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Abstract

While large pre-trained language models accu-
mulate a lot of knowledge in their parameters, it
has been demonstrated that augmenting it with
non-parametric retrieval-based memory has a
number of benefits ranging from improved
accuracy to data efficiency for knowledge-
focused tasks such as question answering. In
this work, we apply retrieval-based model-
ing ideas to the challenging complex task of
multi-domain task-oriented semantic parsing
for conversational assistants. Our technique,
RETRONLU, extends a sequence-to-sequence
model architecture with a retrieval component,
which is used to retrieve existing similar sam-
ples and present them as an additional context
to the model. In particular, we analyze two set-
tings, where we augment an input with (a) re-
trieved nearest neighbor utterances (utterance-
nn), and (b) ground-truth semantic parses of
nearest neighbor utterances (semparse-nn). Our
technique outperforms the baseline method by
1.5% absolute macro-F1, especially at the low
resource setting, matching the baseline model
accuracy with only 40% of the complete data.
Furthermore, we analyse the quality, model sen-
sitivity, and performance of the nearest neigh-
bor retrieval component’s for semantic parses
of varied utterance complexity.

1 Introduction

Roberts et al. (2020) demonstrated that neural lan-
guage models quite effectively store factual knowl-
edge in their parameters without any external infor-
mation source. However, such implicit knowledge
is hard to update, i.e. remove certain information
(Bourtoule et al., 2021), change or add new data
and labels. Additionally, parametric knowledge
may perform worse for less frequent facts, which
don’t appear often in the training set, and “hallu-
cinate” responses. On the other hand, memory-
augmented models (Sukhbaatar et al., 2015) de-

∗*Work done by author while interning at Facebook Con-
versational AI.

couple knowledge source and task-specific “busi-
ness logic”, which allows updating memory index
directly without model retraining. Recent stud-
ies showed their potential for knowledge-intensive
NLP tasks, such as question answering (Khandel-
wal et al., 2020; Lewis et al., 2020c).

In this work, we explore RETRONLU: retrieval-
based modeling approach for task-oriented seman-
tic parsing problem, where explicit memory pro-
vides examples of semantic parses, which model
needs to learn to transfer to a given input utterance.
An example semantic parse for task-oriented di-
alog utterance and its corresponding hierarchical
representation are presented in Figure 1.

Figure 1: An intent-slot based compositional semantic pars-
ing example(coupled) from TOPv2 (Chen et al., 2020).

In this paper we are focusing on the following
questions: (a) Data Efficiency: Can retrieval based
on non-parametric external knowledge alleviate re-
liance on parametric knowledge typically acquired
via supervised training on large labeled datasets?1

We examine how different training settings, depend-
ing on the amount of supervision data available,

1Parametric knowledge is information stored in model
parameters. Non-parametric knowledge refers to external data
sources that the model uses to infer.
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impact model prediction, i.e. fully supervised vs.
limited supervised training. (b) Semi-supervised
Setting: Can we enhance models by using abundant
and inexpensive unlabeled external non-parametric
knowledge rather than structurally labeled knowl-
edge? We examine the effect of utilizing unla-
beled similar utterances instead of labelled seman-
tic parses as external non-parametric knowledge
on model performance. (c) Robustness to Noise:
Can a model opt to employ parametric knowledge
rather than non-parametric knowledge in a resilient
manner, for example, when the non-parametric in-
formation is unreliable? We examine the model’s
resilience and its reliance on non-parametric ex-
ternal information. External knowledge is not al-
ways precisely labeled and reliable for all exam-
ples/utterances. (d) Utterance Complexity: Is non-
parametric external knowledge addition effective
for both uncommon and complex structured (hi-
erarchical) examples? We examine whether ex-
ternal knowledge addition is more beneficial in
certain cases than others, or if it supports accurate
predictions for all situations equally. It would be
fascinating to investigate if external information
could also help enhance difficult and complex ex-
amples/utterances. Finally, we examine the upper
limit on the utility of external information. We ex-
amine structural redundancy concerns in nearest
neighbor retrieval. (e) Knowledge Efficiency: Is it
beneficial to continue adding external information,
or are there certain boundaries and challenges? Our
contribution are as follows:

1. We demonstrate that combining paramet-
ric and non-parametric knowledge enhance
model performance on the complex structured
task of task-oriented semantic parsing.

2. We illustrate the effectiveness of our approach
in a critical situation of learning with sparse
labeled data (i.e. limited parametric knowl-
edge).

3. We establish the efficacy of retrieval-based
method in semi-supervised settings, where
model’s input is supplemented with unanno-
tated instances (i.e. unlabeled examples).

4. By comparing predictions on clean vs. noisy
neighbours, we establish the model’s re-
silience to external non-parametric knowledge
quality.

5. Finally, we examine performance gains with
inputs of varying complexity: semantic struc-
ture composition and it’s frequency (i.e. fre-
quent/rare).

Overall, we demonstrate that retrieval enhanced
method can improve performance on complicated
structured prediction tasks like task oriented seman-
tic parsing without extra supervision. Furthermore,
the augmentation approach is data efficient and per-
forms well in low resource settings with limited
label data. The dataset, and associated scripts, will
be available at https://retronlu.github.io.

2 Proposed Approach

Our proposed approach consists of four main steps:
(a) index construction by embedding training ex-
amples and computing cosine similarity; (b) re-
trieval, where we extract the nearest neighbor ut-
terances from the index given an example utterance;
(c) augmentation, in which we append the nearest-
neighbor utterance ground truth semantic parse
(semparse-nn) or the utterance itself (utterance-
nn) to the original input via a special separator
token (such as ‘|’); and (d) semantic parsing,
in which we train the parsing model using the
retrieval-augmented input with output ground truth.
Figure 2 illustrates the Retrieval Augmented Se-
mantic Parsing (RETRONLU) approach.

Indexing: To build an index we use a pre-trained
BART model to get training utterance embeddings.
More specifically, we get sentence embedding for
all the training utterances. These sentence embed-
dings are obtained as average of token embeddings
from last model layers of the BART models.2 We
then used the cosine similarity between embed-
dings to build a fast and efficient retrieval index
with efficient FAISS library (Johnson et al., 2019).

Retrieval: Next, given a new input (training or
test row), we obtain embeddings by running it
through same pre-trained BART, and then query
the index with it to retrieve nearest neighbors text
and their ground truth semantic parses based on
cosine similarity. For training data, we exclude an
example itself from the retrieved list. For exam-
ple, for input utterance “please add 20 minutes on
the lasagna timer”, we retrieve the nearest neigh-
bour “add ten minutes to the oven timer” along

2extract_features function https://github.com/
pytorch/fairseq/tree/main/examples/bart
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Figure 2: High level flowchart for retrieval augmented semantic parsing (RETRONLU) approach.

with the semantic parse as “[in:add_ time_ timer
add [sl:date_ time ten minutes] to the [sl:timer_
name oven] [sl:method_ timer timer]]”.

Augmentation: Once we got a list of nearest
neighbors, we can append either utterance text or
semantic parse to the input, following the left to
right order.3 The closest neighbor appears to the
immediate left of the input example utterance. One
can also directly append the nearest neighbor utter-
ance rather than the semparse, refer as utterance-nn.
For the last example the final input would after aug-
mentation would be “[in:add_ time_ timer add
[sl:date_ time ten minutes ] to the [sl:timer_ name
oven] [sl:method_ timer timer ]] | please add 20
minutes on the lasagna timer” for semparse-nn,
and “add ten minutes to the oven timer | please add
20 minutes on the lasagna timer” for utterance-nn.
Here, the token ‘|’ act as a separator between the
input utterance and the neighbour’s.

Semantic Parsing: The final step is to train a
sequence-to-sequence model such as LSTM or
Transformer. We fine-tune a BART model with
copy mechanism (Aghajanyan et al., 2020), which
incorporates benefits of pre-trained language model
(BART) and sequence copy mechanism (copy-ptr),
and most importantly obtain state-of-the-art results
on the TOPv2 (Chen et al., 2020), a challenging

3We followed GPT-3 and other generation model, where
task examples are pre-pended to the input. Hence, utterance
is always nearest to the decoder followed by the first nearest
neighbour inorder.

task oriented semantic parsing dataset with hierar-
chical compositional instances. The retrieval aug-
mented example is an input to the encoder and
the corresponding ground-truth semantic parse as
the labeled decoded sequence. At test time, we
simply pass the augmented input to the trained
RETRONLU model, and take it’s output as the pre-
dicted semantic parse for the input utterance.

3 Experiment and Analysis

Our experiments examines how our knowledge
retrieval-based augmentation technique impacts
model performance indicators such as accuracy and
data efficiency. We study the following questions:

RQ1. Can today’s pre-trained models leverage
non-parametric information in manner as described
in §2 to enhance task-oriented semantic parsing?

RQ2. If only part of the dataset has semantic
parses, i.e. limited supervision setting, can augmen-
tation with unannotated instances (utterance_nn)
enhance semantic parsing accuracy?

RQ3. How efficient is a retrieval-augmented
model in terms of data? Is it more accurate even
with less training data than the baseline seq2seq
model?

RQ4. Does non-parametric memory benefit in-
stances equally, e.g., do we notice greater benefits
for (a) more complex (i.e. compositional) or (b)
less frequent semantic frames (i.e. tail over head)?
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RQ5. (a) Does augmentation with more nearest
neighbors benefits? (b) How sensitive is the model
to retrieval noise? Can the model predict right
intent/slots for low-quality retrieve instances?

Our experiments are designed to demonstrate
how non-parametric external information can be
beneficial to a parametric model and to undertake
an in-depth assessment of the impact.4

3.1 Experimental setup

In this section, we discuss the datasets, pre-
processing, and the model used in the experiments.

Datasets. For our experiments, we used the multi-
domain complex compositional queries based pop-
ular TOPv2 (Chen et al., 2020) dataset for task-
oriented semantic parsing. We concentrated our
efforts on task-oriented parsing because of the com-
mercial importance of data efficiency requirements
in conversational AI assistants dialogues.5 The
TOPv2 dataset contains utterances and their seman-
tic representations for 8 domains: source domains -
‘alarm’, ‘messaging’, ‘music’, ‘navigation’, ‘timer’,
and ‘event’, and target domains: ‘reminder’ and
‘weather’, designed especially to test the zero-shot
setting. For our experiments we chose source do-
mains, which has a good mixture of simple (flat)
and complex (compositional) semantic frames. For
dataset statistics refer Table 1 in Chen et al. (2020).

Data Processing. To build a retrieval index we
used the training split of the dataset. Each utterance
was represented by its BART-based embedding and
indexed using FAISS library (Johnson et al., 2019).
6 With FAISS computation cost of updating index-
ing was kept to bare minimum. The only additional
cost will be increase in inference time due to aug-
mented neighbor. To produce augmented examples,
we retrieved nearest neighbors for each training
and test examples from the training set, except ex-
cluding all training instances with exact utterance
matches. In the augmented examples, we use the
special token ‘|’ to separate the nearest neighbors,
as well as utterance with the first neighbor.7 We
used only one neighbor for most experiments ex-
cept when we analyse multiple neighbors effects

4We did not seek to modify the architecture which ensure
the augmentation methodology is flexible.

5Regardless of augmented neighbors structure the ap-
proach remain consistent.

6We use L2 over unit norm BART embedding for indexing.
7Using different separator tokens for neighbor-neighbor

pair and utterance-neighbor pair didn’t improve performance.

on performance.
In nearest neighbor augmented input, we fol-

lowed right to left order, where the actual model
input comes last, and its highest ranked neighbor is
appended to the left of the utterance, followed by
other neighbors in the left based on their ranking.
8 For input data pre-processing, we follow (Chen
et al., 2020) procedure, we obtain BPE tokens of
all tokens, except ontology tokens (intents and slot
labels), which are treated as atomic tokens and ap-
pended to the BPE vocabulary. Furthermore, we
use the decoupled canonical form of semparse for
all our experiments. For decoupling, phrases irrele-
vant to slot values are removed from semparse, and
for canonicality, slots are arranged in alphabetic
order (Aghajanyan et al., 2020).

Models. For fair comparison with the earlier
baseline, we use the state-of-the-art BART based
Seq2Seq-CopyPtr model for task-oriented seman-
tic parsing. 9 The BART based Seq2Seq-CopyPtr
model initialize both the encoder and decoder with
pre-trained BART (Lewis et al., 2020b) model and
also use the copy mechanism similar to See et al.
(2017), refer Chen et al. (2020) for details. We
choose the BART based Seq2Seq-CopyPtr model
for the task because it’s a strong baseline, the
performance of the other language model such
as RoBERTa without augmentation was inferior
(Chen et al., 2020; Aghajanyan et al., 2020). On
out-of-domain instances, RoBERTa-CopyPtr per-
forms 0.6 % worse than BART-CopyPtr.10 The
model is using the copy mechanism (See et al.,
2017), which enables it to directly copy tokens
from the input utterance (or from example seman-
tic parses from nearest neighbors).

Hyperparameters. We use the same default
hyper-parameters for all models training , i.e.
baseline (without-nn) and RETRONLU models
(utternce-nn, semparse-nn). For training we use
100 epochs, Adam optimizer (Kingma and Ba,
2014) with learning rate α of 1e − 4 and decay
rate β1 and β2 of 0.9 and 0.98 respectively in all
our experiments. Also, we didn’t added any left or
right padding and rely on variable length encoding
in our experiments. We use warm-up steps of 4000,

8Similar performance is obtained by ordering utterances
left to right, followed by their neighbors in index order.

9We prefer transformer-based language model over non-
transformer models, such as LSTM, because the later does not
capture extended context as well as the former.

10Our findings, however, we believe, are universal and can
be applied to different models, including RoBERTa.
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dropout ratio of 0.4, and weight decay 0.0001, but
no clip normalization as regularization during the
training. We use batch size of 128 and maximum
token size of 2048. Furthermore, to ensure both
encoder and decoder BART, can utilise the extra
nearest neighbour information, we increase the em-
bedding dimension to 1024.

3.2 Results and Analysis
This section summarizes our findings in relation to
the aforementioned research questions.

Full Training Setting. To answer RQ1, we com-
pare performance of original baseline (without-nn)
with our retrieval augmented models, i.e. aug-
menting first neighbour utterance (utterance-nn)
and augmenting first neighbour semantic parse
(semparse-nn). Table 1 compares the frame ac-
curacy of retrieval augmented (a) top nearest neigh-
bour utterance (utterance-nn), (b) top nearest neigh-
bour ground-truth semantic parse (semparse-nn)
with original baseline (without-nn) with model
train on complete training data.

Domains without-nn utterance-nn semparse-nn
Alarm 86.67 87.17 88.57
Event 83.83 85.03 84.77
Music 79.80 80.73 80.71
Timer 81.21 81.75 81.01

Messaging 93.50 94.52 94.65
Navigation 82.96 84.16 85.20
micro-avg 84.43 85.28 85.74
macro-avg 84.66 85.56 85.82

Table 1: Performance of RETRONLU w.r.t original
baseline (without-nn) with full training.

Analysis: We observe performance improve-
ments with retrieval-augmented models for most
domains compared to the original baseline
(without-nn) in both cases. The increase in per-
formance (micro-avg) is more substantial 1.4%
with semparse-nn compare to 0.85% with utterance-
nn. The improvement in utterance-nn augmenta-
tion performance is likely due to memorization-
based generalization, as explained earlier by (Khan-
delwal et al., 2019).11 The results shows the re-
trieval augmented semantic parsing is overall effec-
tive. Furthermore, the performance enhancement
can be obtained also with unstructured utterance
(utternace-nn) as nearest neighbour. The utterance-
nn based augmentation is particularly beneficial in
semi-supervised scenarios, where we have a large
unlabelled dataset.

11The scores are averaged over three runs with std. of 0.3%

Limited Training Setting. To answer RQ2, we
compare model performance which are trained with
limited training data. Figure 3 shows frame accu-
racy (micro-avg) when we use only 10% to 50% of
the training data. The training datasets are created
in an incremental setting so that next set include
examples from the former set. Additionally, we use
the complete index to retrieve the nearest neigh-
bors.

Training Data (%)
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Figure 3: Performance of RETRONLU w.r.t original
baseline (without-nn) with limited supervised training.
The x-axis is linearly scaled upto 50% data.

Analysis: As expected, the performance of all
models increases with training set size. Both re-
trieval augmented models i.e. utterance-nn and
semparse-nn outperform the without-nn baseline
for all the training sizes. The improvement via
augmentation is more substantial with less training
data, i.e. 4.24% at 10% data vs 1.30% at 100% data.
Furthermore, the semparse-nn augmented model
outperforms the original completely train (without-
nn) model with only 40% of the data (i..e RQ3).
The results show that the retrieval augmented se-
mantic parsing is more data efficient, i.e. when
there is (a) limited labelled training dataset with
more unlabelled data for indexing (utterance-nn),
and (b) sufficient training data but limited training
time (semparse-nn).

The first case is useful when the ground truth
label is missing for utterances due to lack of an-
notation resources. In such a scenario, one can
build the index using large amount of unlabeled
utterances and use the index for augmentation. The
second case helps us train the model faster, while
maintaining all annotated examples in the index.
In such a case, one can update the retrieval index
only, without re-training the model again and again.
This is useful when training on full data is not pos-
sible due to limited access to model (black-box),
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a cap on the computation resources, or for saving
training time i.e. industries fast deployment need.
E.g. There is a constant stream of bugs relating
to misclassified examples in production systems.
Our RETRONLU approach enables rapid adjust-
ment of the system’s behavior without retraining or
establishing a new model.

Effect of Utterance Complexity. To answer
RQ4(a), we analyse the retrieval augmented model
performance improvements (with full training) on
simple utterance with only one level in semantic
representation (depth-1) vs complex utterance with
hierarchical semantic frames (compositional depth-
2 and above). Figure 4 shows frame accuracy of
without-nn, utterance-nn and semparse-nn model
with utterance complexity.

Figure 4: Performance comparison (micro-avg) of
RETRONLU w.r.t original baseline (without-nn) with
utterance complexity, i.e. simple and complex.
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Figure 5: Precision and Recall of intents and slots for
semparse-nn nearest neighbour w.r.t to gold semparse.

Analysis: As expected, all models perform rel-
atively poorly on complex utterances (79.5%) in
comparison to simple utterances (85.5%). Interest-
ingly, both augmentation models equally improve
performance on simple queries. And with semantic-
frame based augmentation we observe a substantial

performance improvement on complex challeng-
ing utterances, of 2%, with respect to the original
baseline (without-nn). This suggests, that by re-
trieving nearest neighbors and providing a model
with examples of complex parses, the model learns
to apply it to a new request. Figure 5 shows pre-
cision and recall for intents and slots in retrieved
semantic parses. The recall for intent and slot re-
trieval is 15% lower for complex utterances. 12

Thus, highlighting one reason for a performance
gap between simple and complex frames.

Effect of Frame Rareness. To answer RQ4(b),
we analyze the retrieval augmented model perfor-
mance improvement (with full training data) with
frame rareness, as shown in Figure 6.
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Figure 6: Performance of RETRONLU w.r.t original
baseline (without-nn) with varying frame frequency.
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Figure 7: Precision and Recall of intents and slots w.r.t
to frame frequency for semparse-nn of the RETRONLU.

Rare or uncommon frames are those example ut-
terances whose ground truth semantic parses with-
out slot value tokens appear infrequently in the
training set. To analyze this, we divided the test set
into five equal sizes i.e., Very Low, Low, Medium,
High, and Very High sets, based on the frequency of

12The precision gap was small 1% (intents) and 4% (slots).
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semantic frame structure. The experiment checks
if performance improvement is mainly attributed
to frequently repeating frames (frequent frames) or
for rarely occurring frames (uncommon frames).

Analysis: Figure 6 shows that all models perform
worse on rare frames. This is expected as the para-
metric model gets less data for training on these
frames. Furthermore, many of the low-frequency
frames are also complex utterances with more than
one intent and have more slots too. Moreover, the
nearest neighbour will be noisier for less frequent
frames. This is evident from the lower values of
precision (20% gap) and recall (25% gap) on the
intent and slots for nearest neighbors in Figure 7.
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Figure 8: Relative performance improvement of
RETRONLU w.r.t original baseline (without-nn) with
varying frame frequency.

However, compared to original baseline
(without-nn) the relative performance improve-
ment on rare frames with retrieval augmented
model is more substantial, as shown in Figure 8.
For example, the relative improvement for Very
Low frequency frames is 2.37% (utterance-nn)
and 4.11% (semparse-nn) compared to just 1.01%
(utterance-nn) and 1.11 % (semparse-nn)for the
Very High Frequency frames. We suspect this
is because of the model’s ability to copy the
required intent and slots from nearest neighbors
if the parametric knowledge fails to generate it.
This shows the retrieval augmented model is even
more beneficial for the rare frames. As earlier,
semparse-nn outperform utterance-nn.

Effect of the number of neighbors. To answer
RQ5(a), we compare k = 1, 2, and 3 nearest neigh-
bours for both utterance-nn and semparse-nn se-
tups13 The results are reported in Table 2.

13Extending beyond 3 neighbors was not useful for many
reasons: (a) the BART 512 tokenization limit, (b) exponential
rise in training time, and (c) only minimal performance gain.

#neighbors k = 1 k = 2 k = 3
without-nn 84.43 84.43 84.43

utterance-nn 85.28 85.35 85.40
semparse-nn 85.74 85.81 85.80

Table 2: Performance with increasing nearest neighbors.

Metric Average Precision Average Recall
Intent Farthest Closest Farthest Closest
Train 81.39 84.84 81.81 85.04
Valid 80.46 87.59 81.10 87.93
Test 79.09 86.23 79.35 86.22
Slot Farthest Closest Farthest Closest
Train 75.02 80.05 79.56 83.19
Valid 73.40 82.38 79.77 85.81
Test 74.59 83.21 79.51 85.11

Table 3: Intent-slots precision/recall for RETRONLU
semparse-nn with closest/farthest neighbors.

Analysis: As shown in Table 2 the model perfor-
mance only improves marginally with more nearest
neighbors. We attribute this to the following two
reasons (a) redundancy - many utterance exam-
ples can share the same frame, as evident from the
high accuracy for frequent frame Figure 6., and
(b) complexity - as k increases, the problem is get-
ting harder for the model with longer inputs, more
irrelevant and noisier inputs. To further verify the
above reasons, we examine the semparse-nn re-
trieve nearest neighbors quality by comparing the
intent and slot both Precision and Recall score for
closest (k=1) and farthest (k=3) neighbor w.r.t to
the gold semparse. From Table 3 it is evident that
precision and recall for intents and slots decrease
as we go down the ranked neighbors list. Adding
more nearest neighbour would only be beneficial
when added neighbour capture diverse and differ-
ent semantic structure which is missing from earlier
neighbor and essential for the correct semparse.

Effect of Retrieval Quality. To check if our
RETRONLU model is robust to the noise in the
retrieved examples (i.e. RQ5(b)), we analyse the
effect of quality of retrieval by comparing semantic
parsing accuracy of top neighbor augmented mod-
els on the test data with (a) the top neighbour with
random neighbor from domain other than the exam-
ple domain, and (b) random neighbor selected from
the top 100 ranked nearest neighbors in the index.
It should be noted that these 100 top rank nearest
neighbour can have some redundant semparse-nn
structure, only slot values might differ. Figure 9
shows the results of the experiments.

Analysis: From Figure 9 it is clear that quality
of nearest neighbor affect the semantic parsing ac-
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Figure 9: Performance of RETRONLU with varying
nearest neighbor quality on test data.

curacy. We observe a 0.4% drop when random
neighbor from top 100 nearest neighbors is chosen,
instead of first neighbor, the small drop is because
of redundancy in intent/slots structure between ex-
amples, only slots value could be major difference.
However, the performance is still 0.9% to 1.0%
better than the one without the nearest neighbor.
We suspect this is because of the fact that the data
has many utterances with similar semparse output.
Upon deeper inspection we found that top-100 still
includes many relevant frames, and therefore ran-
dom examples from top-100 are often still relevant.
Furthermore, there is also frame redundancy, many
different utterance queries have similar semantic
parse frames structure and only differ at the slot
values. This is also evident from table 2 which
shows adding more neighbors is not beneficial, be-
cause of frame redundancy. Surprisingly, we also
observe that the model performance with random
cross-domain neighbor is better than without-nn
for semparse-nn by 0.5%. This shows that the
model knows when to ignore the nearest neigh-
bors and when to rely on the parametric model.
Furthermore, it also indicates that underlying para-
metric model parameters is improved by retrieval
augmented training for the semparse-nn.

For the utterance-nn the performance drops
when testing on cross-domain nearest neighbor aug-
mented example. Thus, underlying the utterance-
nn model is more sensitive than semparse-nn to the
nearest neighbor quality. In addition, we also con-
ducted an experiment in which we added the best
possible neighbor based on the gold parse frame
structure. The trained model, though this approach
was not robust and relies too heavily on coping
frames from neighbors, resulting in poor general-
ization. Our technique, on the other hand, with

embedding-based retrieval, is good at generaliza-
tion and has enhances the underlying parametric
model. Overall, we can conclude that the semparse-
nn and utterance-nn model are both quite robust to
nearest neighbors quality. We can also conclude
that the semparse-nn model was able to capture
richer information through additional similar in-
puts than without-nn. However, to obtain the best
performance good quality neighbour is an essential.

4 Comparison with Related Work

Task-oriented Semantic Parsing. Sequence-to-
sequence (seq2seq) models have recently achieved
state of the art results in semantic parsing (Ron-
gali et al., 2020; Gupta et al., 2018), and they
also provide a flexible framework for incorporat-
ing session-based, complex hierarchical semantic
parsing (Sun et al., 2019; Aghajanyan et al., 2020;
Cheng et al., 2020; Mehri et al., 2020) and multi-
lingual semantic parsing (Li et al., 2021; Louvan
and Magnini, 2020). Architectures, such as T5 and
BART (Raffel et al., 2020; Lewis et al., 2020b),
with large pre-trained language models pushed the
performance even further. Such models are quite
capable of storing a lot of knowledge in their pa-
rameters (Roberts et al., 2020), and in this work we
explore the benefits of additional non-parametric
knowledge in a form of nearest neighbor retrieval
for the task of semantic parsing. To improve low
resource seq2seq parsers Chen et al. (2020) have
proposed looking at meta learning methods such
as reptile, and Ghoshal et al. (2021) have intro-
duced new fine-tuning objectives. Our approach is
focused on non-architecture changes to augment
generation with retrieval and thus can be combined
with either of these approaches.

Incorporating External Knowledge. An idea
to help a model by providing an additional infor-
mation, relevant to the task at hand is not new.
This includes both implicit memory tables (We-
ston et al., 2014; Sukhbaatar et al., 2015), as well
as incorporating this knowledge explicitly as an
augmentation to the input. Explicit knowledge
are incorporated in one of the following two ways
(a) suitable model architecture change to incorpo-
rate dedicated extended memory space internally
i.e. memory network (Bapna and Firat, 2019; Guu
et al., 2020; Lewis et al., 2020a; Tran et al., 2020)
or span pointer networks (Desai and Aly, 2021;
Shrivastava et al., 2021), and (b) appending ex-
ample specific extra knowledge externally with the
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input example directly without modifying model ar-
chitecture (Papernot and McDaniel, 2018; Weston
et al., 2018; Lewis et al., 2020c; Tran et al., 2020;
Khandelwal et al., 2021; Fan et al., 2021; Chen
et al., 2018; Wang et al., 2019; Neeraja et al., 2021)
. Retrieval-augmented approaches have been im-
proving language model pre-training as well (Guu
et al., 2020; Lewis et al., 2020a; Tran et al., 2020).
The idea here is to decouple memorizing factual
knowledge and actual language modeling tasks,
which can help mitigate hallucinations, and other
common problems.

Multiple works like DkNN (Papernot and Mc-
Daniel, 2018), RAG (Lewis et al., 2020c), kNN-
LM (Tran et al., 2020), kNN-MT (Khandelwal
et al., 2021), and KIF-Transformer (Fan et al.,
2021) show that external knowledge is useful for
large pre-trained language models, and can help
fine-tuning. DkNN shows that nearest neighbour
augmented transformer-based neutral network is
more robust and interpretable. RAG shows that one
can append external knowledge to improve open do-
mian, cloze-style question answering, and even fact
verification task such as FEVER. kNN-LM shows
that for cloze task for fact completion, one can com-
bine nearest neighbour predictions with original
prediction using appropriate weighting to improve
model performance. However, these works mostly
study knowledge dependent question answering
task, while we are exploring a complex task of
structural prediction of semantic frame structures
for task-oriented dialog.

Very recently, Pasupat et al. (2021) share similar
finding of exemplar augmentation and propose Con-
trollAble Semantic Parser via Exemplar Retrieval
(CASPER). In their work, the semantic parser gets
relevant exemplars from a retrieval index, augments
them with the query, and then generates an output
parse using a generative seq2seq model. The exem-
plars serve as a control mechanism for the generic
generative model: by modifying the retrieval index
or the construction of the augmented query, one
may alter the parser’s behavior. Compare to them,
our study focuses more on the influence of augmen-
tation on the performance of the state-of-the-art
Copy Transformer BART model for task-oriented
semantic parsing. By design, the copy transformer
effectively utilizes it’s copy mechanism to get non-
parametric information from augmented nearest
neighbor semparse/utterances. Additionally, we
conduct a detailed investigation of the influence of

retrieval quality, utterance and semantic complex-
ity, and the rarity of semantic frames. We anticipate
that our findings will shed light on the potential ad-
vantages of retrieval enhancing parametric neural
networks for the complex structural task of task-
oriented semantic parsing.

5 Conclusion and Future Work

We show that task-oriented semantic parsing per-
formance can be enhanced by augmenting neu-
ral model-stored parametric information with non-
parametric external memory. On the TOPv2
dataset, we demonstrated that adding instances
derived from a nearest neighbor index greatly
improves the semantic parsing performance of
a BART model with copy mechanism. Our
RETRONLU model is able to achieve higher accu-
racy earlier with less training data (limited supervi-
sion setting), which allows maintaining a large in-
dex with annotated data, while using only a subset
to train a model more efficiently. Lastly, we per-
formed an analysis of performance improvements
on different slices, and found RETRONLU to be
more effective on rarer complex frames, compared
to a traditional seq2seq model.

RETRONLU extensions, we focus on joint train-
ing of retrieval and parsing components. Having
task specific utterances representation can benefit
i.e. finding utterances with similar semantic parse.
Exploring few/zero-shot performance could be in-
teresting direction. Having an easily-updateable
index enables you to amend annotations, add new
ones, or remove existing ones, without affecting
the model. It will be useful to study other ap-
proaches of sentence embedding, such as Reimers
and Gurevych (2019). Finally, using cross-lingual
representations such as mBART (Liu et al., 2020),
could help multilingual semantic parsing.
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A Qualitative Examples

Below, we provide some qualiative example from
the TOPv2 datasets, in the first box, we shows
the input utterance, nearest neighbour utterance
i.e. nearest-nn utterance and it corresponding
semantic parse i.e. semparse-nn (from the training
set). In the second box we showed expected gold
semantic parse (expected-sparse) and the semantic
parse prediction with baseline i.e. without
nearest neighbor (without-nn), and our models
utterance only nearest neighbor, where the input is
appending with nearest-nn utterance (utterance-nn)
and semantic augmented model i.e. (semparse-nn),
where the input is augmented with semantic parse
of first nearest neighbor. We can clearly see from
the examples that augmented nearest neighbor en-
hance models in identifying correct intent and slots.

example 1 input
utterance : message just lizzie and trent from my group if
they have any updates yet ?

nearest-nn utterance : message kira and lena saying want
to get drinks this week ?
nearest-nn semparse : [in:send_message message
[sl:recipient kira ] and [sl:recipient lena ] saying
[sl:content_exact want to get drinks this week ]?]

example 1 output
expected-parse : [in:send_message [sl:recipient lizzie ]
[sl:recipient trent ] [sl:content_exact they have any updates
yet ]]
without-nn : [in:get_message [sl:content_exact they have
any updates yet ] [sl:group lizzie ] [sl:group trent ] ]
semparse-nn : [in:send_message [sl:recipient lizzie ]
[sl:recipient trent ] [sl:content_exact they have any updates
yet ] ]

utterance-nn : [in:send_message [sl:recipient lizzie ]

[sl:recipient trent ] [sl:content_exact they have any updates

yet ] ]

In example 1, the model misses the correct
intent and corresponding slots completely, the
correct intent is sending a message rather than
receiving a message is correctly identified by both
semparse-nn and utterance-nn.

example 2 input
utterance : no more country
nearest-nn utterance : no more music
nearest-nn semparse : [in:stop_music [sl:music_type
music ] ]

example 2 output
expected-parse : [in:remove_from_playlist_music
[sl:music_genre country ] ]
without-nn : [in:play_music [sl:music_genre country ] ]
semparse-nn : [in:remove_from_playlist_music
[sl:music_genre country ] ]

utterance-nn : [in:remove_from_playlist_music

[sl:music_genre country ] ]

In example 2, the baseline model without
nearest neighbour did the exact opposite of
intended task of removing music of genre country
from the playlist. However, after augmenting
nearest neighbor context the model quickly
correct the expected intent and slot. It should
also be noted the both the correct intent and
slot (i.e. in:remove_from_playlist_music and
sl:music_genre) are not present in the nearest-nn
semparse but it do contain similar intent and
slot (i.e. in:stop_music. and sl:music_type),
which help retrieval augmented model in correct
prediction. As earlier the model is able to predict
correct even with utterance only augmentation too.

example 3 input
utterance : block all songs of mariah carey
nearest-nn utterance : delete mariah carey songs
nearest-nn semparse : [in:remove_from_playlist_music
delete [sl:music_artist_name mariah carey] [sl:music_type
songs ] ]

example 3 output
expected-parse : [in:remove_from_playlist_music
[sl:music_artist_name mariah carey ] ]
without-nn : [in:unsupported_music [sl:music_type songs
]]
semparse-nn : [in:remove_from_playlist_music
[sl:music_type songs ] [sl:music_artist_name mariah carey
] ]

utterance-nn : [in:remove_from_playlist_music

[sl:music_type songs ] [sl:music_artist_name mariah carey

] ]

In example 3 the model without nearest neighbor
augmentation struggle to identify the intent from
utterance text token “block" therefore prediction
unsupported music as the intent and the music type
as songs, however the model with augmented near-
est neighbour example with “delete" intended slot
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Percentage 10 % 20 % 30 %
Domain w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn

Alarm 80.50 84.05 83.60 83.71 84.89 85.76 84.22 85.93 82.92
Event 68.56 78.33 79.38 75.01 80.85 82.32 77.64 81.91 82.92
Music 69.12 75.74 73.23 74.09 77.53 77.34 75.6 78.01 78.13
Timer 71.63 76.76 76.27 75.51 76.18 79.28 77.21 79.68 79.84

Navigation 74.30 73.86 76.44 77.89 79.40 79.96 80.11 81.79 81.61
Messaging 84.38 87.30 89.44 88.39 91.31 91.50 89.53 92.78 92.25

Table 4: Limited training setting results on various domain with original baseline (without-nn), RETRONLU model utterance-nn
and semparse-nn, shown here as w/o nn, utter-nn and sem-nn respectively.

#neighbour’s one two three
Domain w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn

Alarm 86.67 87.17 88.57 86.67 87.77 87.87 86.67 87.68 87.90
Event 83.83 85.03 84.77 83.83 84.92 85.26 83.83 85.26 85.34
Music 79.80 80.73 80.71 79.80 80.71 81.50 79.80 80.52 81.11
Timer 81.21 81.75 81.01 81.21 81.04 82.29 81.21 81.44 82.10

Messaging 93.50 94.52 94.65 93.50 94.92 95.05 93.50 94.88 94.92
Navigation 82.96 84.16 85.20 82.96 84.12 84.46 82.96 84.59 84.79

Table 5: Effect of number of nearest neighbours of RETRONLU performance across domains

correct identified both the intent and slots. Further-
more, using nearest neighbor augmentation, the
model resolves the active passive voice confusion.

B Domain based Limited Training Setting

In Table 4 shows the performance of model for
each domain on original baseline (without-nn), and
RetroNLU model utterance-nn and semparse-nn
with varying amount of supervised training data.
Overall, semparse-nn outperform utterance-nn over
most of the domains. Surprising, we also found
that for few domain (with large number of sam-
ples) utterance-nn perform marginally better than
semparse-nn, need to investigate exact reason for
that. As expected both model utternace-nn and
semparse-nn perform much better than original
baseline which is without any nearest neighbour
augmentation.

C Domain Specific Effect of Nearest
Neighbours

In Table 5 we shows the performance of model
for each domain on original baseline (without-nn),
and RetroNLU model utterance-nn and semparse-
nn with varying number of nearest neighbour aug-
mented. We found the utternace-nn performance
increases with increasing number of neighbours
where semparse performance remain mostly con-
stant after the first neighbour augmentation for
many domains. We suspect this is due to the fact
that the data contains a large number of utterances

with identical semparse output.. There is also frame
redundancy, since many unique utterance inquiries
have comparable semantic parse frames structure
with differences only on slot values.
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