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Abstract

It’s better to say “I can’t answer” than to answer
incorrectly. This selective prediction ability
is crucial for NLP systems to be reliably de-
ployed in real-world applications. Prior work
has shown that existing selective prediction
techniques fail to perform well, especially in
the out-of-domain setting. In this work, we
propose a method that improves probability es-
timates of models by calibrating them using
prediction confidence and difficulty score of
instances. Using these two signals, we first
annotate held-out instances and then train a
calibrator to predict the likelihood of correct-
ness of the model’s prediction. We instantiate
our method with Natural Language Inference
(NLI) and Duplicate Detection (DD) tasks and
evaluate it in both In-Domain (IID) and Out-
of-Domain (OOD) settings. In (IID, OOD) set-
tings, we show that the representations learned
by our calibrator result in an improvement
of (15.81%, 5.64%) and (6.19%, 13.9%) over
MaxProb –a selective prediction baseline– on
NLI and DD tasks respectively.

1 Introduction

In real-world applications, AI systems often en-
counter novel inputs that differ from their training
data distribution. Prior work has shown that even
state-of-the-art models tend to make incorrect pre-
dictions on such inputs (Elsahar and Gallé, 2019;
Miller et al., 2020; Koh et al., 2021; Hendrycks
et al., 2021). This raises reliability concerns and
hinders their adoption in real-world safety-critical
domains like biomedical and autonomous robots.
Selective prediction addresses these concerns by
enabling systems to abstain from making predic-
tions when they are likely to be incorrect. Avoiding
incorrect predictions allows them to maintain high
task accuracy and thus makes them more reliable.

Hendrycks and Gimpel (2017) proposed ‘Max-
Prob’ that uses the maximum softmax probability
across all answer candidates as the confidence es-

timate to selectively make predictions. While per-
forming reasonably well in the in-domain setting,
MaxProb and other existing selective prediction
techniques fail to translate that performance in the
out-of-domain setting (Varshney et al., 2022b; Ka-
math et al., 2020).

In this work, we propose a selective predic-
tion method that improves probability estimates
of models in both in-domain and out-of-domain
settings by learning strong representations via cali-
bration. Specifically, we calibrate models’ outputs
using a held-out dataset and use the calibrator as
confidence estimator for selective prediction. To
this end, we first argue that “all instances are not
equally difficult and the model is not equally con-
fident in all its predictions” and then through ex-
tensive experiments, we show that prediction con-
fidence is positively correlated with correctness
while difficulty score is negatively correlated (5.2).
We leverage the above finding to calibrate models’
outputs using these two signals.

For computing the difficulty scores, we use a
model-based technique (3.1) because human per-
ception of difficulty may not always correlate well
with machine interpretation. To calibrate a model,
we annotate instances of a held-out dataset condi-
tioned on the model’s predictive correctness (com-
puted using difficulty score and prediction confi-
dence) and then train a calibrator using these in-
stances. This annotation score represents the likeli-
hood of correctness of the model’s prediction. Fi-
nally, the trained calibrator predicts this likelihood
value for test instances and is used as the confi-
dence estimator for selective prediction.

To evaluate the efficacy of our method, we con-
duct comprehensive experiments in In-Domain
(IID) and Out-of-Domain (OOD) settings for Natu-
ral Language Inference (NLI) and Duplicate Detec-
tion (DD) tasks. We also compare its performance
with existing calibration techniques. On the NLI
task, our method achieves 15.81% and 5.64% im-
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provement on AUC of risk-coverage curve over
MaxProb in IID and OOD setting respectively. Fur-
thermore, on the DD task, it achieves 6.19% and
13.9% improvement in IID and OOD setting re-
spectively. Finally, we hope that our work will fa-
cilitate development of more robust and reliable AI
systems making their wide adoption in real-world
applications possible.

2 Selective Prediction

Selective prediction enables a system to abstain
on instances where it is likely to be incorrect i.e
it consists of a selector (g) that determines if the
system should output the prediction. Usually, g
comprises of a prediction confidence estimator g̃
and a threshold th that controls the abstention level:

g(x) = 1[g̃(x)) > th]

A selective prediction system makes trade-offs
between coverage and risk. For a dataset D, cov-
erage at a threshold th corresponds to the fraction
of answered instances (where g̃ > th) and risk is
the error on those answered instances.

With the decrease in th, coverage will increase,
but the risk will usually also increase. The overall
selective prediction performance across all thresh-
olds is measured by the area under risk-coverage
curve (El-Yaniv et al., 2010). Lower the AUC, the
better the system as it represents lower average
risk across all thresholds.

3 Method

We propose to train a confidence estimator that
can assign higher scores to correctly predicted in-
stances than incorrectly predicted ones. To this
end, we leverage a held-out dataset and annotate
it’s instances conditioned on the model’s predictive
correctness. Specifically, we infer the model on the
held-out dataset and annotate instances with a score
such that correctly predicted instances get assigned
a higher score than incorrectly predicted instances.
This annotation score models the likelihood of the
prediction being correct and is computed using
the model’s prediction confidence and difficulty
level of the instance. Finally, a calibrator (regres-
sion model) is trained using this annotated held-out
dataset and used as the confidence estimator for
selective prediction.

We detail each component of our method and
the intuition behind it in the following subsections.

3.1 Difficulty Score Computation
To compute difficulty score of an instance, we
evaluate it after every training epoch and subtract
the aggregated softmax probability assigned to the
ground-truth answer from 1 i.e. for an instance i,
difficulty score di is calculated as:

si =

∑E
j=1 cji

E

di = 1− si

where the model is trained till E epochs and cji
is prediction confidence of the correct answer given
by the model after jth training epoch. Note that
cji is probability assigned to the correct answer not
the maximum probability across all answer candi-
dates. The intuition behind this procedure is that
the instances that can be consistently answered
correctly from the early stages of training are in-
herently easy and should receive lower difficulty
score than the ones that require a large number
of training steps. A similar method has been ex-
plored in Swayamdipta et al. (2020) for analyzing
“training dynamics” but here we use it to quantify
difficulty of the held-out instances.

3.2 Annotation Score Computation
We define annotation score for the held-out in-
stances as a function of softmax probability out-
putted by the model and the difficulty score. We
show that softmax score is positively correlated
while difficulty score is negatively correlated with
the predictive correctness i.e the system is more
likely to be correct if the softmax score is high and
difficulty score is low. Furthermore, in order to jus-
tifiably separate the scores for correct and incorrect
prediction scenarios in the range 0 to 1, we push
the scores above 0.5 in case of correct and below
0.5 in case of incorrect scenarios. Concretely, we
use the following functions to compute this:

AS1 =

{
0.5 + maxProb

2 , if correct
0.5− maxProb

2 , otherwise

AS2 =

{
0.5 + si

2 , if correct
0.5− si

2 , otherwise

AS3 =

{
0.5 + max(si,maxProb)

2 , if correct
0.5− min(si,maxProb)

2 , otherwise

AS1 uses only softmax, AS2 uses only difficulty
score and AS3 uses a combination of both. These
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annotation strategies assign a relatively higher
score when the model’s prediction is correct and a
lower score when it is incorrect. This gold score
ranges from 0 to 1 as both si and maxProb lie in
the same range and better captures the likelihood of
correctness unlike the categorical labels (1 for cor-
rect and 0 for incorrect) used in typical calibration
approaches. Note that this annotation computa-
tion is only required for training the calibrator
and not at test time. Therefore, difficulty score of
the test instances need not be computed.

Both difficulty score and annotation score com-
putation procedures are generic and are widely ap-
plicable since NLP systems usually make proba-
bilistic predictions for all kinds of tasks ranging
from Classification to Question Answering.

3.3 Calibration

Equipped with annotation scores, we extract syn-
tactic features, namely, lengths, Semantic Textual
Similarity (STS) value, number of common words
between given sentences, and presence of negation
words / numbers from the held-out instances to
train the calibrator model. These features along
with maxProb and prediction outputted by the
model serve as inputs for the calibrator. Finally,
we use a simple random forest implementation of
Scikit-learn (Pedregosa et al., 2011) to train our
calibrator that learns strong representations for the
inputs. We note that these syntactic features are
general and applicable for all language understand-
ing tasks and any regression model can be used as
the calibrator. We compare our method with other
calibration techniques described in Section 4.1.

4 Experimental Setup

4.1 Calibration Baselines

Kamath et al. (2020) study a calibration-based se-
lective prediction technique for Question Answer-
ing datasets where they annotate a held-out dataset
such that correctly predicted instances are assigned
class label ‘1’ and incorrect ones are assigned la-
bel ‘0’. Then, a calibrator is trained using this
annotated binary classification dataset using fea-
tures such as input length and probabilities of top
5 predictions. The softmax probability assigned
to class ‘1’ by this calibrator is used as the con-
fidence estimator for selective prediction. We re-
fer to this approach as Calib C. We also train a
transformer-based model for calibration (Calib T)
that leverages the entire input text for this classifi-

cation task instead of the syntactic features (Garg
and Moschitti, 2021).

Our proposed calibration method differs from
these approaches as we quantify the correctness
on a continuous scale (instead of categorical labels
‘1’ and ‘0’) using prediction confidence and diffi-
culty of the instances and use explicitly provided
general syntactic features described in Section 3.3
for training. Our annotation procedure provides
more flexibility for the calibrator to look for fine-
grained features distinguishing various annotation
scores. We note that our simplest annotation strat-
egy (AS1) that does not incorporate difficulty score
is similar to Calib R method described in Varshney
et al. (2022b) but our calibration method uses more
general syntactic features.

Note that for fair estimation of abilities of
the proposed method, we compare it with other
calibration-based techniques only. Other tech-
niques such as Monte-Carlo dropout (Gal and
Ghahramani, 2016) and Error Regularization (Xin
et al., 2021) are complementary and can further
improve our performance.

4.2 Datasets

We conduct experiments with Natural Language In-
ference and Duplicate Detection datasets and com-
pare the performance of various calibration tech-
niques in in-domain and out-of-domain settings.

NLI Datasets: SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018) (Matched and Mis-
matched), and Stress Test (Naik et al., 2018) (Com-
petence, Distraction, and Noise).

Duplicate Detection Datasets: QQP (Iyer et al.,
2017) and MRPC (Dolan and Brockett, 2005).

For NLI task, we train 3-way classification
model (NLI has three labels) on SNLI and eval-
uate the selective prediction performance on SNLI
(IID) and MNLI, Stress Test (OOD) datasets. For
the DD task, we train model on MRPC and evaluate
on MRPC (IID) and QQP (OOD) datasets. We use
BERT-BASE model (Devlin et al., 2019) with a lin-
ear layer on top of [CLS] token representation for
training the model for these tasks. We train these
models with the default learning rate of 5e− 5 for
3 epochs.1 We use the same experimental setup as
(Varshney et al., 2022b) for calibration methods.

1See Appendix for details
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Method SNLI MNLI Stress Test
Matched Mismatched Avg Competence Distraction Noise Avg

MaxProb (AUC) 2.78 14.00 14.44 14.22 47.87 26.49 20.34 31.57

Calib T (%) -181.2 -129.55 -127.86 -128.69 -48.65 -81.3 -91.17 -68.93
Calib C (%) +8.97 +2.15 -1.36 +0.40 -3.75 +8.27 -0.80 +0.55
Proposed (%) +15.81 +2.35 +2.04 +2.19 +8.01 +6.60 +0.22 +5.64

Table 1: Comparing percentage improvement of various calibration approaches on AUC of risk-coverage curve
(over MaxProb) in in-domain (SNLI) and out-of-domain settings (MNLI, Stress Test) for NLI task.

Method MRPC QQP

MaxProb (AUC) 6.13 40.46

Calib T (%) -148.87 +2.21
Calib C (%) -0.82 +2.0
Proposed (%) +6.19 +13.9

Table 2: Comparing % improvement of various calibra-
tion approaches on AUC of risk-coverage curve in IID
(MRPC) and OOD (QQP) settings for DD task.

5 Results and Analysis

5.1 MaxProb Struggles in OOD Setting

First rows in Table 1 and 2 show the AUC values
achieved by MaxProb in NLI and DD tasks respec-
tively. Note that in selective prediction, low AUC
values of risk-coverage curves are preferred. We
find that MaxProb performs well in the IID setting
as it achieves low AUC values (2.78 on SNLI and
6.13 on MRPC). However, it fails to translate that
in the OOD setting (AUC of 14.22 on MNLI, 31.57
on Stress Test, and 40.46 on QQP). This implies
that the model makes a significant number of incor-
rect predictions with relatively high MaxProb and
thus needs to be calibrated.

For calibration methods, we compare the perfor-
mance improvement achieved over MaxProb w.r.t
the minimum possible AUC.

5.2 Proposed Method Outperforms All

Our method shows a clear benefit over existing
calibration techniques as it leads to a considerable
improvement in all the cases. The proposed method
achieves 15.81% and 6.19% improvement in the
IID setting on SNLI and MRPC respectively. Fur-
thermore, it achieves 2.19% on MNLI, 5.64% on
Stress Test, and 13.9% on QQP in the OOD setting.
Calib T considerably degrades performance in both
IID and OOD settings. However, Calib C results
in a minor improvement in the IID setting (8.97%
for SNLI) but does not consistently improve in the
OOD setting (especially on MNLI Mismatched and

Figure 1: Trend of Model Accuracy with Confidence
and Difficulty score for the NLI task.

Competence Stress Test). We attribute this to the
limited signal that is given to the calibrator by an-
notating the held-out dataset with categorical labels
‘1’ and ‘0’. Thus, it learns weak representations.

Comparing Annotation Functions: We find
that the improvement using our method comes from
using AS3 as the annotation score which outper-
forms AS1 and AS2. This is expected as it lever-
ages useful signals provided by both maxProb and
difficulty score for annotation computation.

Relationship With Predictive Correctness: To
further analyze our method, we plot the relation-
ship of predictive correctness with prediction confi-
dence and difficulty score in Figure 1. It shows that
prediction confidence is positively correlated while
the difficulty score is negatively correlated with
correctness. This further justifies our annotation
score computation procedure.

6 Conclusion and Future Work

We proposed a selective prediction method that
calibrates the model outputs using prediction confi-
dence and difficulty level of the instances. Through
comprehensive experiments, we demonstrated that
it achieves considerable improvement over Max-
Prob on NLI and Duplicate Detection tasks in both
IID and OOD settings. We hope that our work
will facilitate development of more robust and re-
liable AI systems making their wide adoption in
real-world applications possible.
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Appendix

A Related Work

Instance-level difficulty analysis has recently re-
ceived considerable attention. Varshney et al.
(2022a) explore five different applications of diffi-
culty analysis of evaluation data such as conduct-
ing efficient yet accurate evaluations with fewer
instances and estimating OOD performance reli-
ably. Rodriguez et al. (2021) incorporate item re-
sponse theory based difficulty quantification and
analyze ranking reliability of leaderboards. Mishra
and Arunkumar (2021) study robustness of model
rankings by weighting instances based on their diffi-
culty score. Swayamdipta et al. (2020) analyze the
behavior of model on individual instances during
training (training dynamics) and categorize training
instances into three different difficulty regions.

B Experimental Details

We use batch size of 32 on Nvidia V100 16GB
GPUs for our experiments. We train these models

with the default learning rate of 5e−5 for 3 epochs.
In Calib T approach, we use BERT-BASE model as
the calibrator and train it using the annotated held-
out dataset. For training this calibrator, we use the
default learning rate of 5e − 5. In the proposed
approach, we use a simple random forest imple-
mentation of Scikit-learn (Pedregosa et al., 2011)
to train the calibrator. Note that more advanced
regression models could be used to further improve
the performance of our approach. However, we
leave that for future work as the focus of this paper
is to show efficacy of our proposed approach on
the selective prediction task.

C Features of Training Calibrator

We extract syntactic features, namely, lengths, Se-
mantic Textual Similarity (STS) value, number of
common words between given sentences, and pres-
ence of negation words / numbers from the held-out
instances to train the calibrator model. These fea-
tures along with maxProb and prediction outputted
by the model serve as inputs for the calibrator.

For the NLI task, we compute these features for
premise and hypothesis sentences i.e. STS value,
number of common words, etc. between premise
and hypothesis sentences.

Similarly, for the DD task, we compute these
features for the given two sentences.
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