRA (L) 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa (L) 93.36+0.69 60.15+0.83 71.40−1.12 80.56−0.78 82.21+1.33 79.50+0.68 77.86+0.27 64.79+9.77 51.49+3.31 68.69+4.03 53.68+1.26 86.31−0.34 57.22+2.24 63.70+3.38

Table 10: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for all readers is 512.

Model
In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.20 69.93 66.26 74.56 77.38 76.44 75.80 41.36 45.63 66.64 54.34 84.48 55.93 58.06
T5 E-Ext (L) 92.47 72.22 70.43 77.10 80.69 79.08 78.67 53.14 52.06 71.26 61.07 85.78 58.72 63.67

T5 ED-Ext (B) 90.71 70.43 68.48 76.01 78.94 77.80 77.06 45.86 46.18 67.93 55.07 84.91 55.19 59.19
T5 ED-Gen (B) 90.75 71.64 79.02 86.09 79.87 76.72 80.68 48.08 48.89 67.36 60.42 84.94 60.83 61.75
BART E-Ext (L) 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32

BART ED-Ext (L) 92.51 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 54.39 59.21
BART ED-Gen (L) 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

ELECTRA (L) 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 52.31 86.69 55.75 60.47

Multi-Task Learning

T5 E-Ext (B) 90.81+0.61 70.73+0.80 66.73+0.47 74.96+0.40 79.02+1.64 77.64+1.20 76.65+0.85 47.99+6.63 49.22+3.59 67.59+0.95 60.18+5.84 85.09+0.61 59.24+3.31 61.55+3.49

T5 E-Ext (L) 92.84+0.37 73.15+0.93 70.86+0.43 77.30+0.20 81.88+1.19 79.77+0.69 79.30+0.63 59.10+5.96 54.01+1.95 71.13−0.13 64.63+3.56 86.53+0.75 61.21+2.49 66.10+2.43

T5 ED-Ext (B) 91.12+0.41 71.78+1.35 66.93−1.55 76.13+0.12 80.23+1.29 78.11+0.31 77.38+0.32 49.69+3.83 49.64+3.46 68.45+0.52 60.50+5.43 85.49+0.58 57.41+2.22 61.86+2.67

T5 ED-Gen (B) 91.41+0.66 71.27−0.37 79.65+0.63 86.21+0.12 79.70−0.17 77.10+0.38 80.89+0.21 51.20+3.12 49.66+0.77 68.72+1.36 63.02+2.60 85.84+0.90 62.94+2.11 63.56+1.81

BART E-Ext (L) 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

BART ED-Ext (L) 93.07+0.56 58.67−0.01 71.47−1.08 80.66−0.28 82.14+1.43 79.32+0.69 77.55+0.21 60.40+5.67 51.32+3.68 67.48+1.33 53.34+7.16 86.75+0.60 56.79+2.40 62.68+3.47

BART ED-Gen (L) - 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

ELECTRA (L) 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa (L) 93.41+0.77 59.56−0.39 72.23−0.74 80.98−0.64 82.37+1.16 79.55+0.60 78.02+0.13 64.47+8.59 51.81+4.09 69.15+4.68 53.68+1.37 86.31−0.38 56.06+0.31 63.58+3.11

Table 11: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for all readers is 1024, except for ELECTRA is 512.

Model
In-domain Datasets Out-of-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.20 70.14 72.67 79.89 77.37 77.31 77.93 41.36 45.63 66.64 55.17 84.48 58.62 58.65
T5 E-Ext (L) 92.47 72.63 76.09 83.24 80.67 80.00 80.85 53.14 52.06 71.26 61.92 85.78 62.80 64.49

T5 ED-Ext (B) 90.71 70.80 74.16 81.32 78.98 78.68 79.11 45.86 46.18 67.93 55.74 84.91 59.33 59.99
T5 ED-Gen (B) 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART E-Ext (L) 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32

BART ED-Ext (L) 92.51 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 54.39 59.21
BART ED-Gen (L) 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

ELECTRA (L) 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 52.31 86.69 55.75 60.47

Multi-Task Learning

T5 E-Ext (B) 90.81+0.61 70.92+0.78 74.22+1.55 80.42+0.53 79.03+1.66 78.57+1.26 78.99+1.06 47.99+6.63 49.22+3.59 67.59+0.95 60.52+5.35 85.09+0.61 61.44+2.82 61.98+3.33

T5 E-Ext (L) 92.84+0.37 73.51+0.88 77.37+1.28 82.89−0.35 81.92+1.25 80.74+0.74 81.55+0.70 59.10+5.96 54.01+1.95 71.13−0.13 64.90+2.98 86.53+0.75 65.01+2.21 66.78+2.29

T5 ED-Ext (B) 91.12+0.41 71.95+1.15 75.50+1.34 81.82+0.50 80.25+1.27 78.93+0.25 79.93+0.82 49.69+3.83 49.64+3.46 68.45+0.52 61.33+5.59 85.49+0.58 61.22+1.89 62.64+2.65

T5 ED-Gen (L) 91.41+0.66 71.29−0.36 80.01+0.40 86.46+0.25 79.70−0.19 78.09+0.05 81.16+0.14 51.20+3.12 49.66+0.77 68.72+1.36 62.90+2.60 85.84+0.90 63.76+2.41 63.68+1.86

BART E-Ext (L) 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

BART ED-Ext (L) 93.07+0.56 58.67−0.01 71.47−1.08 80.66−0.28 82.14+1.43 79.32+0.69 77.55+0.21 60.40+5.67 51.32+3.68 67.48+1.33 53.34+7.16 86.75+0.60 56.79+2.40 62.68+3.47

BART ED-Gen (L) 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

ELECTRA (L) 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa (L) 93.41+0.77 59.56−0.39 72.23−0.74 80.98−0.64 82.37+1.16 79.55+0.60 78.02+0.13 64.47+8.59 51.81+4.09 69.15+4.68 53.68+1.37 86.31−0.38 56.06+0.31 63.58+3.11

Table 12: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for T5 readers is full length, for BART is 1024, and for ELECTRA is 512.
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Model
In-domain Datasets Out-of-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.20 70.14 72.67 79.89 77.37 77.31 77.93 41.36 45.63 66.64 55.17 84.48 58.62 58.65
T5 ED-Ext (B) 90.71 70.80 74.16 81.32 78.98 78.68 79.11 45.86 46.18 67.93 55.74 84.91 59.33 59.99
T5 ED-Gen (B) 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART E-Ext (L) 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
BART ED-Ext 92.51 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 54.39 59.21

BART ED-Gen (L) 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

Multi-Task Learning

T5 E-Ext (B) 90.81+0.61 70.92+0.78 74.22+1.55 80.42+0.53 79.03+1.66 78.57+1.26 78.99+1.06 47.99+6.63 49.22+3.59 67.59+0.95 60.52+5.35 85.09+0.61 61.44+2.82 61.98+3.33

T5 ED-Ext (B) 91.12+0.41 71.95+1.15 75.50+1.34 81.82+0.50 80.25+1.27 78.93+0.25 79.93+0.82 49.69+3.83 49.64+3.46 68.45+0.52 61.33+5.59 85.49+0.58 61.22+1.89 62.64+2.65

T5 ED-Gen (L) 91.41+0.66 71.29−0.36 80.01+0.40 86.46+0.25 79.70−0.19 78.09+0.05 81.16+0.14 51.20+3.12 49.66+0.77 68.72+1.36 62.90+2.60 85.84+0.90 63.76+2.41 63.68+1.86

BART E-Ext (L) 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

BART ED-Ext (L) 93.07+0.56 58.67−0.01 71.47−1.08 80.66−0.28 82.14+1.43 79.32+0.69 77.55+0.21 60.40+5.67 51.32+3.68 67.48+1.33 53.34+7.16 86.75+0.60 56.79+2.40 62.68+3.47

BART ED-Gen (L) 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

Table 13: Comparison of readers based on the same PrLMs by F1 Score. For three T5 readers, we use the T5-base
model, for three BART readers, we use the BART-large model. Avg. means the Macro Average of in/out-domain
datasets. Inference length for T5 is full length of context, for ELECTRA is 512 and for BART and RoBERTa is
1024.
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Model
Train

Test In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ DROP RACE BioASQ TbQA RE DuoRC

Single Task Learning

T5 E-Ext (B)

SQuAD 90.20 63.37 63.75 30.97 67.53 62.28 36.03 45.63 66.38 54.77 84.48 57.08
NewsQA 84.54 70.14 63.99 42.32 61.55 63.50 23.48 44.07 62.13 50.25 77.59 58.62
TQA 69.68 46.83 72.67 60.40 54.33 54.49 24.28 37.15 60.07 42.61 75.83 47.72
SQA 60.75 40.49 68.37 79.89 44.21 49.84 23.68 30.02 55.93 39.28 75.26 43.36
HQA 83.30 59.19 61.67 48.18 77.37 62.35 39.04 40.51 63.68 40.15 84.07 55.31
NQ 83.87 60.81 65.64 52.24 64.60 77.31 41.36 43.99 66.64 55.17 82.58 52.88

T5 E-Ext (L)

SQuAD 92.47 65.33 67.97 32.73 71.00 64.97 52.01 50.13 68.66 53.03 85.78 61.41
NewsQA 87.38 72.63 69.34 43.83 66.56 69.02 31.72 49.72 65.97 55.51 78.75 62.80
TQA 74.97 50.27 76.09 63.26 57.26 58.68 40.09 38.55 65.95 52.34 81.01 55.21
SQA 72.47 48.12 73.57 83.24 53.50 57.17 41.57 35.53 66.07 52.64 81.63 52.05
HQA 86.88 62.42 66.16 46.47 80.67 67.13 47.43 45.10 68.27 51.37 84.89 56.80
NQ 86.73 64.62 70.32 54.09 68.54 80.00 53.14 52.06 71.26 61.92 84.35 60.43

T5 ED-Ext (B)

SQuAD 92.47 65.33 67.97 32.73 71.00 64.97 52.01 50.13 68.66 53.03 85.78 61.41
NewsQA 87.38 72.63 69.34 43.83 66.56 69.02 31.72 49.72 65.97 55.51 78.75 62.80
TQA 74.97 50.27 76.09 63.26 57.26 58.68 40.09 38.55 65.95 52.34 81.01 55.21
SQA 72.47 48.12 73.57 83.24 53.50 57.17 41.57 35.53 66.07 52.64 81.63 52.05
HQA 86.88 62.42 66.16 46.47 80.67 67.13 47.43 45.10 68.27 51.37 84.89 56.80
NQ 86.73 64.62 70.32 54.09 68.54 80.00 53.14 52.06 71.26 61.92 84.35 60.43

T5 ED-Gen (B)

SQuAD 90.75 60.51 69.56 24.11 68.57 57.19 43.31 48.89 65.96 46.75 84.94 60.31
NewsQA 85.75 71.65 69.70 43.16 63.61 62.96 25.37 45.97 62.80 53.82 77.37 61.35
TQA 74.33 49.26 79.61 57.14 58.75 55.18 33.84 42.38 56.94 51.16 80.52 52.69
SQA 70.62 44.66 78.03 86.21 57.19 52.92 35.32 35.33 59.76 53.66 79.54 49.23
HQA 86.24 60.25 70.57 51.23 79.89 62.33 44.94 46.38 66.93 42.65 84.56 59.60
NQ 85.46 61.80 72.08 57.55 67.71 78.04 48.08 45.85 67.36 60.30 84.06 58.42

BART E-Ext (L)

SQuAD 92.19 62.30 60.86 35.52 69.60 62.94 51.31 48.82 68.83 49.39 86.04 58.31
NewsQA 85.04 72.20 62.86 41.17 61.81 65.84 31.99 48.82 61.98 49.29 77.30 61.35
TQA 68.36 43.38 73.12 55.53 59.27 55.11 37.79 36.16 53.90 37.98 80.07 49.51
SQA 50.74 31.48 66.74 77.19 40.65 43.53 22.15 23.90 53.76 36.38 66.48 37.12
HQA 82.21 52.46 56.53 34.95 80.61 62.58 44.30 39.60 59.40 33.74 85.46 52.60
NQ 83.12 59.44 62.12 49.19 62.73 79.29 51.57 43.23 64.77 51.29 83.13 54.63

BART ED-Ext (L)

SQuAD 92.51 53.70 62.64 41.85 67.69 60.82 54.73 47.64 66.15 46.18 86.15 54.39
NewsQA 86.15 58.68 62.29 46.98 64.09 66.00 31.91 45.52 60.70 44.82 78.72 54.09
TQA 69.82 38.40 72.55 61.02 61.05 54.10 34.63 36.36 54.34 39.35 81.28 46.43
SQA 57.26 32.09 69.35 80.94 41.82 45.62 28.54 25.18 51.50 41.09 70.98 38.88
HQA 83.29 49.66 63.18 40.46 80.71 63.52 47.91 38.56 59.78 34.60 84.32 52.04
NQ 83.86 50.35 64.06 56.34 62.53 78.63 52.41 44.25 65.59 45.93 84.43 49.44

BART ED-Gen (L)

SQuAD 78.75 54.02 48.69 22.33 57.19 57.90 44.09 41.33 47.04 35.42 70.68 45.79
NewsQA 78.65 66.20 58.02 36.31 57.91 61.10 28.36 43.70 53.71 45.11 72.17 55.63
TQA 58.98 39.22 67.81 53.90 54.81 46.73 32.85 33.74 46.62 39.97 64.89 45.47
SQA 40.51 28.33 65.42 78.89 37.05 36.12 23.45 22.42 46.71 39.43 52.23 38.24
HQA 74.75 50.41 56.56 40.90 73.22 57.83 44.22 37.31 55.59 29.96 76.83 50.62
NQ 61.09 39.05 38.21 33.48 43.59 56.58 40.27 32.01 51.24 36.63 59.46 33.69

RoBERTa (L)

SQuAD 92.64 54.76 65.90 45.76 71.35 59.43 52.51 47.13 64.47 52.31 86.69 55.75
NewsQA 86.50 59.95 63.01 48.02 66.99 67.29 33.52 47.26 60.05 45.10 78.08 54.27
TQA 73.63 41.05 72.97 51.16 62.44 55.76 44.40 39.27 54.92 42.72 82.32 49.89
SQA 53.59 29.57 70.35 81.62 42.03 47.06 23.04 23.70 54.18 39.69 71.13 36.06
HQA 85.10 50.55 65.06 44.31 81.21 63.88 51.74 36.86 62.44 37.49 85.07 54.02
NQ 85.25 49.49 64.48 57.23 67.47 78.95 55.88 47.72 63.77 44.67 84.10 50.00

ELECTRA (L)

SQuAD 93.39 55.42 65.92 46.56 68.69 68.92 55.11 49.80 66.96 46.57 86.23 54.90
NewsQA 86.33 60.23 65.13 49.39 63.97 68.03 30.74 46.45 64.86 46.79 78.21 53.78
TQA 69.75 40.20 76.31 65.27 58.87 55.95 42.21 37.46 59.94 41.54 80.56 49.24
SQA 52.17 28.21 71.39 82.54 44.81 43.28 36.68 22.47 58.35 42.76 69.54 39.16
HQA 84.43 51.23 65.83 50.25 80.99 64.89 48.91 38.24 65.77 36.53 83.86 50.50
NQ 85.45 50.81 66.65 62.88 64.00 78.78 55.43 47.29 66.39 47.80 83.43 51.15

Multi-Task Learning

T5 E-Ext (B) Multi 90.81 70.92 74.22 80.42 79.03 78.57 47.99 49.22 67.59 60.52 85.09 61.44
T5 E-Ext (L) Multi 92.84 73.51 77.37 82.89 81.92 80.74 59.10 54.01 71.13 64.90 86.53 65.01

T5 ED-Ext (B) Multi 91.12 71.95 75.50 81.82 80.25 78.93 49.69 49.64 68.45 61.33 85.49 61.22
T5 ED-Gen (B) Multi 91.41 71.29 80.01 86.46 79.70 78.09 51.20 49.66 68.72 62.90 85.84 63.76
BART E-Ext (L) Multi 92.46 72.11 72.24 76.53 82.04 79.40 58.22 50.40 70.72 56.29 86.79 61.95

BART ED-Ext (L) Multi 93.07 58.67 71.47 80.66 82.14 79.32 60.40 51.32 67.48 53.34 86.75 56.79
BART ED-Gen (L) Multi 88.63 68.91 74.91 82.52 80.53 75.78 55.20 50.04 63.78 54.81 80.94 58.47

RoBERTa (L) 93.41 59.56 72.23 80.98 82.37 79.55 64.47 51.81 69.15 53.68 86.31 56.06
ELECTRA (L) Multi 93.27 60.59 72.96 82.03 83.10 79.16 62.56 50.29 71.50 54.60 87.14 56.88

Table 14: Evaluation by F1 score. TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQuestions;
TbQA:TextbookQA; RE:RelationExtraction. For inference length, T5 use Full length, BART and RoBERTa use
1024 and ELECTRA use 512.
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