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Abstract

While rich, open-domain textual data are gen-
erally available and may include interesting
phenomena (humor, sarcasm, empathy, etc.)
most are designed for language processing
tasks, and are usually in a non-conversational
format. In this work, we take a step towards au-
tomatically generating conversational data us-
ing Generative Conversational Networks, aim-
ing to benefit from the breadth of available lan-
guage and knowledge data, and train open do-
main social conversational agents. We eval-
uate our approach on conversations with and
without knowledge on the Topical Chat dataset
using automatic metrics and human evaluators.
Our results show that for conversations with-
out knowledge grounding, GCN can general-
ize from the seed data, producing novel con-
versations that are less relevant but more en-
gaging and for knowledge-grounded conversa-
tions, it can produce more knowledge-focused,
fluent, and engaging conversations. Specifi-
cally, we show that for open-domain conversa-
tions with 10% of seed data, our approach per-
forms close to the baseline that uses 100% of
the data, while for knowledge-grounded con-
versations, it achieves the same using only 1%
of the data, on human ratings of engagingness,
fluency, and relevance.

1 Introduction

Conversational Artificial Intelligence has pro-
gressed a lot in the recent past, partly due to ad-
vances in large pre-trained language models (PLM)
and partly due to commercial conversational agents
(Alexa, Siri, Cortana, Google Assistant, and others).
It is evident, however, that many challenges still
remain, such as handling idioms, humour, express-
ing empathy, processing unstructured knowledge,
and so on. One big factor for this is the lack of
large and rich conversational data that include these
complex aspects of human communication. While
the research community is making great efforts in
collecting such data (e.g. empathetic dialogues

(Rashkin et al., 2019), persuasion (Wang et al.,
2019), and others), these are still small compared
to the amount of data needed to train deep neural
networks. Furthermore, these expensive data col-
lections usually target a single phenomenon at a
time, and hence do not necessarily scale to the rich-
ness of human conversations. Another challenge
for real world applications is privacy, preventing
the use of much of the publicly available conversa-
tional data.

In this work, we take a first step into automati-
cally generating conversational data from unstruc-
tured textual knowledge (e.g. web sources) using
Generative Conversational Networks (GCN) (Pa-
pangelis et al., 2021). GCN is a meta-learning
method initially proposed for intent detection and
slot tagging; we extend that approach and demon-
strate that we can learn how to generate responses
grounded in unstructured knowledge. Specifically,
GCN learns how to generate labelled, diverse, and
targeted data that are optimised with Reinforce-
ment Learning (RL). This is achieved by using a
generator model that produces new data which is
used to train a separate learner model. The per-
formance of the learner model is used as a reward
signal to train the generator, so that over time the
quality of the generated data increases. This re-
ward signal can allow us to guide the data gen-
eration towards dimensions of interest, for exam-
ple, knowledge-grounded, empathetic, or polite
dialogues and can be derived from automatic met-
rics or human feedback if the system is deployed.
In our case, the generator produces open-domain
dialogues and the learner is a conversational agent
that is trained on that data. Selecting an appropri-
ate reward signal can be difficult, since we want to
generate good quality dialogues that do not exist
in the training data, but dialogue evaluation is a
challenging open problem. We therefore investi-
gate a combination of multiple metrics that capture
different aspects: BLEU (Papineni et al., 2002)
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and ROUGE (Lin, 2004) to ensure some similarity
with the reference data, BERTScore (Zhang et al.,
2020a)1 to encourage good quality dialogues, and
Knowledge F12 (Shuster et al., 2021) to encour-
age knowledge integration. It should be noted that
while the focus in this work is knowledge ground-
ing in open-domain response generation, our ap-
proach is extensible to other conversational phe-
nomena with appropriate reward signals.

Our main contributions are: a) we generate
knowledge-grounded conversational data from un-
structured textual knowledge (e.g. the kind of
knowledge available on the web); b) we improve re-
sponse generation quality over a baseline that uses
fine-tuning on seed data, eliminating the need for
additional human-human data collection; and c) we
demonstrate improved performance on knowledge-
grounded response generation on Topical Chat, as
measured by KF1 and human evaluations.

2 Related Work

Language Data Augmentation Approaches.
There are a lot of recent works on data augmen-
tation, but most of them are geared towards individ-
ual language processing tasks rather than training
complete conversational agents. Due to lack of
space we only mention the ones that are most rele-
vant to our work.

PROTODA (Kumar et al., 2021) uses prototyp-
ical networks to augment data for intent classifi-
cation while GenSF (Mehri and Eskenazi, 2021)
uses DialoGPT (Zhang et al., 2020b) for zero-shot
slot tagging; DINO (Schick and Schütze, 2021)
uses PLM to generate data for semantic textual
similarity; Campagna et al. (2020) focus on zero-
shot dialogue state tracking and use an abstract
dialogue model to generate data. SOLOIST (Peng
et al., 2021) uses a PLM fine-tuned on large di-
alogue corpora and is designed for transactional
(goal-oriented) dialogues. Mohapatra et al. (2020)
use PLM to train user simulators from crowd-
generated conversations and their instructions. Lin
et al. (2021a) train domain-independent user sim-
ulators for transactional dialogues. Chang et al.
(2021) augment data for Data-To-Text NLG by
generating text in two steps: replacing values with
alternatives and using GPT-2 to produce surface

1Data driven evaluation metrics tend to favor dialogues
similar to the ones used during their training and we found
that we cannot solely rely on such metrics.

2KF1 measures the token level F1 score between a knowl-
edge piece and an utterance.

text. They then do automatic labelling and enforce
cycle-consistency (make sure text can be generated
from data and vice versa). Stahlberg and Kumar
(2021) focus on data generation for Grammatical
Error Correction and propose a method that can
generate an erroneous sentence given a correct sen-
tence and an error tag. Chen and Yu (2021) use
data augmentation to improve out of scope (OOS)
detection models. Specifically, they extract utter-
ances from a different dataset than the one they
are targeting that can be labelled as OOS and then
do some smart filtering to select good candidates.
Kim et al. (2021) propose NeuralWOZ, a frame-
work to generate dialogue state tracking data given
goal descriptions and API calls. NeuralWOZ has
a data generator and a data labeler that annotates
the data. GCN does not need a separate labeler
model and has the added option of being continu-
ally trained with RL. PromDA (Wang et al., 2022b)
is a soft-prompt learning method for low-resource
NLP tasks, that addresses the problem of overfit-
ting (memorizing) when fine-tuning a PLM with a
very small number of examples. The authors gen-
erate data for sequence classification and labelling.
However, this approach is not tested on full dia-
logues which require significantly more context in
the input. Bayer et al. (2022) propose a three step
method, where they first fine-tune a PLM and then
generate new data-points by adjusting the temper-
ature of the generation. They then filter the gener-
ated data by putting a threshold on embedding simi-
larity with respect to the target class centroid. GCN
uses RL to guide the generation process, alleviating
the need for explicit post-processing. Wang et al.
(2022a) present a data augmentation approach for
aspect-based sentiment analysis that can generate
data along two dimensions: aspects and polarity.
The resulting data are then used in a contrastive
learning setting to train a sentiment classifier. Sim-
ilarly to other approaches, it is not clear how it
would perform in knowledge-grounded dialogue
generation, with large inputs (context and available
knowledge). For a more comprehensive review of
data augmentation for language tasks, please see
(Feng et al., 2021; Li et al., 2021; Sahin, 2022).

Regarding data augmentation for conversational
agents, one of the most prominent methods is User
Simulation (Schatzmann et al., 2007; Asri et al.,
2016; Liu and Lane, 2018; Papangelis et al., 2019;
Lin et al., 2021b; Shah et al., 2018, e.g.). These ap-
proaches, however, have been designed to work
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Figure 1: The architecture of our approach using Generative Conversational Networks for knowledge-grounded dialogues. The
generator is first fine-tuned with seed data and produces an augmented dataset and those data are used to train a learner. The
performance of the learner on a held-out validation set (along with auxiliary metrics) is used as a reward to update the generator.

with well-structured databases whereas we are
concerned with grounding open-domain conversa-
tional responses in unstructured knowledge. DG2

(Wu et al., 2021) focuses on data augmentation
for document-grounded dialogues, using Doc2Dial
(Feng et al., 2020). The authors use an agent bot
and a user bot to conduct simulated conversations
and generate data. However, unlike GCN, the bots
are not continually updated and may not gener-
alise well to produce novel content. The code was
not available for a direct comparison on our dataset,
however, in the few-shot learning experiments, they
demonstrate good performance with as little as 25%
of the data (869 Doc2Dial dialogues), whereas we
demonstrate competitive performance by only us-
ing 1% of the training data (86 Topical Chat dia-
logues).

Few-Shot Approaches. Another line of related
work is based on few-/zero-shot transfer learning
for dialogue tasks. Again due to space we only
mention the most relevant works. Earlier studies
have focused on improving the generalizability of
natural language understanding problems such as
intent classification (Chen et al., 2016) and slot
filling (Bapna et al., 2017; Shah et al., 2019) for un-
seen labels or domains. Then, focus was placed on
other dialogue problems including dialogue state
tracking (Wu et al., 2019; Rastogi et al., 2020),

next action prediction (Mosig et al., 2020), and
natural language generation (NLG) (Peng et al.,
2020). Bapna et al. (2017) and Shah et al. (2019)
utilized slot descriptions for improving the zero-
shot slot filling performance. Rastogi et al. (2020)
used slot, intent, and task-specific API descrip-
tions for schema-guided dialogue state tracking.
Mosig et al. (2020) based on a structural schema in
graph representations instead of textual descrip-
tions for zero-shot action prediction and NLG.
Peng et al. (2020) pre-trained on massive text data
followed by dialog act labeled dialogue utterances.
Madotto et al. (2020) used a large-scale pre-trained
language model as a few-shot learner with task-
specific prompting. All the methods presented
above, however, are geared towards specific tasks
and are not shown to generalize to open-domain
social or knowledge-grounded conversation.

3 Notation

We conduct experiments under two settings: con-
versations without explicit knowledge-grounding
(we call them open-domain) and knowledge-
grounded conversations.
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3.1 Open-domain conversations

We define a multi-turn conversation as a list
of utterances: U1, U2, ..., UN where Ui is the
utterance at turn i, and N is the number of turns
in the conversation. Each utterance is composed
of words w1, ..., wM , where M is the number of
words in the utterance. Conversational agents are
given a subset of the dialog context, for example
the t most recent turns UN−t−1, ..., UN−1 and
generate the response UN .

3.2 Knowledge-grounded conversations

To formulate knowledge-grounded responses, con-
versational systems need two steps (sometimes
taken jointly): knowledge selection and response
generation (Dinan et al., 2019). The conversational
agent should therefore first select relevant knowl-
edge pieces from the sources provided with respect
to the current dialog context and then generate a
response that incorporates the selected knowledge.
A knowledge piece in our case is defined as a fact
consisting of one or more sentences (see Table 8
for some examples). To select a knowledge re-
trieval method, we conducted preliminary experi-
ments comparing TF-IDF, BM25, and BERTScore
and we saw that the more sophisticated parsing
and dense retrieval methods did not outperform
TF-IDF. We therefore represent conversation con-
text and knowledge using TF-IDF vectors and uti-
lize TF-IDF-based retrieval over documents as our
knowledge selection mechanism. We select the
most relevant knowledge using cosine similarity
with the context C = UN−t−1, ..., UN−1:

kN = argmax
k
{cos(tC , tk)} (1)

where tC is the TF-IDF vector corresponding to
the context and tk is the vector corresponding to
knowledge piece k. Knowledge-grounded conver-
sational agents are given not only the dialog context
C but also the selected knowledge kN (or multiple
pieces of knowledge as in our case) and are asked
to generate a response UN that incorporates kN .

4 Generative Conversational Networks

GCN (Papangelis et al., 2021) (Figure 1) consist
of two models in a meta-learning architecture: a
data generator and a learner. The generator creates
a labeled dataset that is used to train a new learner
(a conversational agent in our case) in a supervised

fashion. The learner is then evaluated on an exter-
nal validation set and its performance is used as a
proxy for the quality of the dataset. This quality
measure is used as a reward in a RL setup that trains
the generator. Over time, the generator learns to
create data of better and better quality, with respect
to the learner’s task, leading the learner to perform
well. To avoid overfitting the validation set, we
can limit the number of meta-iterations or include
domain-independent performance metrics, such as
fluency, perplexity, or even human feedback. When
deployed, the generator is directly optimized on
the test set (i.e. real interactions). Both models
can be pre-trained with seed data, if available, and
paired with reward estimation, GCN can be used
for continuous learning from user feedback. This
approach has been proven to work well for intent
detection and slot tagging in goal-oriented conver-
sations (Papangelis et al., 2021) and we here apply
it to train social conversational agents. Different
from Generative Adversarial Networks (Goodfel-
low et al., 2014)3 where the model tries to mimic
the data, GCN models are guided by an external re-
ward signal - that does not need to be differentiable
- and can therefore generalize better. Depending
on the optimization criteria, we can set the direc-
tion towards which the models will go, for example
more polite conversations, more technical terminol-
ogy, different dialect, knowledge grounding, and
even directions that are not easily quantifiable (e.g.
engagingness ratings from humans).

For open-domain conversations, as a proof of
concept, we conduct few-shot experiments using
10% of the data and for knowledge-grounded con-
versations which is the main focus of this work, we
use 1%, 5%, and 10% of the data; we call these
the seed data (Dseed). At the beginning of train-
ing, we sample Dseed from the data D, fine-tune
the generator on Dseed (see G.train(Dseed), line
4 in Algorithm 1), and then start the outer loop
meta-iterations. Along with the training data, we
sample the corresponding percentage of validation
dataDval. Once the training is complete, we spawn
a new learner, train it on the seed and synthetic data,
and evaluate it on Dtest which has been unseen so
far. As described earlier, each meta-iteration has
four phases: data generation, learner fine-tuning,
learner evaluation, and generator update. Algo-
rithm 1 summarizes the process.

3A direct comparison with GAN approaches is out of scope
for this work and we leave it for the future.
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4.1 Data generation

In the first phase of the process, the generator G
is given some dialog context sampled from Dseed

and, in the knowledge-grounded condition, top-
m retrieved knowledge pieces k from the TFIDF
retriever. Specifically, we give the last two turns as
context and the top-3 matching knowledge pieces,
and ask the generator to predict the next system
response. At each turn i, the context Ci is used to
retrieve relevant knowledge ki that is then used as
input to the generator which produces the next turn
response Ui:

(2)
Ui = G(Ci, ki)

=

n⋃
w=0

{sample(PLM (w|wn−1, ..., w0, ci, ki)}

where PLM is the probability of the underlying
language model generating each word w of the
response Ui, and sample is the method we use to
sample from the PLM, (greedy, nucleus, etc). This
way, the generator produces a synthetic dataset
Dsynth of size L, where each datapoint is a triplet
of context Ci, knowledge ki, and response Ui:

Dsynth = {(Ci, ki, Ui), i = 1, ..., L} (3)

In essence, to create Dsynth, instead of taking the
human response from the data as a target, we use
the generated response U as a target and feed that
along with C and k to fine-tune the learner.

4.2 Learner fine-tuning and evaluation

Since the learner’s task is knowledge-grounded dia-
logue, it does not have access to the TFIDF retriever
and, as k may contain multiple relevant knowledge
pieces, it will learn to perform its own implicit
knowledge selection, not knowing what the exact
knowledge piece used to produce U was.

At every iteration, we create a new learner
(based on a pre-trained model) and fine-tune it on
Dseed ∪Dsynth (see line 10 in Algorithm 1). The
knowledge-grounded learners are trained using a
combination of cross entropy loss and knowledge
retrieval score, specifically, Knowledge F1 (KF1)
(Shuster et al., 2021) which measures the F1 score
between the produced utterance and the selected
knowledge piece. The trained learner is then evalu-
ated (see line 11 in Algorithm 1) and a numerical
reward is computed by combining several metrics.

Algorithm 1 GCN training procedure.
1: procedure TRAIN(Dseed, Dval, Dtest, ε)
2: Initialize Generator G
3: if Dseed then
4: G.train(Dseed)
5: end if
6: Performancemeta ← 0
7: while Performancemeta < 1− ε do
8: Dsynth ← G.generate()
9: Sample and initialize new Learner l

10: l.train(Dseed ∪Dsynth)
11: Performancemeta ← l.evaluate(Dval)
12: . Performancemeta ∈ [0, 1]
13: G.update(Performancemeta)
14: end while
15: Dsynth ← G.generate()
16: Sample and initialize new final Learner L
17: L.train(Dseed ∪Dsynth)
18: L.evaluate(Dtest) . or other evaluator
19: end procedure

4.3 Generator update

Following (Ziegler et al., 2019) and (Papangelis
et al., 2021), we use Proximal Policy Optimization
(PPO) (Schulman et al., 2017) with the following
modified reward R to train the generator using the
learner’s validation performance r:

R(C,U) = r(C,U)− β log G(U |C)
Gref (U |C)

(4)

whereC represents the context including the knowl-
edge if applicable, U represents the model’s re-
sponse, and β is a constant that prevents G from di-
verging too much from a reference generator Gref .

In the open-domain condition, the generator
uses multiple losses to calculate r: BLEU (Pap-
ineni et al., 2002), ROUGE-L (Lin, 2004), and
BERTScore (Zhang et al., 2020a) which measure
the similarity of the learner-produced utterance and
the utterance in the data (Dseed or Dsynth). We
evaluate each learner on the validation set Dval

and compute the above metrics using the human
responses in Dval as references. The weighted
sum of the NLG metrics comprises the reward for
the generator training. The weights were deter-
mined via grid search: 0.1, 0.01, 0.95, for BLEU,
ROUGE-L and BERTScore, respectively. In the
knowledge-grounded condition, we use a combi-
nation of BLEU-1 and KF1 (with weights 0.75 for
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BLEU-1 and 0.25 for KF1) as we found via grid
search that it produced better results.

After the meta-iterations are finished, we pick
the best performing generator checkpoint (mea-
sured by the learners’ performance on Dval at
each meta-iteration) and create a final synthetic
set Dfinal synth that is 5 times the size of the seed.
We then create a new learner as our final learner
(i.e. the conversational agent) and fine-tune it on
Dseed ∪Dfinal synth (lines 15-18 in Algorithm 1).
IfDfinal synth is of good quality, we should expect
the final learner to outperform the baseline, as it is
trained with more data. The results presented next
are all computed on the final learners, trained for
3 epochs, evaluated on Dtest, and averaged over 3
runs (as are our baselines).

5 Experiments

To evaluate GCN as a data augmentation method
for conversations with and without knowledge, we
conduct few-shot experiments on Topical Chat (TC)
(Gopalakrishnan et al., 2019). TC is a set of human-
human conversations, without explicitly defined
roles for each participant, collected over Amazon
Mechanical Turk. Each participant had access to a
set of facts or articles with some conversations be-
ing symmetric (participants had access to the same
knowledge) and some being asymmetric. All ex-
periments were conducted on 2 Tesla V100 GPUs
with 32GB memory each.

5.1 Model ablations

To quantify the effect of data augmentation and RL
in both conditions, we train BART (Lewis et al.,
2020) or BlenderBot-small (BBs)4 (Roller et al.,
2021) models for no-knowledge and knowledge-
grounded conversations respectively, under the fol-
lowing conditions:

• Baseline (BART/BBs): In this condition, we
train BART or BBs on the seed data. This
will give us a lower bound on performance
(if the augmented data is good, it should help
performance).

• Data augmentation without RL (GCN-
RL): In this condition, we pre-train a
DialoGPT-small5 (Zhang et al., 2020b) gener-
ator with the seed data, and use that to gener-
ate 5x more data. We then use the seed and

490M parameters
5117M parameters

generated data to train a final BART or BBs
(learner) model depending on the task.

• Data augmentation with RL (GCN+RL):
In this condition, we take the GCN-RL gen-
erator and iteratively update it using RL, as
described in section 4. This is the full GCN
framework. At the end of the meta-iterations,
we take the best-performing generator and use
it to create 5x more data. We use the seed and
generated data to train a final BART or BBs
model.

• Generator direct evaluation (G±RL gener-
ator): For the knowledge-grounded condition,
in addition to the above three models, we eval-
uate the generator by having it directly inter-
act with humans instead of generating data to
train a learner.

5.2 Open-domain conversations

For the open-domain conversations, we sample
10% of TC as seed for GCN and use DialoGPT-
small and BART as initial models for the generator
and the learner, respectively. We compare the per-
formance of the GCN learner and 3 baselines using
automated metrics, and also conduct human evalu-
ations. Our baselines are: BART trained with the
same seed data (BART 10%), BART trained with
the entire training set (BART 100%), and a GCN
learner trained on seed and synthetic data but with-
out updating the generator via RL (GCN-RL). Last,
we also compare against the human responses that
appear in the data (“Data” in Tables 1 and 3).

5.3 Knowledge-grounded conversations

For knowledge grounded conversations, we sample
1%, 5%, and 10% of TC as seed data for GCN.
Again we use DialoGPT-small as a generator but
we use BBs as our learner. We compare the per-
formance of GCN against similar baselines to the
open-domain condition: BBs trained on the seed or
the entire data, GCN without RL, human responses
from the data, and we also evaluate the genera-
tors themselves if we were to use them directly
as conversational agents (G±RL generator). Even
though KF1 is the metric of choice in related work
on knowledge-grounded conversations, we did not
find works that report KF1 for TC.
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Model BLEU Rouge(1/2/L) BScore Engaging. Fluency Relevance Overall
Data - - - 3.85 4.55 3.77 4.06
BART (100%) 3.1 20.3/6.1/17.8 0.861 3.80 4.58 3.68 4.02
BART (10%) 2.0 18.5/4.2/16.0 0.858 3.63 4.50 3.62 3.92
GCN-RL 1.1 15.0/2.1/12.6 0.850 3.70 4.47 3.47 3.88
GCN+RL 1.3 15.8/2.7/13.6 0.851 3.79 4.49 3.58 3.96

Table 1: Automatic and human evaluation results. Human evaluators rate responses on a scale of 1 to 5. BScore stands for
BERTScore. Bold indicates statistically significant difference (t-test assuming unequal variance). BART (100%) and BART
(10%) are BART trained on 100% and 10% of the data, GCN-RL is GCN without RL, and GCN+RL is GCN with RL training.

1% data 5% data 10% data
Model PPL KF1 BL-4 PPL KF1 BL-4 PPL KF1 BL-4
BBs 23.39 0.10 0.07 23.52 0.17 0.09 21.69 0.17 0.09
GCN-RL 26.47 0.15 0.08 24.54 0.18 0.09 23.11 0.18 0.09
GCN+RL 27.11 0.20 0.08 24.60 0.25 0.14 23.67 0.28 0.10

Table 2: Results of automated evaluation on knowledge-grounded conversations. All models try to maximize KF1, and the
baseline is the same model as the GCN learners (BBs: BlenderBot-small, 90M parameters).

Model Eng. Flu. Rel. Avg
Data 3.74 3.98 3.57 3.76
BBs (100%) 3.69 3.99 3.57 3.75
BBs (1%) 3.64 3.86 3.42 3.64
G-RL generator 3.47 3.35 3.23 3.35
G-RL learner 3.58 3.85 3.48 3.64
G+RL generator 3.37 3.27 3.40 3.35
G+RL learner 3.73 3.97 3.48 3.73

Wins Percentage
Combinations Base G-RL G+RL Tie
BBs VS G-RL 40.0 44.3 - 15.7
BBs VS G+RL 44.7 - 47.7 7.6
All 3 models 29.3 25.7 45.0 -

Table 3: Human evaluation results (top) for knowledge-
grounded conversations. Human evaluators rate responses
with the same conversation context on a scale of 1 to 5. In
a different evaluation (bottom), they were asked to choose
the best response from two options. BBs: BlenderBot-small
(90M), G-RL: GCN without RL, G+RL: GCN with RL.

6 Results

6.1 Automatic evaluation

We report perplexity (PPL), BLEU-4 (Papineni
et al., 2002) with the “method 7” smoothing func-
tion from (Chen and Cherry, 2014) as it has higher
correlation with human ratings, and KF1. We cal-
culate these metrics on the TC “frequent” test set,
(Tables 1 and 2). In the open-domain condition, we
see that BART 10% outperforms GCN agents on all
automated metrics. In knowledge-grounded conver-
sations, we see that GCN+RL is able to incorporate
more knowledge as evidenced by the higher KF1.

6.2 Human evaluation

Due to the intrinsic one-to-many property of con-
versation, reference-based metrics may not corre-
late with human ratings; our generated conversa-
tion may be appropriate for the dialogue context
but different from the reference responses. For this
reason, we also conduct human evaluation (follow-
ing sub-section). Human evaluators rate the output
of the GCN learner, the baselines, and the ground
truth. Specifically, they rate how engaging, fluent,
and relevant each response is, on a scale from 1 to
5. We generate 1,000 samples for each condition
using the same context and make sure we have 3
ratings per sample per condition. Tables 1 (right)
and 3 show the results of the evaluation, where we
see that in the open-domain condition, the GCN
learner produces engaging but less relevant con-
versations. This is likely because the model in-
serts facts or other output that is not entirely rel-
evant, but is perceived as more engaging (e.g. in-
formation on a somewhat relevant subject, fun fact,
etc.). Consistent with prior work, (Papangelis et al.,
2021), this shows that GCN can generalize from
the data. When it comes to knowledge-grounded
conversations, where GCN is explicitly trained to
optimize KF1 (among other metrics), then rele-
vance is indeed higher than the baseline. Overall,
averaging the three metrics, GCN+RL outperforms
BART 10% and is close to BART 100%’s perfor-
mance. All models are outperformed by the human
responses, which may be due to the size of our
models or the number of training iterations.
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Iterations PPL KF1 BL-4
1 30.8 0.146 0.179
2 31.1 0.147 0.182
3 30.7 0.146 0.186
5 30.8 0.163 0.190
10 27.1 0.238 0.085

Table 4: Performance of GCN+RL for varying number
of meta-iterations. Here, we generate 3x the seed data
and use 1% of TC.

Data Mult. PPL KF1 BL-4
1 26.5 0.201 0.082
2 27.4 0.213 0.084
3 28.6 0.17 0.083
5 22.2 0.25 0.154
10 22.9 0.27 0.106

Table 5: Performance of GCN+RL for varying size of
generated data (as a multiplier of the seed). Here, we
do 5 meta-iterations and use 1% of TC.

For knowledge-grounded conversations (Table 3)
we see that GCN+RL produces more engaging and
fluent conversations and overall outperforms both
baselines while again being close to BBs trained on
all the data. In pair-wise comparisons, GCN+RL
is generally preferred more than the other models.
Overall, for the GCN conditions, given that we
generate 5x the seed data, the total amount of data
is about 6% of the size of TC and our results show
that the generated data is indeed of high quality,
since the same model (BlenderBot-small) using the
generated data performs close to the one that uses
100% of the human-human data and close to the
data itself. It should be noted that GCN achieves
this performance using small models (in the order
of 100M parameters each).

In Figure 2 in the appendix, we show the Ama-
zon Mechanical Turk setup that we used during our
human evaluations.

6.3 Generated data diversity

In this section we further analyze the performance
of GCN, specifically its performance with respect
to the number of meta-iterations (Table 4) and the
amount of generated data (Table 5). In Table 4,
we see that KF1 increases as we have more meta-
iterations, meaning that the generator actually leads
the learner to learn to produce more knowledgable
responses. BLEU naturally drops as these more
knowledgable responses may not appear in the data.

Data % BBs GCN-RL GCN+RL
1% 8.1% 17.4% 25.1%
5% 8.5% 12.1% 24.5%
10% 5.9% 9.2% 13.6%

Table 6: Out-Of-Vocabulary (OOV) rates for various
seed percentages.

We observe similar trends in Table 5, where we vary
the amount of synthetic generated data (as a multi-
plier of the size of the seed data). Regarding data
diversity, Table 6 presents out of vocabulary rates
for all three conditions when using 1%, 5%, and
10% of the data as seed. Higher rates mean more
diversity but may also mean that the generated data
is farther from the seed data. Paired with the results
in Tables 1-3, however, we can see that GCN+RL
produces more diverse data that are still in-domain
and useful.

6.4 Examples

In Table 7, we provide example responses for con-
versations without knowledge grounding, and in
Table 8 we show example responses for knowledge-
grounded conversations. We see that in both cases
GCN+RL tries to insert knowledge or fun facts
and that appear to be received well by the human
judges. However, since there are no knowledge-
grounding abilities, the model hallucinates and
this is what likely drives relevance ratings down.
In the knowledge-grounded example, we see that
GCN+RL can use the knowledge pieces more ef-
fectively than the other models.

7 Conclusion

We presented a meta-learning method based on
GCN to generate conversational data grounded on
unstructured textual knowledge such as what can be
found on the web. We show that given a small seed
(1% of TC or 86 examples) our approach can gener-
ate high quality data that can be used to train a com-
petitive conversational agent able to do knowledge
selection and grounding. Lower reference-based
metric scores (Table 1, left and Table 2) indicate
that our method generates diverse data. Based on
the good scores in the human evaluation (Table 1,
right and Table 3), we see that the generated data
is also useful for the task at hand, a result in line
with the results on intent detection and slot tagging
in (Papangelis et al., 2021). As future work, we
are conducting thorough analyses and evaluations
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Context
Hello, do you watch football?
Hi, yes. I love football! I did not realize the season lasted 17 weeks!
Yeah pretty long. I guess with 32 teams playing it takes that much time
Did you see they only rest one weekend during the season?
That is crazy, so much work goes in there. Did you know U of Iowa painted their visitor locker
room pink?
Oh yes,that is so funny. they really want to intimidate the other team, but is more like a joke
Wow, what an idea. Did you know bowlers used to make more than football players in the 60s

Responses
Baseline that’s a good point. i wonder how many of the top bowlers make twice as much as top football stars.

do you have a favorite
GCN-RL that’s a good point. i’m not a big fan of football, but i do like to watch it.

do you like football?
GCN+RL i didn’t know that, that’s interesting. did you know there are more than 30 million players in the nfl?

i wonder how many of those players are still playing?

Table 7: Example responses for open-domain conversations. The models here are not trained to optimize knowl-
edgable responses and therefore may hallucinate. This may be the reason for lower relevance scores for GCN+RL
(Table 1); however, GCN+RL’s tendency to provide fun facts is what may be leading to more engaging responses.

Context
Did you know that the University of Iowa’s locker room is painted pink? I wonder why?
I think I did hear something about that. I imagine it is an attempt to psych the other team out.
So, it would be in the visiting team’s locker room but not their own?

Retrieved Knowledge (subset)
the University of Iowa’s locker room for visiting football teams is completely painted pink in the
1960’s top bowlers made twice as much as top football stars
Football is a family of team sports that involve, to varying degrees, kicking a ball [...]
in 39 out of 50 states, the highest paid state employee is either a college football or basketball coach.

Responses
Baseline i think it would be in the visiting team’s locker room. i don’t know why they would want to psych

the other team out
GCN-RL that’s interesting. i’ve never heard that before. do you have a favorite team?
GCN+RL i’m not too familiar with iowa’s locker room for visiting football teams, but i do know that they’re

the highest paid employees in the state of iowa. do you know why they are paid so much?

Table 8: Example responses for knowledge-grounded conversations. In this setting, models are trained to optimize
knowledgable responses which explains in part why GCN+RL is preferred in human judgements (Table 3).

of the generated data, exploring more model archi-
tectures, and are working on more conversational
phenomena.
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Figure 2: Our human evaluation setup.

A Limitations and Risks

Given that GCN relies on Reinforcement Learning,
it may be difficult to tune for more complex appli-
cations. Also, due to its meta-learning nature it can
be computationally expensive, although we show it
here working with small versions of each model.

As with any machine learning approach - espe-
cially ones that rely on PLMs - there are inher-
ent risks as to the language that will be produced,
which may be biased in many ways. Our approach
works with any machine learning model and there-
fore inherits the risks of the models used. Rein-
forcement Learning can also play a role in learning
biased models if we are not careful.

B Amazon Mechanical Turk Setup

In Figure 2 we show a screenshot of our Amazon
Mechanical Turk setup for human evaluation.


