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Abstract

In this paper, we provide an overview of the SV-
Ident shared task as part of the 3rd Workshop
on Scholarly Document Processing (SDP) at
COLING 2022. In the shared task, participants
were provided with a sentence and a vocabu-
lary of variables, and asked to identify which
variables, if any, are mentioned in individual
sentences from scholarly documents in full text.
Two teams made a total of 9 submissions to
the shared task leaderboard. While none of
the teams improve on the baseline systems,
we still draw insights from their submissions.
Furthermore, we provide a detailed evaluation.
Data and baselines for our shared task are
freely available at https://github.com/
vadis-project/sv-ident.

1 Introduction

Social science publications often use and reference
survey datasets, containing hundreds or thousands
of questions, using so-called survey variables.1

While publications may focus only on a specific
subset of these variables, explicit references are
usually missing: the lack of explicit links between
survey variables and publications, in turn, limits ac-
cess to research along the FAIR principles (Wilkin-
son et al., 2016). To address this issue, we propose
a task where variable mentions in unstructured doc-
uments are linked to items from a catalog of sur-
vey research datasets using Natural Language Pro-
cessing (NLP) methods. Automatically identifying
which variable is mentioned in a given text is chal-
lenging due to the diverse linguistic realizations
of variables (Zielinski and Mutschke, 2018). A
short example text is shown in Figure 1. All three

1In the following, we use the terms survey variable and
variable interchangeably.

QD3_1 
EU CITIZENSHIP: 

FEEL TO BE EU CITIZEN 

QD2_3 
ATTACHMENT TO: 
EUROPEAN UNION

In the subsequent section, we focus on
two theoretical concepts - mere exposure
and hostile media perceptions - both of
which have not been employed within the
context of European identity.

The dependent variable (identity) was
operationalized by two indicators: Citizens
were asked to answer the following
question: “Please tell me how attached
you feel to the European Union” by using
a scale from 1 (not attached at all) to 4
(very attached). 
Furthermore, the item “You feel you are a
citizen of the EU” was used in index
building. 

...

Figure 1: Example of explicit (blue) and implicit (red)
variable mentions in sentences from a social science
article (source: Ejaz et al. (2017)) mapped to survey
variables. Lines with arrows show contextual depen-
dence. Linked variables: QD2_3 and QD3_1.

sentences mention and are linked to relevant vari-
ables. The first sentence mentions three concepts:2

mere-exposure effect, hostile media perceptions,
and European identity. The first two concepts are
defined later in the text (we omit their links in this
example), while the latter is defined in the bot-
tom two sentences in the figure. The second and
third sentences both are explicit mentions, as they
include direct quotations of variable questions. Ide-
ally, a system should link relevant variables to each
of the sentences in the example. Specifically, when
only provided the given context, it should link the
first sentence to the variables QD2_3 and QD3_1,
the second sentence to QD2_3, and the third sen-
tence to QD3_1. A larger variant of the example is
provided in Figure 3 in the Appendix.

The Survey Variable Identification3 (henceforth,

2Concepts that have been operationalized by variables are
also treated as variables throughout this work.

3https://vadis-project.github.io/
sv-ident-sdp2022/

https://github.com/vadis-project/sv-ident
https://github.com/vadis-project/sv-ident
https://search.gesis.org/variables/exploredata-ZA5876_Varqd2_3
https://search.gesis.org/variables/exploredata-ZA5876_Varqd3_1
https://vadis-project.github.io/sv-ident-sdp2022/
https://vadis-project.github.io/sv-ident-sdp2022/
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SV-Ident) shared task aims at promoting the devel-
oping of systems that can identify variables within
the text of scholarly publications from the social
sciences in different languages (initially, we focus
here on English and German). The shared task
is divided into two sub-tasks: a) Variable Detec-
tion and b) Variable Disambiguation. The former
deals with identifying sentences that contain vari-
able mentions, while the latter focuses on linking
the correct variables mentioned in a sentence. Vari-
able mentions are often implicit (e.g., sentences
1 and 3 in Figure 1), and understanding when a
variable is mentioned may require contextual infor-
mation as well as knowledge from external sources
(e.g., a variable vocabulary). Since annotating sci-
entific texts requires domain knowledge, training
data is costly to create and thus scarce. To over-
come these limitations, NLP systems, e.g., mod-
els using pre-trained language models (PLMs) and
transfer learning are promising technologies to use.

In this paper, we report the results on the first edi-
tion of the SV-Ident shared task. Two teams made
a total of 9 submissions to the leaderboard. One of
the teams developed systems for both sub-tasks and
submitted a system description paper. While none
of the teams improve on the baselines, we use the
submissions provided by the teams to collect a few
initial findings on the difficulties and challenges of
the SV-Ident task. Crucially, we find that there is a
difference between the performance on two types
of variable mentions: explicit and implicit. Implic-
itly mentioned variables (sentence 1 in Figure 1)
are significantly more difficult to detect and dis-
ambiguate, as they require contextual knowledge.
This opens up new research questions for future
work, such as, for instance: can implicit mentions
of survey variables be further categorized into finer-
grained classes or can co-reference resolution be
used to link variable mentions across different parts
of a document? In order to foster future research on
this task, we release all of our code to reproduce the
analysis results and the annotation guidelines for
creating the dataset at https://github.com/
vadis-project/sv-ident.

The remainder of this paper is organized as fol-
lows: we provide an overview of the dataset used
in §2. In §3, we describe the task definition and
evaluation metrics. We present the submitted sys-
tems in §4 and provide a detailed analysis of the
results in §5. We briefly discuss related work in §6
and frame the shared task into a broader context

in §7. Finally, we summarize the shared task and
propose future work in §8.

2 Data

The SV-Ident 2022 shared task has been conceived
in the context of the VADIS project4 and organized
as part of the third Workshop on Scholarly Doc-
ument Processing (SDP) (Chandrasekaran et al.,
2020), co-located at the 2022 International Confer-
ence on Computational Linguistics. In the follow-
ing, we describe the data collection process and the
dataset used for the shared task.

2.1 SV-Ident Corpus

The SV-Ident Corpus contains publicly-available
scientific publications from the Social Science
Open Access Repository (SSOAR)5 in full text.
To collect the corpus, we first filter the 5,000 most
popular research datasets using search logs from
GESIS Search.6 We then retrieve the publications
linked to these datasets as our candidate set. Fi-
nally, only those publications that had at least one
associated research dataset with indexed variables
on the GESIS Search platform are retained. This
results in 285 documents from the original set of
120k publications. For this set of candidates, we
then select 44 documents for annotation, which in-
clude the most popular ones as well as publications
linked to variable vocabularies of different sizes.

Each document in our dataset has been annotated
in PDF format using the INCEpTION software
(Klie et al., 2018) by two domain experts (graduate
students trained in the social sciences). Annotators
are provided with the whole document and asked
to label all sentences that contained variables, in-
cluding the variables the sentences mentioned. We
first conduct two calibration rounds, for which an-
notators are given 50 two-page documents from
the dataset collected by Zielinski and Mutschke
(2018). Afterwards, the selected 44 documents are
annotated in three annotation rounds over a period
of 8 weeks (on average, each annotator spent be-
tween 1-2 hours on each document). Texts are then
extracted, and all parsing errors are manually cor-
rected. Common errors include sentence breaks
(due to incorrect splitting of abbreviations, such as
et al. or i.e.), page breaks (due to improper han-
dling of footnotes), and missing spaces between

4https://vadis-project.github.io/
5https://www.gesis.org/ssoar/home
6https://search.gesis.org/

https://github.com/vadis-project/sv-ident
https://github.com/vadis-project/sv-ident
https://vadis-project.github.io/
https://www.gesis.org/ssoar/home
https://search.gesis.org/
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{'doc_id': '55534', 
 'is_variable': 1, 
 'lang': 'en', 
 'research_data': ['ZA5876'], 
 'sentence': 'The respondents were asked, “Do 
              you think that the [national]- 
              television present(s) the EU to 
              opositively, objectively, or too  
              negatively?”', 
 'uuid': '39238aee-2d44-4aa9-999f-eb597a1f0da9', 
 'variable': ['exploredata-ZA5876_Varqc3b', 
              'exploredata-ZA5876_Varqe11_1', 
              'exploredata-ZA5876_Varqc3a', 
              'exploredata-ZA5876_Varqe11_3']}

Figure 2: Example sentence with provided metetadata
and labels.

words. Because annotators have access to all parts
of the document at once, the annotation setup al-
lows the use of document-level knowledge to infer
sentence-level labels.

The annotations include the variable IDs that are
mentioned in a text from a set of possible candi-
dates, confidence scores for the annotations, and,
for the test set, annotators also classified each men-
tioned variable into an explicit or an implicit men-
tion (examples of explicit and implicit mentions
were both found in the annotation guidelines). We
generally define explicit mentions as those which
do not require contextual information to be labeled
correctly. The opposite is true for implicit men-
tions.

2.2 SV-Ident Shared Task Dataset

When annotating, the set of candidate variables
is potentially made up of all variables from the
research datasets linked to a publication on the
GESIS platform: this set usually contains hun-
dreds or thousands of variables, thus making the
annotation task impractical and hard to scale. To
help reduce the size of the set of possible sur-
vey variable labels, annotators are provided with a
tool to find matches using different methods. The
first method uses an ensemble of four sentence-
transformer models to predict the top 20 variables
that are semantically most similar to the reference
sentence for each model. The annotators receive
recommendations for variables for which at least
two models predict them to be in the top 20 results.
The second method allows annotators to search us-
ing a method of matching strings approximately
rather than exactly: specifically, we use the Token
Set Ratio metric, which compares the number of in-
sertion and deletion operations for unique and com-

English German Total
Train 1,882 1,941 3,823
Dev 209 216 425
Test 944 780 1,724
Total 3,035 2,937 5,972

Table 1: Total number of sentences in the SV-Ident
shared task dataset per language for each dataset split.

mon words between the strings to be compared.7

The last method simply provides annotators with
the full list of variables to manually search through.
All three methods have their drawbacks. The first
two might fail to recommend valid variables for
cases with high linguistic variation, vagueness, or
infrequent words, while the last may provide anno-
tators with a search space that is too large. While
we do not control for such possible failures, future
work may draw insights from the analysis of the
annotations.

The dataset for the shared task is a subset of
the SV-Ident corpus. More specifically, 14 out
of the 44 annotated documents from the SV-Ident
Corpus are additionally filtered out due to missing
links to research data, incorrect annotations, or PDF
parsing errors, leaving 30 documents in total. The
dataset consists of 18 documents (7 English and 11
German) for the training and development sets and
12 documents (6 for each English and German) for
the blind test set.

An example of a sentence and its metadata, in-
cluding annotated labels from the dataset, is shown
in Figure 2. Each instance in our dataset contains: a
document ID (doc_id); a binary label (is_variable),
where a value of 1 implies that the sentence con-
tains a variable; the language of the sentence (lang);
a list of document-level linked research datasets (re-
search_data); the sentence (sentence); a unique ID
(uuid); and a list of annotated variables (variable).
Raw sentence counts for each of the dataset splits
are provided in Table 1. Since the test set contains
more English sentences, during evaluation, we com-
pute the mean of the scores for each language for
the competing systems (see §5 for more details).
In total, there are 3,823 training, 425 validation,
and 1,724 test sentences. English and German sen-
tences are roughly evenly distributed at 3,035 and
2,937 instances for each language, respectively.

7We use the RapidFuzz library (https://github.
com/maxbachmann/RapidFuzz) to match relevant vari-
ables given a search query.

https://github.com/maxbachmann/RapidFuzz
https://github.com/maxbachmann/RapidFuzz
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Task / Metric English German
Detection

0.48 0.46
(Cohen’s κ)
Disambiguation

0.08 0.08
(Krippendorff’s α)

Table 2: Inter-annotator agreement scores. We use
Cohen’s Kappa for Task 1 (detection), while Krippen-
dorff’s Alpha is used for Task 2 (disambiguation).

Type Count
Total # variables (vocab. size) 27,365
# annotated variables (tokens) 11,356
# uniquely used Variables (types) 1,165

Table 3: Vocabulary size, variable types, and tokens in
our SV-Ident dataset.

Because of the challenging nature of the annota-
tion task, we join the annotated instances of vari-
able mentions and link variables of each annota-
tor. We provide agreement scores between annota-
tors for English and German instances separately
(Table 2). We calculate the Cohen’s Kappa score
for agreement on Variable Detection. The scores
for both English and German range between 0.46
and 0.48, which indicate that there is a moderate
agreement. For Variable Disambiguation, we use
Krippendorff’s Alpha. Both languages have an
agreement score of 0.08, which implies that the
agreement is close to random. One reason for such
low agreement is the large number of possible vari-
ables to choose from, given that the total vocabu-
lary size for all the documents is very large (27,365
variables that are often similar). The annotators
labeled 1,165 unique variables (around 4% of the
vocabulary) a total of 11,356 times (Table 3). In
the future, we plan to analyze this disagreement
with respect to the choice of variables further.

Looking at the document-level, variables occur
with different frequency in different documents
(shown in Table 4). The size of the variable vocab-
ulary (i.e., the subset of all variables, containing
only the variables from the research datasets that
are linked to a publication) related to a publication
ranges from 64 to 5,733. The number of annotated
variables is at least 13 and at most 1,204 for En-
glish, and for German 20 and 1,143, respectively.
The number of uniquely annotated variables is at
most 153. In the final analysis, we investigate at
which ratio sentences of a document are annotated.
While the annotation ratio is at least 7%, it is at

Type English German
Min Max Min Max

Rel. Variables 134 3,062 64 5,733
Variable tokens 13 1,204 20 1,143
Variable types 4 153 5 54
(%) Annt. Sent. 7 80 12 86

Table 4: Maximum and minimum number of related
variables, annotated variables, and the ratio of annotated
sentences for each document in English and German.

most 86% for relatively dense documents.8

In addition to document-level differences, vari-
ables may require contextual knowledge to be dis-
ambiguated. Based only on the test set, annotators
agree that 242 sentences had explicit, 13 implicit,
and 18 both types of mentions. At the fine-grained
annotator-level, the first annotator labeled close to
37% more implicit than explicit mentions, while
the second labeled nearly thirteen times as many
explicit as implicit mentions. Given that we did not
conduct calibration rounds on this specific concept,
annotators may not have shared the same under-
standing, since this distinction was introduced only
in the third round of annotations. Future work
will focus on further analyzing and validating the
annotations. We make our dataset available on
GitHub as well as on HuggingFace.9 In addition,
we also release, as the trial dataset, the data that
were originally created by Zielinski and Mutschke
(2018) (while the annotation procedure does not
follow the same guideline, the data can be used
as additional training data). Notably, consecutive
sentences mentioning the same variable as well as
vague variable mentions were not annotated in the
trial data. We manually filter the trial data, after
which, 446 English and 573 German sentences re-
main in the training set and 87 and 111 in the test
set for each language, respectively.

3 Experimental Setup

The task of SV-Ident deals with identifying vari-
able mentions in a text. For simplicity, the task is
formulated as a sentence-level task, but can also
be solved using document-level information (in-
line with the data annotation process). The shared
task is decomposed into two sub-tasks: Variable
Detection and Variable Disambiguation, where the

8Variable-dense documents are usually short in our dataset.
9https://huggingface.co/datasets/

vadis/sv-ident

https://huggingface.co/datasets/vadis/sv-ident
https://huggingface.co/datasets/vadis/sv-ident
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former task can be used to help filter candidate
sentences for the latter.

3.1 Tasks

Task 1: Variable Detection. The first task can
be seen as a binary text classification task. More
formally, given a set of texts T (in our case, sen-
tences), for each t, where t ∈ T , systems should
predict the binary label l ∈ [0, 1] for t, where a
value of 1 implies that t mentions a variable.

Task 2: Variable Disambiguation. The second
task can be viewed as an information retrieval (IR)
task, where the goal is to identify all relevant docu-
ments (i.e., variables) for a given query (i.e., input
sentence). More formally, given a set of queries
Q that mention variables, where Q ⊆ T , and the
set of all documents D (in our case, variables), for
each q, where q ∈ Q, systems should predict the
subset of documents D′ that are mentioned in q,
where D′ ⊆ D.

3.2 Evaluation Metrics

To evaluate systems, we use standard text classifi-
cation and information retrieval evaluation metrics.
For the first task, systems are evaluated using the
standard F1 −macro score averaged across lan-
guages and documents. F1−macro is defined as
follows:

F1 =
1

N

n∑
n∈N

F1n

=
1

N

n∑
n∈N

2PnRn

Pn +Rn
, (1)

where P and R are the precision and recall scores,
respectively. The F1−macro averages the scores
for P and R across classes (i.e., scores are com-
puted for each class separately and each is weighted
equally). For the second task, systems were eval-
uated using the (Mean) Average Precision (MAP)
score with a recall cutoff value of 10 (denoted as
MAP@10). Average Precision (AP) measures the
average of the precision scores at each relevant
item returned (i.e., recall level) in a search result
set. MAP is the mean of the AP scores when com-
puted across more than one query. MAP considers
the ranking position of each relevant document. It
further assumes that a user desires to retrieve many

relevant documents. MAP is defined as follows:

MAP@K =
1

N

n∑
n∈N

AP@Kn

=
1

N

n∑
n∈N

1

K

k∑
k∈K

P@k, (2)

where P is the precision score, K the recall level,
and N the number of queries. We choose MAP
over accuracy, because MAP incorporates the rank
of the predicted document, which accuracy ignores.
In a realistic use-case, a user may be interested in
being recommended up to K relevant variables per
sentence. While we did not empirically test what
value of K would be most suitable for a user, we
choose K to equal 10, since 95% of all sentences
are labeled with up to 10 variables. In addition to
F1−macro and MAP@10, we provide secondary
metrics, which are not used for ranking the submit-
ted systems, but can provide additional insights into
the results. These include precision (P), recall (R),
different values of K for MAP, and R-precision,
which is the precision at recall R, where R is the
number of relevant documents for a query.

In order to account for dataset imbalance during
evaluation, for each score function f (i.e., evalua-
tion metric), we compute the average score across
languages and documents. The intuition is that lan-
guages and documents are equally important, and
a model should perform well on all. The average
score is computed as follows:

average score =
1

L

l∑
l∈L

1

Dl

d∑
d∈Dl

f(d), (3)

where L is the set of languages, D the set of doc-
uments, and Dl the set of documents for a given
language, for l ∈ L and Dl ⊆ D.

3.3 Shared Task Setup
The shared task was hosted on CodaLab.10 After
registering for the shared task, participants could
download the test set and were asked to submit
their predictions on CodaLab as a single file for
each task (submissions were allowed from July
18th through August 1st, 2022). Submissions were
limited to 20 for each task. For each submission,
an automated evaluation system would upload the
computed scores to the public leaderboard.

10https://codalab.lisn.upsaclay.fr/
competitions/6400

https://codalab.lisn.upsaclay.fr/competitions/6400
https://codalab.lisn.upsaclay.fr/competitions/6400
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4 Participating Systems

Two teams participated in our challenge on Co-
daLab, and one of the teams submitted a sys-
tem description, which is included in the proceed-
ings. We summarize the report here. The partici-
pant (Hövelmeyer and Kartal, 2022) treated both
tasks, at least partly, as a problem of semantic
textual similarity (Agirre et al., 2013). For Task
1, sentences were first preprocessed by randomly
undersampling in order to balance the data, re-
moving stopwords, lemmatizing the data, and us-
ing only a subset of the fields from the vocabu-
lary metadata based on preliminary experiments.
Then, test sentences and vocabulary data were
converted into dense sentence representations us-
ing Sentence-T5 (Ni et al., 2022) for English and
Sahajtomar/German-semantic11 (hence-
forth, GS) for German. Similarity scores were
computed for those test sentence and vocabulary
item pairs. Pairs with a score greater than a pre-
determined threshold were classified as sentences
containing variables. For Task 2, the same sen-
tence representations were used, but for all test sen-
tences. The variables were then ranked based on
their scores, with a higher score implying a greater
similarity. While other methods were also imple-
mented, such a Logistic Regression and Multinom-
inal Naive Bayes classifiers, the best performing
systems used Sentence-T5.

5 Evaluation

This section first describes the baseline systems
for each task and later provides the results of the
shared task.

5.1 Baselines

We train a transformer-based model for Variable
Detection and implement lexical and neural zero-
shot baselines for Variable Disambiguation.

The baseline system for the first task uses a trans-
fer learning approach by fine-tuning a pre-trained
language model (PLM) on the training and vali-
dation datasets. We use a PLM that was further
pre-trained on a corpus of English social science
abstracts, SsciBERT (Shen et al., 2022), which
outperforms BERT (Devlin et al., 2019) and SciB-
ERT (Beltagy et al., 2019) models on the SV-Ident
test set. Because no multilingual or German PLM

11https://huggingface.co/Sahajtomar/
German-semantic

counterparts exist that have been pre-trained on sci-
entific texts, we use the specialized monolingual
SsciBERT for both English and German data.

For the second task, we implement three base-
line systems in a zero-shot setting: a lexical as
well as sparse and dense retrieval models. We
choose BM25 as our lexical baseline, using Elas-
ticsearch.12 For the sparse model, we use SPARTA
(Zhao et al., 2021) and a multilingual sentence-
transformer13 (Reimers and Gurevych, 2019, 2020)
as the dense retriever. Rather than training the
models on the data, we use them to first encode
the query and documents (i.e., variable metadata)
and later rank those which are most semantically
similar to a query by computing the cosine similar-
ity between query-document pairs. The similarity
computation assumes that instances that are closer
together in vector space are semantically more sim-
ilar. While participant 2 conducts an ablation study
on the choice of metadata to use for matching the
variables, we choose to include all metadata and
leave finding the the optimal combination of meta-
data to future work.

5.2 Results

Task 1 had two participants and a single baseline
system, while Task 2 had one participant and three
baseline systems. In the tables below, the systems
are denoted as follows: participant 1 as Unk, partic-
ipant 2 as S-T5/GS (or S-T5 for English and GS for
German), the baseline for Task 1 as SSBert*, and
the baselines for Task 2 as BM25*, Sparse* for the
SPARTA model, and Dense* for the multilingual
sentence-transformer (all baselines across text and
tables are always marked with a * asterisk).

Variable Detection. For this task, none of the
participating systems are able to beat the average
score of the baseline. Unk scores lower than chance
likelihood, while, with a score of 60.17, S-T5/GS
comes close to SSBert*, which has a score of 66.10
(Table 5). Breaking the scores down into the av-
erage scores across documents for each language,
S-T5 outperforms the baseline for English. Thus,
Task 1 can also be solved in a zero-shot setting,
given that the Sentence-T5 model was not fine-
tuned on the provided data. Similar large PLMs
may show further improvements.

12https://www.elastic.co/
13https://huggingface.

co/sentence-transformers/
distiluse-base-multilingual-cased-v1

https://huggingface.co/Sahajtomar/German-semantic
https://huggingface.co/Sahajtomar/German-semantic
https://www.elastic.co/
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
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Language System P R F1

English
Unk 65.03 55.24 38.64
S-T5 68.38 67.77 66.96
SSBert* 70.94 70.04 64.28

German
Unk 51.66 52.66 30.88
GS 59.18 56.04 53.37
SSBert* 68.38 68.53 67.91

Average
Unk 58.35 53.95 34.76
S-T5/GS 63.78 61.91 60.17
SSBert* 69.66 69.29 66.10

Table 5: Results for task 1 (detection).

At the document-level, systems show varying
performance (see Table 8 in the Appendix). For
the document with the ID 21357, participants’ sys-
tems have low scores, while SSBert* has the high-
est score across all documents. Furthermore, for
7 out of the 12 documents, the baseline system
has the highest score. In addition to the number
of positive and negative instances, we also report
the number of variables associated with a docu-
ment as well as the year of the publication. When
computing the Pearson correlation coefficient, we
find a weak correlation between the F1 scores
and the size of the search space (i.e., vocabulary
size) for Unk (r = 0.132, p = 0.68), S-T5/GS
(r = 0.266, p = 0.26), and SSBert* (r = 0.152,
p = 0.64). With respect to the year of the doc-
ument, we find a moderate correlation for Unk
(r = 0.272, p = 0.39), S-T5/GS (r = 0.274,
p = 0.39), and SSBert* (r = 0.392, p = 0.21).
However, these correlations may not generalize
due to the small number of documents.

Given the low annotator agreement with respect
to the fine-grained labels, explicit and implicit, we
report scores for the cases where both annotators
agree on the label (see Table 9 in the Appendix)
as well as for each annotator independently (see
Tables 10 and 11 in the Appendix). We divide
the labels into explicit, implicit, and mixed classes,
where sentences that contain explicit and implicit
variables are labeled as mixed. In cases where
both annotators agree on the label, systems per-
form better on explicit than on implicit or mixed
mentions. The same is true for annotator 1, except
for S-T5/GS. This implies that explicit mentions
are easier to detect and disambiguate. This is not
the case for annotator 2. A possible explanation
could be the low number of implicit annotations,
which may be due to a difference in understanding

of the labels. Unk outperforms all systems for the
cases when both annotators agree on the label. This
is surprising given the low average performance of
the system (unfortunately, no system description
was provided).

Variable Disambiguation. For the second task,
we report only a single submission together with
the results for three baselines (Table 6). As de-
scribed in Section 5, the baselines include BM25,
SPARTA (henceforth, Sparse*), and a multilingual
sentence-transformer (henceforth, Dense*). While
we provide participants all the test sentences, we
only evaluate performance on the subset of in-
stances that contain variable mentions, as Task 1
already validates Variable Detection performance
(this setup ignores false positive queries submit-
ted by the participants). Unless explicitly stated,
the following discussion mainly focuses on the
MAP@10 scores. While the participant’s sys-
tem performs close to Dense* for English, Dense*

scores twice as high for German. Sparse* outper-
forms all systems on English data. This is likely
due to the system having been trained on a large
English retrieval corpus.14 BM25* and Sparse* per-
form worse on German. Lexical models, such as
BM25*, are prone to perform worse for languages
that have many rare words, such as German, which
allows compound nouns. Furthermore, because
Sparse* is only specialized for English, it does not
perform well for data in a different language. Over-
all, Dense* outperforms all systems by at least 0.5
points for English, except for Sparse*, and by at
least around 10 points for German.

At the document-level, scores vary significantly
(see Table 12 in the Appendix). Scores across dif-
ferent values of K improve as K increases. For
dense documents (i.e., documents with a high ra-
tio of variable mention sentences), scores increase
significantly when going from k = 1 to k = 5,
such as for the IDs 21357, 57204, and 66324. Fur-
thermore, while some systems perform well on a
document, others perform poorly. For example, the
document with ID 66324 shows the lowest perfor-
mance by all systems except for BM25*, which
has a score of 22.01 and is the second-highest
document score for BM25*. For 57561, BM25*

achieves only a score of 1.60, while all other sys-
tems score higher than 16. S-T5/GS outperforms
all baselines only once and twice when compared

14https://github.com/microsoft/
MSMARCO-Passage-Ranking

https://github.com/microsoft/MSMARCO-Passage-Ranking
https://github.com/microsoft/MSMARCO-Passage-Ranking
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Language System MAP@10 R-Prec

English

S-T5 16.27 14.83
BM25* 12.39 12.10
Sparse* 19.02 18.87
Dense* 16.96 15.34

German

GS 10.91 10.35
BM25* 6.46 7.02
Sparse* 3.52 3.69
Dense* 20.89 17.96

Average

S-T5/GS 13.59 12.59
BM25* 9.43 9.56
Sparse* 11.27 11.28
Dense* 18.93 16.65

Table 6: Results for task 2 (disambiguation).

to only Dense*. Such exceptions may be caused
by a larger overlap between the tokens in the doc-
ument and the underlying data used to train the
models. In addition, we find a moderate corre-
lation between MAP@10 scores and the vocabu-
lary size (and a strong correlation for Dense*) for
S-T5/GS (r = 0.395.p = 0.20), BM25* (r =
0.465.p = 0.13), Sparse* (r = 0.427.p = 0.17),
and Dense* (r = 0.623.p = 0.03). As the search
space increases, performance goes down. Finally,
we find that MAP@10 is highly correlated with
R-Precision (r = 0.941, p = 4.99), which implies
that MAP is a good metric in the absence of the
ground truth number of relevant variables.

Performance on the annotator-level is similar to
that of Task 1: scores are highest when both an-
notators agree on the label (see Table 13 in the
Appendix). For both annotators, scores for the ex-
plicit class are consistently higher than for either
implicit or mixed classes (see Tables 14 and 15
in the Appendix). This means that for the task of
Variable Detection, knowing whether a variable is
mentioned explicitly or implicitly can mean a 10
to 20 point absolute difference in performance. In
the case when either both annotators agree on the
label or when looking only at annotator 1, Sparse*

outperforms all systems. Exploring other sparse
models is a promising future direction for disam-
biguating implicit variable mentions.

6 Related Work

Identifying mentions of survey variables in text
was first introduced by Zielinski and Mutschke
(2017, 2018) in the OpenMinTeD project (OM).15

15http://openminted.eu/

OM SV-Ident
Documents 64 44
Research Datasets 1 76
Total # variables

406 27,365
(vocabulary size)
# annotated

414 8,721
variables (tokens)
# uniquely used

243 851
variables (types)
Instances annotate

1,217 5,972
(# annotated sentences)

Table 7: Comparison between the OpenMinTeD and
SV-Ident datasets.

As the predecessor of our task, they created the
first dataset for the problem of SV-Ident. Table 7
shows the statistical differences between the OM
and SV-Ident datasets. Although fewer documents
are annotated in SV-Ident, the number of instances
in SV-Ident is almost 5 times that of OM. To have a
greater diversity of survey variables, SV-Ident cor-
pus uses 76 datasets with more than 27k variables
from different research studies, such as ALLBUS,
ISSP, and Eurobarometer, whereas OM only used
a single dataset. Moreover, the SV-Ident corpus
comes up with modified and additional annotation
features: the unknown (UNK) token was used for
ambiguous variable mentions; consecutive men-
tions of the same variable were included; confi-
dence levels of the annotations and variable men-
tion types were labeled; and variables were linked
across languages. As a result, our corpus is much
larger and more diverse.

Given that identifying variables requires seman-
tic relations, other NLP tasks deal with a funda-
mentally similar perspective, such as entity linking
(EL), recognizing textual entailment (RTE), seman-
tic textual similarity (STS), plagiarism detection,
and detecting previously fact-checked news. EL
can be conceptualized as linking mentions to vari-
ables in a knowledge base (Rao et al., 2013). Since
there are many similar survey variables in research
datasets, disambiguating the right variable for a
sentence is similar to determining the identity of
an entity from a knowledge base. The RTE task is
to identify whether a sentence entails a given can-
didate hypothesis or not (Dzikovska et al., 2013).
A question answering adaptation of RTE (Dagan
et al., 2013) is similar to SV-Ident, as the question
and each answer form a hypothesis, which then re-

http://openminted.eu/
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quires the system to determine whether a sentence
entails a given candidate hypothesis. STS is yet an-
other similar task, which aims to find the similarity
level between given texts (Agirre et al., 2013). STS
was organized as a shared International Workshop
on Semantic Evaluation between 2012 and 2017,
and STS models have been developed for various
domains (Wang et al., 2020; Yang et al., 2020; Guo
et al., 2020). In the task of Plagiarism Detection of
PAN,16 a system should extract all plagiarized pas-
sages from a given set of candidate documents with
(external) or without (intrinsic) comparing them to
potential source documents (Potthast et al., 2013).
Lastly, Detecting Previously Fact-Checked Claims,
a shared task by the CheckThat! Lab (Nakov et al.,
2022), aims to match the most similar claims —
text fragments from social media or political debate
scripts — to a corpus of verified claims. The corpus
is used to find the most similar claims, which does
not require direct linking, as is done in SV-Ident
Task 2, because implicit links are inferred.

7 Why SV-Ident?

Today’s search engines are the core elements of in-
formation access for social scientists. While search
engines have seen many improvements in terms of
keyword search and text understanding, they suffer
from a limited capability of retrieving information
from interconnected data sources, such as academic
literature and research datasets. Nonetheless, they
show outstanding performance on retrieving such
documents individually. Current interlinking in-
frastructures typically only link research datasets
to publications on the citation-level. Such systems
do not yet consider fine-grained linking of publica-
tions to individual survey variables from research
datasets. As demonstrated in the SV-Ident shared
task, survey variables may be mentioned implicitly,
which makes their manual or automatic identifica-
tion non-trivial. Currently, social scientists have
to manually identify such variables, which is time-
consuming. In addition to these limitations, search
engines do not yet support queries specific to social
science topics, concepts, or relations. Yet, keyword
search, which is widely used, has many known
problems (e.g., vocabulary mismatch or complex
queries). As a result, social scientists are unable to
access interlinked publications and research data.
Thus, the re-use and reproducibility of research is
limited.

16https://pan.webis.de/

SV-Ident, and more generally the VADIS project,
plays an important role in filling the gap in the lack
of infrastructure for social scientists (Kartal et al.,
2022). SV-Ident aims to build automatic models
for identifying survey variables in social science
publications. This directly enables a more fine-
grained interlinking of publications and research
datasets. More specifically, variables can be linked
on the sentence-level, which allows new features
to be developed. Within the VADIS project, we
aim to develop variable-based automatic summa-
rization, which will allow scientists to quickly get
an overview of a publication with respect to the
variables used. Furthermore, we plan to incorpo-
rate variable recommendation algorithms into the
GESIS Search platform to enable scientists to find
relevant variables outside the scope of variables
they are already familiar with.

8 Conclusion

This overview reports on the results of the SV-
Ident 2022 shared task. We introduce two sub-
tasks relevant for SV-Ident, namely, Variable De-
tection and Variable Disambiguation. We report
on data, which is currently the largest of its kind,
that was collected, annotated, and made publicly
available for this challenge. Baseline as well as par-
ticipants’ systems are described and evaluated. We
find that nearly all systems perform better on ex-
plicit variable mentions, opening up new directions
of research. Finally, we contextualize the shared
task into related work and highlight its importance
within a broader context. Future work will further
analyze the distinction between different variable
mention types. In addition, multi-task learning
could solve both tasks jointly or in combination
with adjacent tasks. Co-reference resolution could
be used to help disambiguate implicit variable men-
tions. Finally, evaluating systems on more diverse
metrics, such as fairness or robustness, is critical
for applied research.
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QD3_1   - EU CITIZENSHIP: FEEL TO BE EU CITIZEN 

QD2_3   - ATTACHMENT TO: EUROPEAN UNION

QE3_1   - MEDIA USE - TELEVISION VIA TV SET

QE3_2   - MEDIA USE - TELEVISION VIA INTERNET

QE3_3   - MEDIA USE - RADIO

QE3_4   - MEDIA USE - WRITTEN PRESS

QE3_5   - MEDIA USE - INTERNET

QE5b_1 - EUROP POLIT MATTERS NEWS: TELEVISION

QE11_1 - MEDIA PRESENTATION EU: TELEVISION

QE5b_2 - EUROP POLIT MATTERS NEWS: PRESS

QE5b_3 - EUROP POLIT MATTERS NEWS: RADIO

QE5b_4 - EUROP POLIT MATTERS NEWS: INTERNET

QE11_2 - MEDIA PRESENTATION EU: TELEVISION

QE11_3 - MEDIA PRESENTATION EU: TELEVISION

In the subsequent section, we focus on
two theoretical concepts - mere exposure
and hostile media perceptions - both of
which have not been employed within the
context of European identity.

The dependent variable (identity) was
operationalized by two indicators: Citizens
were asked to answer the following
question: “Please tell me how attached
you feel to the European Union” by using
a scale from 1 (not attached at all) to 4
(very attached). 
Furthermore, the item “You feel you are a
citizen of the EU” was used in index
building. 

The independent variable was
operationalized by a combination of
several items: The participants were first 
asked the following question: “Could you
tell me to what extent you…a) watch
television on a TV set or via the Internet,
b) listen to the radio, c) read the written
press d) use the Internet?” 

Later they were questioned: “Where do
you get most of your news on European
political matters? Firstly? And then?” 
Possible answers were respectively:
Television, the Press, Radio, and the
Internet. 

The respondents were asked, “Do you
think that the [national] television
present(s) the EU too positively,
objectively, or too negatively?” 

The same question was repeated
regarding the radio and the press. 

Even the unintended, casual contact with
news on the EU provided by the media
fostered European identity. 

...

...

...

...

...

Figure 3: Example explicit (blue) and implicit (red) sentences from a social science article (source: Ejaz et al.
(2017)) mapped to survey variables. Lines with arrows show contextual dependence. Linked variables: QD2_3,
QD3_1, QE3_1, QE3_2, QE3_3, QE3_4, QE3_5, QE5b_1, QE5b_2, QE5b_3, QE5b_4, QE11_1, QE11_2, and
QE11_3.
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ID System F1 P R # p/n Vars Lang Year

16547
Unk 33.47 25.16 50.00

160/162 209 de 2003S-T5/GS 65.77 69.20 66.88
SSBert* 65.50 65.61 65.55

19944
Unk 33.54 73.27 50.91

110/94 457 de 1999S-T5/GS 51.95 67.05 57.38
SSBert* 63.16 63.20 63.28

21279
Unk 22.22 60.00 52.94

51/12 477 de 1993S-T5/GS 42.61 42.85 42.40
SSBert* 67.56 67.08 68.14

21357
Unk 24.68 16.38 50.00

39/19 239 de 2002S-T5/GS 45.96 47.07 46.69
SSBert* 79.20 81.86 77.73

21622
Unk 30.43 59.80 58.16

49/10 142 de 1991S-T5/GS 63.39 62.30 65.82
SSBert* 75.70 73.66 78.88

56983
Unk 40.96 75.35 53.95

38/36 367 de 2018S-T5/GS 50.51 66.58 57.09
SSBert* 56.31 58.87 57.60

49163
Unk 26.12 64.23 52.06

97/37 211 en 2005S-T5/GS 63.20 63.06 65.62
SSBert* 54.27 62.75 64.38

49734
Unk 54.73 78.39 61.36

66/67 148 en 1998S-T5/GS 71.94 76.37 72.80
SSBert* 69.30 79.05 71.23

57204
Unk 31.29 53.07 50.38

119/77 134 en 2017S-T5/GS 66.45 67.89 66.08
SSBert* 66.82 71.17 70.63

57561
Unk 25.51 62.13 53.18

110/33 134 en 2017S-T5/GS 61.81 61.47 64.70
SSBert* 56.49 65.34 70.15

61603
Unk 52.92 66.16 61.92

71/42 336 en 2016S-T5/GS 77.90 80.75 76.73
SSBert* 76.84 78.51 80.23

66324
Unk 41.26 66.20 52.50

105/120 775 en 2020S-T5/GS 60.44 60.71 60.71
SSBert* 61.96 68.84 63.63

Table 8: Fine-grained results across documents for Task 1. Sys = system, P = precision, R = recall, # p/n = number
of positive/negative sentences, Vars = total number of variables, Lang = language of the document.



242

Type System F1 P R #

A1+2exp
Unk 59.45 66.96 57.49

242S-T5/GS 38.16 53.99 58.73
SSBert* 53.62 58.51 70.52

A1+2imp
Unk 48.58 49.60 47.60

13S-T5/GS 25.96 49.92 47.72
SSBert* 36.28 50.02 50.72

A1+2mix
Unk 48.51 49.45 47.60

18S-T5/GS 26.18 49.88 47.50
SSBert* 36.97 50.35 58.28

Average
Unk 52.18 55.34 50.90
S-T5/GS 30.10 51.27 51.31
SSBert* 42.29 52.96 59.84

A1+2
Unk 57.66 66.01 56.25

273S-T5/GS 39.08 53.80 57.34
SSBert* 54.70 58.88 68.92

Table 9: Fine-grained results across types of variable mentions for Task 1. Sys = system, P = precision, R = recall, #
= number of (positive) sentences.

Type System F1 P R #

A1exp
Unk 57.51 69.06 56.39

339S-T5/GS 41.11 54.31 57.15
SSBert* 57.05 60.17 68.59

A1imp
Unk 46.00 47.67 49.37

403S-T5/GS 44.86 55.42 57.19
SSBert* 50.77 53.41 54.99

A1mix
Unk 49.06 49.15 49.53

166S-T5/GS 36.33 53.91 60.79
SSBert* 49.40 56.00 68.23

Average
Unk 50.85 55.29 51.76
S-T5/GS 40.77 54.55 58.38
SSBert* 52.40 56.53 63.94

A1
Unk 42.31 65.88 52.89

908S-T5/GS 60.51 63.65 62.29
SSBert* 69.49 69.58 69.45

Table 10: Fine-grained results across types of variable mentions for annotator 1 for Task 1. Sys = system, P =
precision, R = recall, # = number of (positive) sentences.
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Type System F1 P R #

A2exp
Unk 47.38 70.97 54.03

864S-T5/GS 58.40 63.71 63.03
SSBert* 65.45 65.39 66.13

A2imp
Unk 48.82 49.15 48.60

74S-T5/GS 27.95 50.08 50.66
SSBert* 37.60 49.78 47.99

A2mix
Unk 50.51 50.49 50.59

74S-T5/GS 28.93 50.14 50.82
SSBert* 39.59 50.66 54.28

Average
Unk 48.91 56.87 51.07
S-T5/GS 38.43 54.64 54.84
SSBert* 47.55 55.27 56.13

A2
Unk 44.21 70.61 53.77

1012S-T5/GS 60.37 63.93 62.62
SSBert* 65.81 65.82 65.81

Table 11: Fine-grained results across types of variable mentions for annotator 2 for Task 1. Sys = system, P =
precision, R = recall, # = number of (positive) sentences.
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ID System M@1 M@5 M@10 M@20 R-Prec # Vars Lang Year

16547

S-T5/GS 11.55 14.12 15.20 16.72 16.55

160 209 de 2003
BM25* 2.98 3.30 3.49 3.57 3.52
Sparse* 0.03 0.24 0.51 0.86 1.34
Dense* 20.50 27.88 30.41 32.06 31.73

19944

S-T5/GS 9.47 14.07 15.75 16.85 13.03

110 457 de 1999
BM25* 9.09 14.64 15.50 15.92 14.02
Sparse* 8.03 10.37 10.77 11.49 10.30
Dense* 11.74 18.41 19.16 19.96 15.68

21279

S-T5/GS 6.65 11.87 14.47 16.08 15.94

51 477 de 1993
BM25* 4.92 6.96 7.04 7.24 7.93
Sparse* 0.00 1.16 1.63 2.01 1.91
Dense* 14.12 18.17 19.88 21.09 18.06

21357

S-T5/GS 1.28 3.85 4.13 4.95 2.56

39 239 de 2002
BM25* 0.00 0.00 0.00 0.00 0.00
Sparse* 0.00 0.00 0.26 0.26 0.00
Dense* 7.69 15.15 16.71 17.12 7.69

21622

S-T5/GS 3.69 7.05 9.00 10.15 7.80

49 142 de 1991
BM25* 0.34 3.67 4.01 4.01 6.07
Sparse* 1.31 3.49 3.82 4.21 4.23
Dense* 6.63 13.01 14.67 15.83 11.18

56983

S-T5/GS 1.02 6.19 6.88 7.19 6.23

38 367 de 2018
BM25* 5.95 7.48 8.72 10.11 10.57
Sparse* 1.32 3.33 4.13 4.75 4.37
Dense* 18.79 24.06 24.54 25.11 23.44

49163

S-T5/GS 4.33 8.84 10.28 11.46 9.16

97 211 en 2005
BM25* 1.96 4.32 5.52 6.05 3.49
Sparse* 3.89 7.87 8.92 9.73 6.61
Dense* 8.12 13.96 15.46 16.49 11.55

49734

S-T5/GS 9.03 12.71 15.47 16.80 12.88

66 148 en 1998
BM25* 19.41 21.49 23.80 24.99 23.50
Sparse* 23.57 29.06 33.57 36.03 30.49
Dense* 17.14 22.71 24.08 25.18 21.69

57204

S-T5/GS 7.48 22.12 31.73 34.41 31.10

119 134 en 2017
BM25* 1.21 5.11 8.51 13.06 8.80
Sparse* 8.93 28.77 36.32 39.48 38.26
Dense* 7.09 16.73 24.90 30.11 23.82

57561

S-T5/GS 6.96 12.06 14.61 16.47 10.60

110 134 en 2017
BM25* 0.76 1.04 1.30 1.60 1.12
Sparse* 9.33 13.04 14.82 16.58 15.70
Dense* 7.47 16.80 19.20 20.93 16.14

61603

S-T5/GS 14.82 21.32 22.57 23.19 20.68

71 336 en 2016
BM25* 10.62 14.45 14.87 15.30 12.51
Sparse* 12.81 16.96 17.98 18.61 19.34
Dense* 12.16 15.47 16.69 17.19 16.92

66324

S-T5/GS 0.58 1.95 2.95 3.81 4.55

105 775 en 2020
BM25* 8.17 16.22 20.34 22.01 23.18
Sparse* 0.25 1.92 2.51 3.15 2.81
Dense* 0.12 0.58 1.44 2.21 1.95

Table 12: Fine-grained results across documents for Task 2. Sys = system, M = MAP, R-Prec = R-Precision, # =
number of (positive) sentences, Vars = total number of variables, Lang = language of the document..
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Type System M@1 M@5 M@10 M@20 R-Prec #

A1+2exp

S-T5/GS 14.38 21.62 22.99 24.18 19.77

242
BM25* 13.49 16.00 16.78 17.17 16.34
Sparse* 11.56 14.57 15.57 16.23 14.82
Dense* 24.90 32.43 34.31 35.11 30.29

A1+2imp

S-T5/GS 0.00 5.85 9.62 14.21 11.70

13
BM25* 0.00 4.72 7.79 9.82 8.46
Sparse* 5.13 18.07 25.97 27.73 24.90
Dense* 1.54 6.22 11.85 15.15 9.42

A1+2mix

S-T5/GS 6.07 11.10 13.74 15.55 16.13

18
BM25* 0.00 1.73 1.94 2.72 4.48
Sparse* 4.03 11.63 15.14 18.51 18.31
Dense* 8.05 14.60 15.84 18.66 20.09

Average

S-T5/GS 6.81 12.85 15.45 17.98 15.87
BM25* 4.50 7.48 8.84 9.91 9.76
Sparse* 6.90 14.75 18.89 20.82 19.34
Dense* 11.50 17.75 20.67 22.97 19.93

A1+2

S-T5/GS 12.92 19.91 21.52 22.95 19.03

273
BM25* 11.68 14.25 15.12 15.63 14.97
Sparse* 10.61 14.53 16.12 17.05 15.66
Dense* 22.27 29.57 31.60 32.70 28.32

Table 13: Fine-grained results across types of variable mentions for Task 2. Sys = system, M = MAP, R-Prec =
R-Precision, # = number of (positive) sentences.

Type System M@1 M@5 M@10 M@20 R-Prec #

A1exp

S-T5/GS 14.14 20.47 21.87 22.77 16.97

271
BM25* 13.91 15.98 16.76 17.22 15.27
Sparse* 11.77 14.84 15.61 16.25 13.92
Dense* 25.28 31.48 32.60 33.30 28.05

A1imp

S-T5/GS 3.44 7.65 10.83 12.33 9.23

370
BM25* 2.23 4.73 5.98 7.27 4.93
Sparse* 4.79 10.63 13.06 14.15 12.55
Dense* 3.89 8.97 11.82 13.78 10.20

A1mix

S-T5/GS 2.41 5.20 7.24 8.59 7.69

153
BM25* 3.63 6.10 6.98 7.87 6.80
Sparse* 3.16 6.64 7.45 8.68 8.32
Dense* 4.85 10.12 11.88 13.60 11.89

Average

S-T5/GS 6.66 11.10 13.32 14.57 11.30
BM25* 6.59 8.94 9.91 10.79 9.00
Sparse* 6.57 10.70 12.04 13.03 11.60
Dense* 11.34 16.86 18.77 20.23 16.71

A1

S-T5/GS 6.89 11.55 13.91 15.18 11.58

794
BM25* 6.49 8.83 9.85 10.78 8.82
Sparse* 6.86 11.30 12.85 13.81 12.20
Dense* 11.37 16.87 18.93 20.41 16.62

Table 14: Fine-grained results across types of variable mentions for annotator 1 for Task 2. Sys = system, M = MAP,
R-Prec = R-Precision, # = number of (positive) sentences.
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Type System M@1 M@5 M@10 M@20 R-Prec #

A2exp

S-T5/GS 10.38 16.74 19.48 20.89 16.57

637
BM25* 7.73 11.14 12.74 13.81 11.12
Sparse* 7.29 12.55 14.17 15.02 12.24
Dense* 15.90 23.47 26.25 27.66 21.65

A2imp

S-T5/GS 0.00 3.22 5.41 6.38 4.30

48
BM25* 1.04 3.39 4.50 5.89 4.09
Sparse* 3.24 7.61 9.20 10.47 6.91
Dense* 7.52 12.87 14.43 14.98 10.14

A2mix

S-T5/GS 3.99 9.58 13.96 15.11 13.90

74
BM25* 2.44 4.65 5.26 6.62 6.42
Sparse* 5.24 13.03 15.93 17.54 16.35
Dense* 7.94 13.35 15.91 18.28 18.00

Average

S-T5/GS 4.79 9.85 12.95 14.13 11.59
BM25* 3.74 6.39 7.50 8.77 7.21
Sparse* 5.26 11.06 13.10 14.34 11.83
Dense* 10.45 16.56 18.86 20.31 16.59

A2

S-T5/GS 9.14 15.23 18.09 19.44 15.55

753
BM25* 6.82 10.06 11.54 12.65 10.25
Sparse* 6.85 12.28 14.01 14.96 12.27
Dense* 14.65 21.88 24.56 26.01 20.58

Table 15: Fine-grained results across types of variable mentions for annotator 2 for Task 2. Sys = system, M = MAP,
R-Prec = R-Precision, # = number of (positive) sentences.


