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Abstract
Smooth turn-taking is an important aspect of
natural conversation that allows interlocutors
to maintain adequate mutual comprehensibil-
ity. In human communication, the timing be-
tween utterances is normatively constrained,
and deviations convey socially relevant par-
alinguistic information. However, for spoken
dialogue systems, smooth turn-taking contin-
ues to be a challenge. This motivates the
need for spoken dialogue systems to employ
a robust model of turn-taking to ensure that
messages are exchanged smoothly and with-
out transmitting unintended paralinguistic in-
formation. In this paper, we examine dialogue
data from natural human interaction to de-
velop an evidence-based model for turn-timing
in spoken dialogue systems. First, we use
timing between turns to develop two models
of turn-taking: a speaker-agnostic model and
a speaker-sensitive model. From the latter
model, we derive the propensity of listeners to
take the next turn given TRP duration. Finally,
we outline how this measure may be incorpo-
rated into a spoken dialogue system to improve
the naturalness of conversation.

1 Introduction

Turn-taking is an important component of many
spoken dialogue systems and involves (a) detecting
or predicting the end of a turn and (b) accurate tim-
ing of the initiation of speech production (Michael,
2020; Kennington et al., 2020). Smooth turn-taking
continues to be a challenge for spoken dialogue
systems that aim to engage in natural conversa-
tion (Hara et al., 2019). Traditionally, most spo-
ken dialogue systems process Inter-Pausal Units
(IPUs), which are speech units surrounded by ar-
bitrary fixed length silence thresholds (Skantze,
2021). These pauses of arbitrary duration cause a
stilted, unnatural conversation style.

Other systems use incremental approaches, pro-
cessing smaller units of speech at a time. For exam-
ple, the incremental dialogue system proposed by

Skantze and Schlangen (2009) operates on Incre-
mental Units (IUs) that are processed by Incremen-
tal Modules (IMs). These modules may include ac-
tion, turn, or dialogue management—each of which
influences turn-planning and end of turn detection.
Although such systems initiate the production of
speech when a silence is detected, they do so based
on pitch or semantic completeness (Skantze and
Hjalmarsson, 2010). Machine learning models of
turn-taking operate on previously detected multi-
modal cues (Bohus and Horvitz, 2010; Skantze,
2021).

The turn-taking techniques used in traditional
spoken dialogue systems, such as predicting turn-
ends in a time window (Lala et al., 2019), are not
fully grounded in current theory of human turn-
taking. In natural conversation, people tend to
minimize gaps and overlaps while also following
the one “one speaker at a time” rule (Sacks et al.,
1974). This means that when a turn ends, another
speaker may start speaking. Speakers also use the
duration of silences to convey social information
(de Ruiter, 2019). For example, long and short gaps
may communicate hesitance or impatience. Addi-
tionally, interlocutors use turn-taking cues (e.g.,
lexico-syntactic, pragmatic, prosodic etc.) to pre-
dict the end of turns and plan responses (Levinson
and Torreira, 2015; Liddicoat, 2004). In contrast,
turn-taking techniques typically do not explicitly
identify points where floor change may occur (Hara
et al., 2019), normatively time the duration of si-
lences, or predict turn-ends independent of the oc-
currence of specific events (e.g, silences) (Skantze
and Hjalmarsson, 2010). For spoken dialogue sys-
tems, this leads to mistimed responses and a de-
crease in human engagement (Zhao et al., 2018).

In this paper, we propose an evidence-based
model for when speech may be produced to facili-
tate smooth turn-taking, based on the turn-taking
model proposed by Sacks et al. (1974). In this
model, a speaker’s turn consists of one or more
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Turn Construction Unit (TCU), which encompasses
sentential, clausal, phrasal, and lexical construc-
tions. Between each TCU are Transition Relevance
Places (TRPs), where the current turn may be com-
pleted and a floor change may occur (Selting, 2000).
We further divide TRPs into continuations (TRPs
where the current speaker continues) and switches
(TRPs where a speaker-transition occurs). Addi-
tionally, in our operationalization, each TRP has
a duration—the time between when the previous
TCU is complete but before the next TCU begins.
We use TCU-level data from transcriptions of the
Switchboard corpus (Godfrey and Holliman, 1993)
to develop two models of turn-taking based on the
duration of TRPs: a speaker-agnostic model and
a speaker-sensitive model. Next, we develop an
evidence-based function for the propensity of floor-
transfer as a function of time after the end of a TCU.
Finally, we outline a proposal for implementing
this propensity function into the continuous dia-
logue system architecture formalized by Skantze
and Schlangen (2009).

2 Motivation and Related Work

2.1 Conceptual Models of Turn-Taking

Two models of turn-taking have been proposed in
the turn-taking literature: Duncan’s signal-based
model (Duncan, 1972) and Sacks, Schegloff, and
Jefferson’s “simplest systematics” model (hereafter
the Sacks et al. model) (Sacks et al., 1974).

Duncan’s model of turn-taking proposes that
speakers produce turn-keeping and turn-yielding
signals that are picked up by listeners, thereby en-
suring smooth floor transfer. Turn-yielding signals
include, among others, changing intonation, spe-
cific syllable stress patterns, and gesture ending or
relaxation.

Previous work has shown that intonational
phrases at unit boundaries are signals used in end-
of-turn detection (Bögels and Torreira, 2015a). Gra-
vano and Hirschberg (2011) found that the greater
the number of turn-end cues present in a phrase,
the greater the likelihood of a floor transfer occur-
ring. Similarly, Ford and Thompson (1996) found
that syntactic, intonational, and pragmatic com-
pleteness are all required for smooth turn transition.
One important takeaway from this model is that the
speaker yields the turn, and is therefore the main
decision maker for whether turn transition occurs.
Speakers can therefore control whether the listener
takes over the turn or not.

In contrast, Sacks et al. (1974) propose a model
of turn-taking in which listeners can (but do not
have to) take the floor at so-called Transition-
Relevance-Places (TRPs). According to Sacks et
al., listeners can predict (or “project”) ahead of
time when the TRP will occur. Once a TRP has
been reached, the rules specified by Sacks et al.
are that a) the current speaker may select the next
speaker, b) if that does not happen, a next speaker
may self-select, and c) if no speaker self-selects,
the current speaker can continue.

2.2 Conceptual Implications

Interestingly, the differences between these mod-
els of turn-taking make different predictions as to
the duration of the TRP as a function of whether
the same or a different speaker takes the floor. In
the Duncan model, the speaker controls the floor
transfer using signals, allowing them to keep the
rhythm of the conversation steady. In contrast, in
the Sacks et al. model, when a speaker arrives at
at TRP and has not selected the next speaker, the
speaker can only continue their turn after having
established that the listener did not self-select. This
predicts that if the Sacks et al. model is correct,
we will see shorter TRP durations when there is a
speaker change than when there is not.

Therefore, the Sacks el al. model predicts that
there are two separate distributions of TRP dura-
tion: one for TRPs at speaker switches and the
other for TRPs at continuations. Since, according
to the rules, a listener has the first option for uptake
during a TRP, we expect that the TRP duration for
speaker switch is faster than for speaker continu-
ation. Of course, the probability distributions are
likely to overlap. A speaker may sometimes con-
tinue with a small pause or there may be a long
pause before a speaker switch. We interpret this
model to mean that the speaker switch distribution
will be generally faster than the speaker continua-
tion distribution.

There is a third possibility: that speaker continu-
ation is faster than speaker switch. While neither
model predicts this, it could happen, for instance, if
we assume the Duncan model is correct, and listen-
ers do not detect the turn-yielding cues, or detect
them too late. This implies if we find speaker con-
tinuations to be faster than speaker switches, it will
be evidence for Duncan’s model, and against Sacks
et al.’s model.
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2.3 Application in Spoken Dialogue Systems
Detecting the end of turns and timing speech pro-
duction is vital for a spoken dialogue system to
engage in smooth turn-taking. Accordingly, there
are a number of approaches for automated end of
turn detection in existing literature (e.g., Masumura
et al. (2018, 2019)). A number of approaches have
also been proposed for quick turn-transitions in spo-
ken dialogue systems. For example, Gervits et al.
(2020) found their incremental model was ready to
reply to an utterance 635 ms (±197ms) before the
end of a turn. Since the mean gap between turns is
generally between 0 ms and 200 ms (Heldner and
Edlund, 2010; Stivers et al., 2009), this leaves an
agent with significant temporal space within which
to decide when to start turn production. Our goal,
in contrast, is to address the characteristics of natu-
ralness in smooth turn-taking timing (Edlund et al.,
2008). Therefore, we assume an existing model for
end of turn detection and propose a extension mod-
ule of natural turn taking timing in spoken dialogue
systems.

3 Empirical Models

In this section, we fit two Bayesian models of TRP
duration: one that assumes a single distribution of
all the TRPs in a dialogue, and one that assumes
that the distribution is different for speaker switches
and speaker continuations.

In what follows, we will first describe the empir-
ical data that forms the basis for our models. Next,
we provide a detailed description of the two proba-
bilistic models informed by our conceptual models.
We then describe the implications of our findings
for turn-taking and speaker selection. Finally, we
propose an evidence-based turn-taking propensity
function for natural speech production decisions
after the end of a TCU.

3.1 Data
We are interested in the duration of TRPs i.e.,
the timing between TCUs, in natural dialogue.
Therefore, our data must consist of dialogue with
TCU-level segmentation and highly accurate tim-
ing (down to the millisecond). We gathered this
information from two different transcriptions of the
Switchboard corpus—a corpus of dyadic telephone
conversations (Godfrey and Holliman, 1993). The
Mississippi State University transcriptions (MSU)1

provide word-by-word timing, which has been
1The MSU corpus is hosted on OpenSLR.

hand-corrected to reduce word error rates to be-
low 1%. The Switchboard Dialogue Act Corpus
(SwDA)2 segmented the Switchboard corpus into
TCUs in order to annotate dialogue acts.

The Switchboard corpus is appropriate for this
task because participants do not have access to
many of the cues of face-to-face interaction (Dun-
can, 1972). This simplifies the work to only ac-
count for spoken language. Although using a cor-
pus of telephone conversations may limit the appli-
cability of our work in face-to-face interaction, it
is appropriate for systems where this information
is not available (Bosch et al., 2004).

Here, we outline the preprocessing steps applied
to the data for the work presented in this paper.
First, we merge MSU and SwDA transcripts of
the same conversation to create a subset of the
Switchboard corpus with transcriptions segmented
at the TCU-level and annotated with accurate tim-
ing information. From this subset, we selected only
conversations where the exact word-level matches
were at least 90% of the words in the conversation
and the total uncaught word error rate was below
2%. This allowed us to maintain data quality and
yielded 75 conversations with acceptable timing
information.

Next, we filter our timing data based on the fol-
lowing reasons. Our data consists of the duration
of TRPs between TCUs. This duration may be
positive or negative for speaker-switch TRPs (i.e.,
pauses and overlaps). To make a reasonable com-
parison between values of two different domains,
we fit a truncated distribution to the data. For an
overlap, we know that a speaker may not over-
lap with oneself and there is an obvious ‘barge-in’
when the overlap occurs. Therefore, we set a TRP
floor above 0 ms. Further, previous research shows
that pauses of one second or longer may be con-
sidered trouble sources in conversation (Jefferson,
1983; Roberts et al., 2006). Trouble source detec-
tion is out of the scope of this work. Therefore,
we removed all TRPs with a duration greater than
1000 ms, which has the additional benefit of remov-
ing outliers from the data that might have skewed
our models. Finally, we have two datasets: one for
speaker switch TRPs and one for speaker continua-
tion TRPs.

We recognize that this subset of data excludes
overlaps, which are common in natural dialogue.
However, this paper reasons about turn-taking

2The SwDA corpus is available through Stanford.

http://www.openslr.org/5/
https://web.stanford.edu/~jurafsky/ws97/
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through the duration of a silence. Our models do
not make claims regarding when speech reasoning
may occur, and instead focus on resultant behaviors
that are exhibited 3.

The models and analyses below are based on the
4563 TRPs in our filtered dataset. 2686 of these
TRPs were followed by speaker switches and 1877
were followed by speaker continuations. All mod-
els described are Bayesian models using truncated
normal distributions with lower bounds of 0 ms
and upper bounds of 1000 ms, in order to conform
to the assumptions outlined above. The models
were fit using pymc3 version 3.11.4, a probabilis-
tic programming package for Bayesian modeling.
All priors4 were designed to be weakly informative
based on previous research in the field(Stivers et al.,
2009; de Ruiter et al., 2006b). Weakly informative
priors are also considered best-practice when us-
ing Markov-chain Monte Carlo (MCMC) Bayesian
updating (Lemoine, 2019).

3.2 Speaker-Agnostic Model

Figure 1: This figure shows a histogram with 50 ms
bins of all TRPs with duration between 0 ms and 1000
ms. The best-fit truncated normal curve line is also
shown.

The speaker-agnostic probabilistic model as-
sumes that TRPs have a single underlying distribu-
tion. The assumption is that all TRPs are a function
of the rhythm of the dialogue, controlled by the
speaker, and pause durations are not influenced by
who was speaking before the pause. Under this
model, when there is a pause in the conversation,
each participant has the same chance of deciding
to continue.

As shown in Figure 1, the estimated mode TRP
duration under these assumptions is in the 150–200

3Alternatives to our models are in Appendix A.3.
4Prior distributions useds can be found in Appendix A.1.

µhdi 3% µmean µhdi 97% σmean

µ 56 110 167 30
σ 421 458 495 20

Table 1: This table describes the parameters of the best-
fit truncated normal curve for all TRPs greater than 0
ms and no more than 1000 ms. The high-density inter-
vals are given for a 94% high density interval i.e., the
models predict only 3% probability that the true values
lie above or below these intervals. The σmean terms are
another measure of confidence, though not sensitive to
skew.

ms bin and the mean is 374 ms. The mean TRP du-
ration, according to the posterior predictive model,
is 375 ms. Since we are fitting a truncated normal
distribution, the mean will be larger than the mode
because the distribution is right-skewed. We see
this in both the data and the model. The standard
deviation of both the data and the posterior predic-
tive model is 250 ms—indicating that the model
has a good fit when assessed using the first two
statistical moments. It is interesting to note that the
mode of our empirical data is in the range 150–200
ms. This is the same mode range that previous
work has determined for floor transfer offset, based
only on the speaker switch condition (Levinson and
Torreira, 2015; Heldner and Edlund, 2010; Stivers
et al., 2009). Note that this previous research has fo-
cused on floor transfer for entire turns only, which
is easier to operationalize since it does not require
segmenting turns into TCUs.

3.3 Speaker-Sensitive Model

Figure 2: This figure shows a histogram of the empiri-
cal TRP data from 0 ms to 1000 ms broken down into
50 ms bins and in two conditions: speaker switch and
no speaker switch. The best-fit truncated normal distri-
bution lines for each condition are also shown.

We use the speaker-sensitive probabilistic model
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to test the prediction from the Sacks et al. model.
If this model is correct, we expect to see a different
TRP distribution for the continuation and switch
conditions. This is because the rules specified in
their model lead to shorter TRPs when there is a
speaker switch than when the same speaker contin-
ues, because the speaker first has to wait to see if a
speaker self-selects before continuing their turn.

µhdi 3% µmodel µhdi 97% σmodel

µswitch -164 -85 -10 41
σswitch 417 451 488 19
µcontinuation 407 428 447 11
σcontinuation 300 323 347 13

Table 2: These statistics describe best-fit truncated nor-
mal curves for the independently fit curves. switch
variables are for cases where a speaker switch occurs
at a TRP. The continuation condition has the same
speaker before and after the TRP. The high-density in-
tervals are given for a 94% interval i.e., the models pre-
dict only 3% probability that the true values lie above
or 3% below these intervals. Similarly, the σmodel

terms are a measure of confidence that is not sensitive
to skew.

In our speaker-sensitive model, we fit two dis-
tributions: one for speaker switch and one for a
speaker continuation. The data contains 2686 TRPs
where the speaker switches and 1877 TRPs where
the speaker continues for all pauses in conversation
from 0 ms to 1000 ms. We expect shorter pauses
to be followed by a different speaker while longer
pauses are followed by the same previous speaker.
A fast speaker switch entails understanding and up-
take by the interlocutor. A pause and continuation,
in contrast, gives space for the listener to take the
floor before the current speaker continues their own
turn.

We found distributions that are substantially dif-
ferent for the speaker switch and continuation con-
ditions. The Kolmogorov-Smirnov statistic for the
two categories is 0.289 (p < 0.01). In the speaker
switch condition, the mean of the best-fit posterior
predictive is 315 ms, a bit slower than the data mean
of 311 ms. The mode of the data shows that the
floor transfer pause duration is 100–150 ms when
binned into 50 ms segments, which aligns with pre-
vious work. This means that there is a preference
toward fast responses. As a reminder, we filtered
out any overlapping speech since it is outside the
scope of this paper, even though we want to note
that work on floor transfer offset (e.g., de Ruiter

et al. (2006a); Heldner and Edlund (2010); Riest
et al. (2015)) shows that overlap is a common phe-
nomenon.

For speaker continuation, the data mean is 462
ms and the posterior predictive model mean is 459
ms. The mode of the data is 150–200 ms, although
the values are very close for many other bins from
about 100 ms to 600 ms, as shown in Figure 2.
These data align closely to the predictions made
by Sacks et al.’s model—speaker switch happens
quite quickly, and speaker continuation somewhat
later.

3.4 Model Selection

In Sections 3.2 and 3.3, we defined and fitted two
Bayesian models to test differential predictions of
the conceptual models presented in Section 2.1.
We showed that each empirical model has a good
quantitative and qualitative fit with the empirical
data. We now want to know whether the model that
incorporates speaker information is better even if
we take into account that it has an extra parameter.

We will use linear mixed effects regression mod-
els, which are a common tool for differentiating
trends based on groups within a population. We
created two models, one with a speaker switch
included, and one without. To account for differ-
ent aspects of individual conversations, both mod-
els included the conversation identifier as a ran-
dom factor. We used the rstanarm package in
R (Goodrich et al., 2020) because it allowed us
to use bridge sampling (Gronau et al., 2020) to
compute Bayes Factors for the purpose of model
comparison.

Our analysis shows that the data is 1.43 ×
1080 times more likely under the speaker-sensitive
model than under the speaker-agnostic model, even
when correcting for the higher model complexity
of the speaker-sensitive model. This constitutes
decisive evidence (Wetzels et al., 2011) for next-
speaker being influenced by TRP duration, support-
ing Sacks et al.’s model of turn-taking. Our results
have two implications: (1) when responding, gaps
should be minimized so that the speaker does not
take the silence as an invitation to continue their
own turn, and (2) after speaking, a response should
come within the first few hundred milliseconds.
Any longer, and the speaker may want to continue
their own turn to maintain progressivity (Stivers
and Robinson, 2006).
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3.5 Turn-taking Propensity Function

Figure 3: This figure shows the proportion of speaker-
switch vs. speaker-continue events for each 100 ms
TRP bin between 0 ms and 1000 ms, along with the
best-fit quadratic line.

We have described two conceptual models of
how turn-taking works, built probabilistic models
based on these conceptual models, and established
that the speaker-sensitive model inspired by Sacks
et al. (1974) fits the data much better. We will now
explore how we can use this knowledge to improve
when conversational agents initiate their turn. To
answer this question, we have one missing piece:
we need to determine the propensity for speaker
switch as a function of TRP duration. Note that the
speaker-sensitive model we have formulated can
be seen as two separate models: one for speaker
switch and one for continuation. As mentioned
before, the speaker switch condition was generally
more frequent: 2686 TRPs with speaker switch and
1877 with speaker continuation in our dataset. In
this section we will explore the relative proportion
of speaker switch and continuation as a function of
transition time.

Figure 3 shows the proportion of speaker switch
and speaker continuations in our data. It shows that,
as a silence grows longer, the relative propensity for
a speaker to continue initially increases, while the
relative propensity for a speaker switch decreases.
However, as the silence continues, the share of
floor holding decreases. We fit a basic quadratic
curve to the floor transfer trend shown in Figure 3.
The function below gives the maximum likelihood
estimate for probability of speaker-switch as a best-
fit quadratic function of the number of milliseconds
of silence (t) since the previous turn ended.

Pswitch = (9.70×10−7)t2−(1.48×10−3)t+0.933

It is important to note that our analysis only
looks at the first second of silence after a TCU.
We did perform a cursory exploration of longer
pauses, to check if there were obvious trends. We
found that for silences between 1000 ms and 2500
ms, 56% of TCUs were floor-hold (speaker contin-
uation). We caution against over-interpretation of
these numbers, as there were 4563 TRPs between
0 ms and 1000 ms, but only 672 between 1000 ms
and 2500 ms. Gaps longer than a second in conver-
sations are rare in conversation (Jefferson, 1983),
and may have a variety of causes.

A spoken dialogue system can use this formula
and our two empirical models above in two ways:
(1) timing its own responses and (2) setting re-
sponse seeking limits. Current techniques allow for
extremely fast response rates in spoken dialogue
systems. An agent implementing our models can
choose times that are acceptable to human dialogue
speed. These times do not need to rely on heuris-
tics like the mean FTO or barge-in mechanics, but
can keep conversation at a fluid and natural pace
on an utterance-by-utterance basis. Our model sug-
gests that an agent should respond to a turn within
394 ms—the point at which each speaker has equal
propensity to speak—ideally around 150–200 ms
after a turn end, where the probability of a speaker
change is still close to maximal.

A spoken dialogue system can also incorporate
the propensity function during language genera-
tion to make sure that its turn-internal pauses are
not too long or too short. If the system knows it
wants to continue the turn in a subsequent TCU, it
should flow fluidly, rather than give space for the
interlocutor to respond.

Finally, if the planned turn is over, an agent
could set a maximum listening time, after which it
prompts a response or clarifies its previous state-
ment. Our findings show that the agent should aim
to do this around 762 ms, the minimum point of
our speaker-switch function. Pauses of longer than
a second are signs of trouble in a conversation, so
continuing a turn is preferable than waiting indefi-
nitely for a response (Jefferson, 1983; Roberts et al.,
2006). Adding this functionality to a spoken dia-
logue system will provide an agent with the ability
to ensure that the conversation progresses, and even
prompt an interlocutor if they are unresponsive.

The function presented here is meant to be a
baseline for turn-taking mechanisms. There are
clear paths for extending it, like sensitivity to di-
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alogue acts, ellipses, or prosody, but the overall
effect should be similar in aggregate since the data
here is presented in aggregate.

4 Continuous Module Proposal

In this section, we outline a proposal for opera-
tionalising our turn-taking propensity function for
timing turn-taking. First, we outline relevant com-
ponents of the incremental dialogue processing
architecture proposed by Schlangen and Skantze
(2011). Next, we define the minimal module im-
plementing the proposed timing method, as well
as possible extensions to incorporate existing turn-
taking methods (e.g, Bögels and Torreira (2015b)).

We use the Schlangen and Skantze (2011) archi-
tecture for its continuous and incremental proper-
ties, which may be useful for comparing different
timing methods. However, our proposed method is
based simply on timing and does not have a strong
dependence on any specific architecture.

4.1 Spoken Dialogue System Architecture

The conceptual model of incremental processing
described in Schlangen and Skantze (2011) has two
basic components. Incremental Units (IUs) are the
basic units of processing and contain payloads (e.g.,
audio streams, words etc.) that can be processed
by Incremental Modules (IMs). Each IM has a
Left Buffer (LB) to store incoming IUs and a right
buffer to store outgoing IUs. An IM also has a
processor that consumes LB IUs and produces RB
IUs. IMs communicate with each other by adding
IUs to their RB, which is immediately available for
LB consumption of connected IMs. Note that the
rate of RB IU production does not need to match
the rate of LB IU consumption.

Additionally, IUs may be connected to one an-
other using relations, which effectively track the
flow of information throughout the system. While
there can be many different types of relations, we
introduce two—spatial and grounded-in. The spa-
tial relation connects IUs produced by a single
IM. For example, for an IM generating turns from
words, spatial links may be used to connect words
that form the same turn. Second, the grounded-in
relation can be used by IMs to connect RB IUs to
their corresponding LB IUs. For example, this may
allow a word recognized by an Automatic Speech
Recognition (ASR) IM to be connected to the cor-
responding audio signal.

Finally, both IUs and IMs contain specified prop-

erties and operators. Each IU contains basic meta-
data type information that may be used for decision-
making in individual IMs. This includes informa-
tion for an IU to indicate its relations with other IUs,
the confidence of the IM in the IU data, whether
the IU result is final, and whether the IU has been
processed by a specific IM. Similarly, IMs must im-
plement certain methods including a purge method
to reset the module’s internal state, a new IU update
method to update the module state based on incom-
ing information, and a commit method to finalize
the IUs in its RB.

4.2 Module Incremental Units

Our proposed module aims to provide more gran-
ular turn-taking timing information to the spoken
dialogue system compared to existing approaches,
which plan and execute entire turns (Jokinen et al.,
2013). Therefore, it produces RB IUs whose pay-
loads are waiting times after which the dialogue
system should take the next turn. Additionally, the
IU includes a confidence value to incorporate our
finding that the relative pressure to speak is time-
sensitive within the first second of a gap (as shown
in Figure 3). Variations in this value indicate the
importance of speaking at a specific time.

Finally, a minimal turn-taking timing module
would receive IUs where the payload may be an
input signal (e.g., the audio signal). Additionally,
it requires the ability to determine the elapsed time
between turns in the conversation up to that point.
Therefore, turn-taking module IUs will use the
grounding-in relation to determine the specific IUs
the results are based on.

4.3 Turn-Taking Timing Module

The turn-taking module consumes LB IUs to pro-
duce RB-IUs, with the invariant size(RB) ≤
size(LB), and implements the purge, new IU up-
date, and commit operators. Here, the purge opera-
tor is vital in removing all IUs when a connected
module, such as the ASR module, indicates that an
interlocutor has taken the floor. In this case, any
considerations for the time after which the system
may start a turn depends only on the following turn
and previous results may be discarded. The pro-
cessor also implements the new IU update method
to modify its internal state based exclusively on
new LB IUs. It may then produce new turn-timing
decisions based on the updated information. The
commit method then finalizes the best-guess time
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after which a turn may be started by the spoken
dialogue system.

4.4 Module Extensions

In this section, we proposed a minimal incremen-
tal module for timing turn-taking based primarily
on TRP duration. However, there are additional
sources of information, not considered in this pa-
per, that a spoken dialogue system may use when
deciding when to produce a turn after a TCU. For
example, intonational and semantic end of turn
cues can be used to predict when floor transfer
may occur (Lala et al., 2019; de Ruiter, 2019), and
non-verbal cues may also be used to time turn-
taking (de Ruiter et al., 2006a; Duncan, 1972).
These may be modeled as individual IMs in the
framework we use and connected to the turn-taking
IM to allow information to be integrated when mak-
ing turn-taking decisions. Additionally, the mod-
ule may remember wait times proposed across a
conversation and adjust for the specific interlocutor.
For example, if there is frequent overlap if speech is
produced after the proposed wait time, then future
wait time estimates may be corrected. Similarly,
short gaps by the interlocutor may be mimicked by
the spoken dialogue system.

5 Conclusion and Future Work

In this study, we started by comparing two con-
ceptual models of turn-taking—Duncan’s “turn-
yielding” cue model and Sacks et al.’s “simplest
systematics”, each of which makes different predic-
tions about the organization of turns in conversa-
tion. We used data from the Switchboard corpus to
fit two probabilistic models of TRP duration based
on these conceptual models: a speaker-agnostic
model compatible with Duncan’s conceptual model
and a speaker-sensitive model inspired by on Sacks’
et al.’s conceptual model. Both models have a good
quantitative and qualitative fit with the empirical
data.

However, when comparing the two models di-
rectly, we found that the speaker-sensitive model
i.e., Sacks et al.’s model, was decisively better at
predicting the data than the speaker-agnostic model.
We explored the implications of this finding for
turn-taking systems. We showed that the likelihood
of a speaker beginning a TCU during a pause in
conversation changes as the pause lengthens. For
short pauses, it is more probable that the speaker
will switch, but as the pause continues, the original

speaker becomes more likely to continue their turn.
Our work supports the notion that, for proper

turn-taking, detecting and/or anticipating the end
of turns is not sufficient. People are sensitive to
the pauses and gaps in conversation and organize
their speech to take into account this paralinguistic
signal. We described the regularities that we found,
and outlined implementations for dialogue systems
to incorporate our findings. For naturalistic turn-
taking adhering to these subtle norms is important,
and we described first steps towards implementing
this in agents.

In future work, we plan on implementing the
spoken dialogue system we have proposed in this
paper. While we have established and operational-
ized normative turn-taking behavior based on hu-
man conversations, it is important to investigate
whether and to what degree findings from human-
human data generalize to communication with spo-
ken dialogue systems. Therefore, evaluating the
conversational naturalness of our system through
human-subject experiments is a relevant next step
and will provide insight into the organization of
turns in conversation, both for human-human and
human-agent communication.
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A Appendix

A.1 Statistical Model Priors and Parameters
The statistics in the table describe the priors used to
fit the truncated normal distributions for the models
described in the turn-taking models Sections 3.2
and 3.3. For each model, identical priors were used
so that differences between the models were func-
tions of the data, not of the priors. µ was drawn
from a normal distribution with priors shown, and
σ was drawn from a Gamma distribution with pri-
ors shown. Gamma distributions are typically pa-
rameterized with α and β parameters, but pymc3
allows for parameterization with µ and σ, which is
what we chose. All models took 10,000 samples
with 6,000 tuning steps and a target acceptance rate
of 0.9.

µµ 200
µσ 75
σµ 300
σσ 200

Table 3: This table shows the prior parameters used in
each of the statistical models.

A.2 Model Comparison Methods

To compare the two models in Section 3.4,
while taking into account model complexity, we
built two linear mixed effects models using the
stan glmer function in the rstanarm pack-
age for the R programming language. This func-
tion fits a linear model of the data based on the
parameters involved. Both models corrected for
the particular conversation as a random effect,
and one took into account whether there was a
speaker switch at the TRP. Unlike pymc3, Stan
does not require the user to specify priors, but
assigns weakly informative default priors based
on the data. Using the Stan models allowed
use the bayesfactor models function of the
bayestestR package to compare the models and
determine if the speaker switch model better ex-
plained the data than the no speaker switch model.

A.3 Generalized Models

We recognize that truncated normal models may
not be the most robust method of modeling our data
- which does not include gaps and overlaps. Addi-
tionally, the truncated normal distribution used for
the speaker continuation condition is only positive
valued. Therefore, we present preliminary analyses
on alternative models that may be used to fit our
data.

The analyses presented in the paper establish
that the speaker switch and continuation condi-
tions are different and provide a justification for
creating stochastic models to describe these phe-
nomenon separately. Therefore, we built a Stu-
dent’s t-distribution model for the speaker switch
condition to approximate the normal model when
ν is large. The dataset used for this model includes
all TRPs with duration in range -800 ms to +2500
ms, and only excludes outliers that were likely to
be transcription artifacts. The widely-applicable in-
formation criterion (WAIC) score for the Student’s
t is 79,131, while the truncated normal (expanded
to the new lower and upper limits) is 79,707, show-
ing some improvement. The Kolmogorov-Smirnov

https://www.aclweb.org/anthology/E09-1085
https://www.aclweb.org/anthology/E09-1085
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statistic is also reduced to 0.425 from 0.741 (both
p < 0.001).

µhdi 3% µmodel µhdi 97% σmodel

ν 2.70 2.96 3.23 0.142
µ 95 105 116 5.50
σ 287 297 307 5.63

Table 4: This table describes the posterior model pa-
rameters used for the Student’s t-distribution model in
the speaker switch condition.

Additionally, we built a Gamma model for the
speaker continuation condition using TRPs with
duration up to 2500 ms. This model describes
a variable with a positive domain more elegantly
than a truncated normal model. The WAIC score
of the Gamma and truncated normal (with ad-
justed bounds) models is 33,845 and 34,125 re-
spectively, which again shows improvement. The
Kolmogorov-Smirnov statistic is also reduced from
0.480 to 0.173 (both p < 0.001).

µhdi 3% µmodel µhdi 97% σmodel

µ 604 621 638 9.00
σ 419 435 451 8.64
α 1.95 2.06 2.16 5.71e-2
β 3.10e-3 3.29e-3 3.49e-3 1.04e-4

Table 5: This table describes the model parameters
used for the Gamma model for the speaker continua-
tion condition.

Each of the models presented show potential
next steps for improving modeling our data. Un-
fortunately, for our purposes, they are not directly
comparable.

A.4 Data Description
The truncated normal models described in Section
3 exclude some data – which was necessary for our
analysis. Here, we include descriptions of our raw
data to provide further information on our analyses.

Duration Number of TRPs
0 ms 3565
0–1000 ms 1933
> 1000 ms 380

Table 6: This table shows the number of speaker-
continuation TRPs in bins of different duration.

The above descriptions show that overlapping
speech is extremely common in our dataset, mak-
ing up about 42% of the speaker switch conditions.

Duration Number of TRPs
< 0 ms 2217
0–1000 ms 2703
> 1000 ms 296

Table 7: This table shows the number of speaker-switch
TRPs in bins of different duration.

Additionally, though we only consider positive val-
ues, speaker continuations with pauses of 0 ms
are the majority of speaker continuation conditions
—61%. The models we have presented model rea-
soning through a silence, and are therefore sound in
the assumption that a silence exists. However, any
turn taking model that only considers turn taking
via silences will be incomplete.


