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Abstract
Neural Sign Language Production (SLP) aims to automatically translate from spoken language sentences to sign language
videos. Historically the SLP task has been broken into two steps; Firstly, translating from a spoken language sentence to a gloss
sequence and secondly, producing a sign language video given a sequence of glosses. In this paper we apply Natural Language
Processing techniques to the first step of the SLP pipeline. We use language models such as BERT and Word2Vec to create
better sentence level embeddings, and apply several tokenization techniques, demonstrating how these improve performance on
the low resource translation task of Text to Gloss. We introduce Text to HamNoSys (T2H) translation, and show the advantages
of using a phonetic representation for sign language translation rather than a sign level gloss representation. Furthermore, we use
HamNoSys to extract the hand shape of a sign and use this as additional supervision during training, further increasing the
performance on T2H. Assembling best practise, we achieve a BLEU-4 score of 26.99 on the MineDGS dataset and 25.09 on
PHOENIX14T, two new state-of-the-art baselines.

Keywords: Sign Language Translation (SLT), Natural Language Processing (NLP), Sign Language, Phonetic Repre-
sentation

1. Introduction
Sign languages are the dominant form of communi-
cation for Deaf communities, with 430 million users
worldwide (WHO, 2021). Sign languages are complex
multichannel languages with their own grammatical
structure and vocabulary (Stokoe, 1980). For many
people, sign language is their primary language, and
written forms of spoken language are their secondary
languages.

Sign Language Production (SLP) aims to bridge the
gap between hearing and Deaf communities, by trans-
lating from spoken language sentences to sign language
sequences. This problem has historically been broken
into two steps; 1) translation from spoken language to
gloss1 and 2) subsequent production of sign language
sequences from a sequence of glosses, commonly using
a graphical avatar (Elliott et al., 2008; Efthimiou et al.,
2010; Efthimiou et al., 2009) or more recently, a photo-
realistic signer (Saunders et al., 2021a; Saunders et al.,
2021b). In this paper, we improve the SLP pipeline by
focusing on the Text to Gloss (T2G) translation task of
step 1.

Modern deep learning is heavily dependent upon
data. However, the creation of sign language datasets
is both time consuming and costly, restricting their size
to orders of magnitude smaller than their spoken lan-
guage counterparts. State-of-the-art datasets such as
RWTH-PHOENIX-Weather-2014T (PHOENIX14T),
and the newer MineDGS (mDGS), contain only 8,257
and 63,912 examples respectively (Koller et al., 2015;
Hanke et al., 2020), compared to over 15 million exam-

1Gloss is the written word associated with a sign

ples for common spoken language datasets (Vrandečić
and Krötzsch, 2014). Hence, sign languages can be
considered as low resource languages.

In this work, we take inspiration from NLP tech-
niques to boost translation performance. We explore
how language can be modeled using different tokeniz-
ers, more specifically Byte Pair Encoding (BPE), Word-
Piece, word and character level tokenizers. We show
that finding the correct tokenizer for the task helps sim-
plify the translation problem.

Furthermore, to help tackle our low resource language
task, we explore using pre-trained language models such
as BERT (Devlin et al., 2018) and Word2Vec (Mikolov
et al., 2013b) to create improved sentence level em-
beddings. We also fuse contextual information from
the embedding to increase the amount of information
available to the network. We show that using models
trained on large corpuses of data improves translation
performance.

Previously the first step of the SLP pipeline used T2G
translation. We explore using a phonetic representation
based on the Hamburg Notation System (HamNoSys)
which we define as Text to HamNoSys (T2H). Ham-
NoSys encodes signs using a set of symbols and can be
viewed as a phonetic representation of sign language
(Hanke, 2004). There are three main components when
representing a sign in HamNoSys; a) its initial configu-
ration b) it’s hand shape and c) it’s action. An example
of HamNoSys can be seen in Fig. 1 along with its gloss
and text counterparts.

We evaluate our SLP models on both the mDGS and
PHOENIX14T datasets, showing state-of-the-art per-
formance on T2G (mDGS & PHX) and T2H (mDGS)
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Figure 1: A graph to show the word “running” which
would be ‘glossed’ as RUN and the associated sequence
of HamNoSys, Top: Text, Middle: Gloss, Bottom: Ham-
NoSys. HamNoSys is split into: a) it’s initial configura-
tion b) it’s hand shape 3) it’s action

tasks. We achieve a BLEU-4 score of 26.99 on mDGS,
a significant increase compared to the state-of-the-art
score of 3.17 (Saunders et al., 2022).

The rest of this paper is structured as follows; In sec-
tion 2 we review the related work in the field. Section 3
presents our methodology. Section 4 shows quantitative
and qualitative results. Finally, we draw conclusions in
section 5 and suggest future work.

2. Related Work
Sign Language Recognition & Translation: Com-
putational sign language research has been studied for
over 30 years (Tamura and Kawasaki, 1988). Research
started with isolated Sign Language Recognition (SLR)
where individual signs were classified using CNNs (Le-
cun et al., 1998). Recently, the field has moved to
the more challenging problem of Continuous Sign Lan-
guage Recognition (CSLR), where a continuous sign
language video needs to be segmented and then clas-
sified (Koller et al., 2015). Most modern approaches
to SLR and CSLR rely on deep learning, but such ap-
proaches are data hungry and therefore are limited by
the size of publicly available datasets.

The distinction between CSLR and Sign Language
Translation (SLT) was stressed by Camgoz et al. (2018).
SLT aims to translate a continuous sequence of signs to
spoken language sentences (Sign to Text (S2T)) or vice
versa (Text to Sign (T2S)), a challenging problem due
to the changes in grammar and sequence ordering.
Sign Language Production (SLP): focusses on T2S,
the production of a continuous sign language sequence
given a spoken language input sentence. Current state-
of-the-art approaches to SLP use transformer based ar-
chitectures with attention (Stoll et al., 2018; Saunders
et al., 2020). In this paper, we tackle the SLP task of
neural sign language translation, defined as T2G or T2H
translation.

HamNoSys has been used before for statistical SLP,
with some success (Kaur and Kumar, 2014; Kaur and
Kumar, 2016). However, the produced motion becomes
robotic and is not practical for real world applications.

Note that these approaches first convert the HamNoSys
to SiGML, an XML format of HamNoSys (Kaur and
Kumar, 2016).

Neural Machine Translation (NMT): NMT aims to
generate a target sequence given a source sequence us-
ing neural networks (Bahdanau et al., 2014) and is com-
monly used for spoken language translations. Initial
approaches used recurrence to map a hidden state to
an output sequence (Kalchbrenner and Blunsom, 2013),
with limited performance. Encoder-decoder structures
were later introduced, that map an input sequence to an
embedding space (Wu et al., 2016). To address the bot-
tleneck problem, attention was introduced to measure
the affinity between sections of the input and embed-
ding space and allow the model to focus on specific
context (Bahdanau et al., 2014). This was improved fur-
ther with the introduction of the transformer (Vaswani
et al., 2017) that used Multi-Headed Attention (MHA)
to allow multiple projections of the learned attention.
More recently, model sizes have grown with architec-
tures introduced such as GPT-2 (Radford et al., 2019)
and BERT (Devlin et al., 2018).

Different encoding/decoding schemes have been ex-
plored. BPE was first introduced in Sennrich et al.
(2015), to create a set of tokens given a set vocabulary
size. This is achieved by merging the most commonly
occurring sequential characters. WordPiece, a similar
tokenizer to BPE, was first introduced in Schuster and
Nakajima (2012) and is commonly used when training
language models such as BERT, DistilBERT and Elec-
tra. Finally, word and character level tokenizers break
up a sentence based on white space and unique symbols
respectively.

Natural Language Processing: NLP has many applica-
tions, for example Text Simplification, Text Classifica-
tion, and Speech Recognition. Recently, deep learning
approaches have outperformed older statistical meth-
ods (Vaswani et al., 2017). A successful NLP model
must understand the structure and context of language,
learned via supervised or unsupervised methods. Pre-
trained language models have been used to boost perfor-
mance in other NLP tasks (Clinchant et al., 2019; Zhu et
al., 2020), such as BERT (Devlin et al., 2018) achieving
state-of-the-art performance. Zhu et al., 2020 tried to
fuse the embedding of BERT into a traditional trans-
former architecture using attention, increasing the trans-
lation performance by approximately 2 BLEU score.

Other methods have used Word2Vec to model lan-
guage, this has been applied to many NLP tasks
(Mikolov et al., 2013b). Word2Vec is designed to give
meaning to a numerical representation of words. The
central idea being that words with similar meaning
should have a small euclidean distance between the
vector representation.

In this paper, we take inspiration from these tech-
niques to boost performance of the low resource task of
T2G and T2H sign language production.
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3. Methodology
The task of neural sign language production aims to
map a source sequence of spoken language sentences,
x = (x1, x2, ..., xW ) with W words, to a sequence
of glosses, y = (y1, y2, ..., yG) with G glosses (Text
to Gloss (T2G)), or a sequence of HamNoSys, z =
(z1, z2, ..., zH) with H symbols (Text to HamNoSys
(T2H)). T2G and T2H tasks thus learn the conditional
probabilities p(y|x) and p(z|x) respectively. Sign lan-
guage translation is not a one to one mapping as sev-
eral words can be mapped to a single gloss (W > G),
(W > H). This increases the complexity of the prob-
lem as the model must learn to attend to multiple words
in the input sequence.

Fig. 2 shows the general architecture of our
model used to translate from spoken language to
gloss/HamNoSys. For means of comparison, our base-
line model is an encoder-decoder transformer with
MHA. The input and output sequence are tokenized
using a word level tokenizer and the embedding for a
given sequence is created using a single linear layer. We
later build on this base model using different tokenizers,
embedding and supervision techniques. We train our
model using a cross-entropy loss between the predicted
target sequence, x̂ and the ground truth sequence, x∗,
defined as LT .

Figure 2: An overview of the different configuration of
our architecture for SLT

In this section, we follow the structure of Fig. 2 from top
to bottom. We start by describing the different tokeniz-
ers used to split the source text and produce tokens (Sec.
3.1). Next, we explain the different embedding tech-
niques used to create a vector from the input tokens (Sec.
3.2). Finally, we talk about the advantages of using ex-
tra supervision and explain how this is implemented in
conjunction with the translation loss.

3.1. Tokenizers
Several tokenizer schemes can be used on both the input
and output such as BPE, Word, character and Word-
Piece. BPE (Sennrich et al., 2015), character and Word-
Piece (Schuster and Nakajima, 2012) all change the
vocabulary size of the model by breaking sentences
into sub-units. This reduces the number of singletons

and reduces lexical inflections in the input and output
sequences (Wolf et al., 2019).

Word A word level tokenizer segments the input sen-
tence based on white space. Therefore, a normal sen-
tence is split into whole words.

Character A character level tokenizer segments the
text based on the individual symbols, reducing the vo-
cabulary to simply the alphabet plus punctuation.

BPE BPE creates a base vocabulary containing all
the unique symbols in the data, from which it learns a
number of merge rules based on the most commonly oc-
curring sequential symbols. An example of the BPE al-
gorithm being applied to HamNoSys is shown in Fig. 3,
with the coloured boxes indicating what merges are
made at each step. Merging continues until a specific
vocabulary size is reached. This helps reduce word in-
flections e.g. the words low, lowest and lower can be
segmented to low, est and er. Over the whole corpus
the suffix’s (est and er) can be reused, collapsing the
vocabulary in this example from 3 to 1.

Figure 3: An example of how BPE can be applied to
HamNoSys.

WordPiece We only apply a WordPiece tokenizer
when embedding with BERT, as this is what the BERT
model was trained with. WordPiece is another sub-unit
tokenization algorithm similar to BPE that evaluates the
lost benefit before merging two symbols, ensuring that
all mergers are beneficial.

3.2. Embedding
After tokenization, the input sequence x is then em-
bedded by projecting the sequence into a continuous
space (Mikolov et al., 2013a). The goal of embedding
is to minimise the Euclidean distance between words
with similar meanings. The most common embedding
is a single linear layer, which takes an input sequence
x = (x1, x2, ..., xW ) with W words and turns it into
a matrix of [W × E] where E is the models embed-
ding width. In models such as BERT and Word2Vec,
embeddings are learnt via training on a large corpus of
spoken language data. To maximise the benefit from
using BERT we fine tune the pre-trained model on the
mineDGS dataset using masked-language modeling.

When using a BERT model, we define the transfor-
mation as follows. Given an input sequence x we first
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apply WordPiece tokenization.

XWP = WordPiece(x) (1)

Then apply the BERT embeddings as:

XBERT = BERT (XWP ) (2)

Note that we take the embedding from the last layer of
BERT. We define the Word2Vec transformation as:

XW2V = Word2V ec(x) (3)

Additionally, we experiment with concatenating or
fusing contextual information into the input x. We de-
fine the contextual information as xave and the scaling
factor as S, used to place additional emphasis on the con-
textual information. In the case of Word2Vec we take a
mean average of each word’s embedding in the sentence
and treat this as a vector that contains information about
the whole sentence. For BERT we use the embedding
of the classification token ([CLS]), which contains con-
textual information about the sentence (Devlin et al.,
2019). We either concatenate the information to the
beginning of a sequence x = (xave ∗ S, x1, x2, ..., xW )
(CON), or we fuse it into each step of the sequence x =
((xave ∗S)+x1, (xave ∗S)+x2, ..., (xave ∗S)+xW )
(ADD).

3.3. Supervision
In sign language, there exists a strong correlation be-
tween hand shape and meaning (Stokoe, 1980). There-
fore, we investigate forcing the transformer to predict
the hand shape alongside the gloss or HamNoSys se-
quences, to enrich the learnt representation. We scale
the loss from the hand shape prediction LH by factor F .
We combine both losses from the translation LT and
hand shape prediction LH to create Ltotal as:

Ltotal = LT + (LH ∗ F ) (4)

In this setup, the model learns the joint conditional
probability of

p(y|x) ∗ p(H|x) (5)

where H is the sequence of hand shape symbols:

H = (h1, h2, ..., hG) (6)

and G is the number of glosses in the sequence. Overall
this forces that model to focus on hand shape during
training. We show that by forcing the model to predict
hand shape we improve the performance on T2H.

4. Experiments
In this section we test the translation performance of
our models in both the T2G and T2H setups. We first
explain the experimental setup of our models. Next,
we compare quantitative results against previous state-
of-the-art and our own baselines. Finally we provide
qualitative results.

4.1. Experimental Setup
When training our T2G model, we experiment with dif-
ferent embedding sizes, number of layers and heads. We
observe a large change in performance based on these
three parameters, and search for the best configurations
for further tests. Our transformer uses a xavier initial-
izer (Glorot and Bengio, 2010) with zero bias and Adam
optimization (Kingma and Ba, 2014) with a learning
rate of 10−4. We also employ dropout connections with
a probability of 0.2 (Srivastava et al., 2014). When
decoding, we use a beam search with a search size of 5.

Our code base comes from Kreutzer et al. (2019)
NMT toolkit, JoeyNMT (Kreutzer et al., 2019) and is
implemented using Pytorch. While our BPE and word
piece tokenizers come from Huggingface’s python li-
brary transformers (Wolf et al., 2019). When embed-
ding with BERT, we use an open source pre-trained
model from Deepset (Chan et al., 2020). Finally we
used fasttext’s implementation of Word2Vec for word
level embedding (Mikolov et al., 2013b).

The publicly available mDGS dataset contains
aligned spoken German sentences and their gloss
counter parts, from unconstrained dialogue between
two native deaf signers (Kaur and Kumar, 2014). The
providers of this dataset also have a dictionary for all
glosses in the corpus, of which some contain HamNoSys
descriptions. Following the translation protocols set in
Saunders et al. (2022), we created a subset of the mDGS
dataset with aligned sentences, glosses and HamNoSys.
mDGS is a larger dataset compared to PHOENIX14T
(7.5 times more parallel examples, with a source vocab-
ulary of 18,457) with 330 deaf participants performing
free form signing. The size of mDGS overcomes some
of the limitation of PHOENIX2014T. Note we remove
the gloss variant numbers to reduce singletons.

We use the PHOENIX14T (Camgoz et al., 2018)
dataset to compare our best model to previous NMT
baseline results (Saunders et al., 2020; Stoll et al., 2018;
Moryossef et al., 2021; Li et al., 2021). PHOENIX14T
contains parallel monolingual German data, with ap-
proximately 7000 examples of aligned gloss and text.

4.2. Quantitative Evaluation
In this section, we evaluate our models on both mDGS
and PHOENIX14T using BLEU (BLEU-1,2,3 and 4)
and Rouge (F1-score) scores for both dev and test sets.
We group our experiments in five sections:

1. Baseline T2G, T2H and Text to Gloss to Ham-
NoSys (T2G2H) with a standard transformer.

2. T2G and T2H with different embedding layers and
sentence averaging.

3. T2G and T2H with different tokenizers (BPE,
Word, and Character).

4. T2G and T2H with additional supervision.

5. Comparison of our approach on PHOENIX14T
and mDGS.
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DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Linear Layer 16.26 24.14 32.83 43.05 42.02 16.47 24.51 33.27 43.58 41.53
BERT 14.69 21.51 29.39 38.66 30.87 14.2 21.19 29.09 38.33 30.31

BERT SA ADD 13.23 19.41 26.43 34.75 32.38 13.43 19.47 26.31 34.3 32.34
BERT SA CON 14.89 21.45 28.73 36.85 34.73 15.14 21.57 28.79 36.91 34.44

Word2Vec 11.47 17.59 24.68 34.21 29.45 11.73 17.83 25.14 34.90 30.22
Word2Vec SA ADD 13.8 21.07 29.72 42.29 30.65 13.31 20.56 29.31 42.13 30.67
Word2Vec SA CON 0.03 0.05 0.06 0.04 9.44 0.03 0.06 0.06 0.04 9.32

(a) MineDGS (mDGS) on Text to Gloss to HamNoSys (T2G2H)

DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Linear Layer 14.46 23.27 32.62 47.44 50.85 14.80 23.54 32.89 47.36 50.87
BERT 20.26 29.14 38.01 48.92 53.67 21.03 29.87 38.79 49.77 53.93

BERT SA ADD 14.64 22.33 30.91 43.99 50.30 15.16 22.92 31.41 44.21 50.33
BERT SA CON 11.82 19.2 27.39 40.58 53.36 12.21 19.39 27.44 40.48 53.67

Word2Vec 16.43 24.77 33.71 46.62 51.14 17.09 25.23 34.22 47.31 51.52
Word2Vec SA ADD 16.72 25.14 34.39 48.00 51.28 16.98 25.31 34.59 48.08 51.12
Word2Vec SA CON 14.98 22.49 30.65 42.42 51.11 15.18 22.65 30.80 42.75 50.10

(b) MineDGS (mDGS) on Text to HamNoSys (T2H)

Table 1: Embedding transformer results for Text to Gloss (T2G) and Text to HamNoSys (T2H) translation.

Tokenizer DEV SET TEST SET
Input Output BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Word Word 16.47 24.35 33.06 43.41 36.32 16.55 24.45 33.14 43.54 36.34
Word BPE 22.06 28.53 36.32 47.55 36.20 21.87 28.31 36.02 47.08 35.74
Word Char 16.47 24.35 33.06 43.41 36.32 16.55 24.45 33.14 43.54 36.34
BPE Word 20.84 26.77 34.02 44.77 35.31 20.84 26.80 34.12 44.97 35.35
BPE BPE 21.39 27.28 34.31 43.86 36.61 21.28 27.25 34.34 43.86 36.86
BPE Char 1.99 5.5 10.35 30.01 2.61 1.46 5.18 10.0 29.77 2.61

(a) MineDGS (mDGS) on Text to Gloss to HamNoSys (T2G2H)

Tokenizer DEV SET TEST SET
Input Output BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Word Word 21.81 31.86 42.05 54.88 55.39 21.89 31.92 42.16 55.04 55.23
Word BPE 25.41 29.28 34.11 41.25 48.03 25.54 29.39 34.25 41.35 48.09
Word Char 21.63 31.76 41.99 54.94 55.3 21.59 31.79 42.09 55.01 55.14
BPE Word 20.98 30.29 39.38 50.04 55.24 21.18 30.37 39.4 49.84 55.04
BPE BPE 26.14 30.83 36.47 44.35 49.95 26.21 30.84 36.43 44.14 50.05
BPE Char 1.91 6.01 11.72 37.56 37.22 1.92 5.88 11.59 37.63 37.31

(b) MineDGS (mDGS) on Text to HamNoSys (T2H)

Table 2: Tokenizer transformer results for Text to Gloss (T2G) and Text to HamNoSys (T2H) translation.

Note we expect the performance to be lower than 100
BLEU. As this is a translation problem there are several
valid answers for a given input, thus human evaluation
is still necessary. We are also unable to provide T2H re-
sults on PHOENIX14T, as HamNoSys is not available
for some words in its vocabulary.

4.2.1. Baseline Results
Our baseline models achieved a BLEU-4 score of 2.86
(T2G), 16.26 (T2G2H) and 14.46 (T2H) on the mDGS
dev set. Our baseline setup uses a word level tokenizer
on both the input and output, providing a baseline to
ablate our proposed techniques in the next three sec-
tions. We perform a hyper-parameter search and make
modification to the model architecture (number of heads,
layers and embedding size) to find the best performance.

In general, a sequence of HamNoSys is significantly
longer than it’s gloss counter part, (H >> G). As a
result our T2H performance is artificially higher than
our T2G. Therefore, in order to make our T2G and T2H
results comparable, we perform a dictionary lookup to
convert the gloss to HamNoSys (T2G2H) before calcu-

lating the BLEU score. Given these results, we conclude
a transformer architecture is the best baseline approach
and continue with this setup for all future experiments.

4.2.2. Embedding
Next we experiment with using different embedding
techniques for the T2G and T2H tasks. As discussed in
Section 3.1 we use a linear layer, BERT and Word2Vec
in combination with sentence averaging. From the re-
sults in Table 1 we make several observations. Firstly,
using a language model improves the translation perfor-
mance on the T2H task (Tab. 1a). While on the T2G
task, using language models was detrimental to the trans-
lation performance (Tab. 1b). We assume this is due to
the reduced information within the gloss and smaller se-
quence length. Secondly, we observe that applying sen-
tence averaging to the BERT embedding has a negative
effect on the scores, independent of what type of average
was used (adding or concatenating). On the other hand,
adding the sentence averaging to the Word2Vec embed-
ding marginally improved performance compared to the
stand alone Word2Vec embeddings on T2H. But note
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DEV SET TEST SET
Approach: Supervision BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2G2H ✗ 22.06 28.53 36.32 47.55 36.20 21.87 28.31 36.02 47.08 35.74
T2G2H ✓ 21.79 27.98 35.45 46.21 35.79 21.49 27.76 35.27 46.11 35.99

T2H ✗ 26.14 30.83 36.47 44.35 49.95 26.21 30.84 36.43 44.14 50.05
T2H ✓ 26.99 31.07 35.99 42.73 48.89 27.37 31.42 36.3 42.92 48.85

Table 3: HamNoSys hand shape supervision results for Text to Gloss to HamNoSys (T2G2H) and Text to HamNoSys
(T2H) translation.

that Word2Vec plus sentence averaging still has lower
performance than just using a linear layer. Overall, we
find the best performing embedding to come from using
BERT, which scored 5.8 BLEU-4 higher than using a
linear layer. This demonstrates that using a pre-trained
language model can enhance translation.

4.2.3. Tokenizer
We next experiment with using different tokenizers, as
described in Section 3.2. We performed a parameter
search to find the best vocabulary size for the BPE algo-
rithm, which we find to be 2250 and 7000 on the input
and output respectively. The result of our experiments
are shown in Table 2.

When using a character level tokenizer each input
contains a minimal amount of information (one letter).
As expected this increases the difficulty of the problem,
and reduces performance. When applied to the input
it was extremely detrimental for the performance on
both T2G2H and T2H, independent of which output
tokenizer was used. Therefore to save space, we do
not present the input character level results. Using a
word level tokenizer achieved very reasonable results,
supporting our theory that using larger units of language
that contains more information is beneficial for transla-
tion. But as BPE outperformed the word level tokenizer
on the BLEU-4 score, we assume that by using whole
words we create a harder problem, as the dataset con-
tains several word inflections. We conclude that BPE
is the best algorithm to use when translating from T2H.
This is due to the algorithms ability to reduce inflec-
tions and reduce the vocabulary size which simplifies
the networks task. Our results also show that the biggest
impact comes from having BPE on the output, suggest-
ing that most of the challenge comes from the decoding
section of the network. Similarly, the best T2G result
came from using a word level and BPE tokenizers on
the input and output respectively.

4.2.4. Supervision
Our final ablation study investigates an additional loss
explained in Section 3.3. This had a positive effect
on the translation performance for T2H. As can be
seen from Table 3, the use of supervision increased the
BLEU-4 scores by 0.85. We conclude supervision en-
riches the learnt sign language representation due to
the correlation between hand shape and context. Super-
vision forces the model to focus more on hand shape,
allowing the model to group signs and find better trends
in the data. Although the use of supervision marginally

decreased the T2G2H BLEU score, we suggest this is
due to reduced information in the target gloss.

4.3. State-of-the-art Comparisons
Finally, in Table 4 (PHOENIX14T) and 5 (mDGS) we
compare our best performing models to state-of-the-
art work. Note in Table 4 our baseline is marginally
higher than (Saunders et al., 2020), we assume this
is due to a larger hyper-parameter search. On both
datasets, our best model for T2G and T2G2H uses a
word level and BPE tokenizer on the input and output
respectively. While our best T2H result comes from
adding additional supervision on to this setup. As can
be seen from Table 4 and 5 our models outperformed all
other methods (Moryossef et al., 2021; Li et al., 2021;
Saunders et al., 2020; Saunders et al., 2022; Stoll et al.,
2018), setting a new state-of-the-art on PHOENIX14T
and mDGS. Note we can only compare scores that
are publicly available, therefore ’-’ denotes where the
authors did not provide results.

4.4. Qualitative Evaluation
For qualitative evaluation, we share translation exam-
ples from our best models and our baseline model in
Fig. 4, to allow the reader to better interpret the results.
Note, we add a vertical black line after each word of
HamNoSys to mark the end of a given sign. These
results show how our BPE model has learnt richer trans-
lations than our baseline model.

Figure 4: Translation examples from our baseline and
best model.



123

DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2G (Stoll et al., 2018) 16.34 22.30 32.47 50.15 48.42 15.26 21.54 32.25 50.67 48.10
T2G (Saunders et al., 2020) 20.23 27.36 38.21 55.65 55.41 19.10 26.24 37.10 55.18 54.55

T2G (Li et al., 2021) 18.89 25.51 - - 49.91 - - - - -
T2G (Moryossef et al., 2021) 23.17 - - - - - - - - -

T2G Baseline (ours) 22.47 30.03 41.54 58.98 57.96 20.95 28.50 39.99 58.32 57.28
T2G Best Model (ours) 25.09 32.18 42.85 60.04 58.82 23.19 30.24 40.86 58.74 56.55

Table 4: Baseline comparison results for Text to Gloss (T2G) translation on PHOENIX14T.

DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2G (Saunders et al., 2022) 3.17 - - - 32.93 3.08 - - - 32.52

T2G Our best 10.5 14.35 20.43 33.56 35.79 10.4 14.21 20.2 33.59 35.99
T2G2H Our best 22.06 28.53 36.32 47.55 36.20 21.87 28.31 36.02 47.08 35.74

T2H Our best 26.99 31.07 35.99 42.73 48.89 27.37 31.42 36.3 42.92 48.85

Table 5: Baseline comparison results for Text to Gloss (T2G), Text to Gloss to HamNoSys (T2G2H) and Text to
HamNoSys (T2H) translation on mDGS.

5. Conclusion
In this paper, we employed a transformer to translate
from spoken language sentences to a sequence of gloss
or HamNoSys. We introduced T2H translation, showing
the advantages of translating to HamNoSys instead of
just gloss, and set baseline results for future work on
mDGS. We showed that language models can be used
to improve translation performance, but using more ad-
vanced tokenization algorithms like BPE gives a larger
performance gain. Additionally, we have shown that
translation can be improved by training the model to
jointly predict hand shape and HamNoSys. We achieved
a BLEU-4 score of 26.99 and 25.09, a new state-of-the-
arts for SLT on the mDGS and PHOENIX14T datasets.

As future work, it would be interesting to create a rep-
resentation, gloss++. This could combine the benefits of
gloss and HamNoSys, including non-manual features as
well as hand shape information, as this has been shown
to be useful for translation. Furthermore, this could be
beneficial for down stream tasks in the SLP pipeline.
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