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Abstract

Nowadays, pretrained language models (PLMs)
have dominated the majority of NLP tasks.
While, little research has been conducted on
systematically evaluating the language abilities
of PLMs. In this paper, we present a large-scale
empirical study on genEral language ability
evaluation of PLMs (ElitePLM). In our study,
we design four evaluation dimensions, i.e.,
memory, comprehension, reasoning, and com-
position, to measure ten widely-used PLMs
within five categories. Our empirical results
demonstrate that: (1) PLMs with varying train-
ing objectives and strategies are good at differ-
ent ability tests; (2) fine-tuning PLMs in down-
stream tasks is usually sensitive to the data size
and distribution; (3) PLMs have excellent trans-
ferability between similar tasks. Moreover, the
prediction results of PLMs in our experiments
are released as an open resource for more deep
and detailed analysis on the language abilities
of PLMs. This paper can guide the future
work to select, apply, and design PLMs for
specific tasks. We have made all the details
of experiments publicly available at https:
//github.com/RUCAIBox/ElitePLM.

1 Introduction

Recent years have featured a trend towards Trans-
former (Vaswani et al., 2017) based pretrained lan-
guage models (PLMs) in natural language process-
ing (NLP) systems. By being pretrained on massive
unlabeled text, PLMs can be directly fine-tuned on
downstream tasks, entirely removing the need for
task-specific architectures (Radford et al., 2018).
This paradigm has led to significant progress on
many challenging NLP tasks such as reading com-
prehension (Devlin et al., 2019) and text genera-
tion (Brown et al., 2020).

With rising new state-of-the-art results that ap-
proach or surpass human performance on several
tasks, it is a non-trivial research topic about how
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to systematically evaluate the language abilities of
PLMs from a wide range of perspectives. Given a
wide range of publicly released PLMs, it is partic-
ularly useful to derive principles or guidelines for
selecting suitable PLMs for specific downstream
tasks. However, existing works either target some
single ability (Talmor et al., 2020; Zhou et al.,
2020), or consider a simple mixture of multiple
(small-scale) tasks that lack a comprehensive de-
sign and test (Wang et al., 2019b; Liang Xu, 2020).
There has been no detailed and systematic analysis
of PLM’s abilities in large-scale NLP tasks. To
fill the gap of PLMs evaluation, we introduce the
genEral language ability evaluation (ElitePLM)
for empirically and systematically assessing the
general language abilities of PLMs.

The ideal goal behind PLMs is to create a human-
like machine learner where it can understand the
language and then perform any specific task re-
lated to language. In cognitive science, Wechsler
Adult Intelligence Scale (WAIS) (Kaufman and
Lichtenberger, 2005) is the most commonly used
intelligence quotient (IQ) test for measuring the
intelligence and cognitive ability of humans. This
test would assess the level of individuals on ver-
bal comprehension, perceptual reasoning, working
memory, and processing speed. Thus, by imitat-
ing the intelligence test on humans, we design four
evaluation dimensions in ElitePLM for measuring
the abilities of PLMs, including memory, compre-
hension, reasoning, and composition. Following
previous works (Zhou et al., 2020; Wang et al.,
2019b), for each ability in ElitePLM, we elabo-
rate and select multiple representative tasks (e.g.,
question answering for the comprehension ability)
and commonly-used benchmarks (e.g., GLUE and
SQuAD) to quantitatively evaluate the performance
of PLMs. These results can serve as numerical ex-
planations of PLMs at a specific ability.

In human intelligence tests, the background of
participants (e.g., gender, race, and occupation)
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should be as much as diverse. Thus, in ElitePLM,
we select a diversity of PLMs to conduct general-
ized and meaningful comparisons. According to
training objectives, PLMs can be divided into three
types: bidirectional LMs (e.g., BERT (Devlin et al.,
2019)) for natural language understanding (NLU),
unidirectional LMs (e.g., GPT (Radford et al.,
2019)) for natural language generation (NLG), and
hybrid LMs (e.g., UniLM (Dong et al., 2019))
for combining these two paradigms. Furthermore,
knowledge-enhanced LMs (e.g., ERNIE (Zhang
et al., 2019)) and text-to-text LMs (e.g., T5 (Raffel
et al., 2020)) also emerge as important branches of
PLMs. Considering the variety, we finally select
ten widely-used PLMs within the above five cate-
gories and evaluate their abilities on four dimen-
sions. We show the comparisons of these PLMs in
Table 7 of Appendix A.

From the ability test results, we have three salient
findings. First, PLMs with varying pretraining ob-
jectives and strategies are good at different kinds
of downstream tasks. Specifically, we observe that
bidirectional LMs like BERT and pretraining strate-
gies like larger training batches in RoBERTa are
helpful for memorizing pretraining corpora; permu-
tation language modeling in XLNet is beneficial
for modeling the bidirectional context in language
comprehension; inter-sentence coherence objective
in ALBERT is suitable for sentence-level reasoning
tasks; text-to-text LMs using denoising objective
like BART perform better in short text generation.
Second, when fine-tuning PLMs in downstream
tasks, their performance is typically sensitive to the
data distribution in fine-tuning stage, which can be
addressed by incorporating intermediate datasets or
tasks to alleviate such a discrepancy. Third, PLMs
have excellent transferability between similar tasks,
especially reasoning tasks. This finding will inspire
future researchers to leverage data-rich tasks for
improving data-scarce tasks. For more clarity, we
illustrate the impact level of each factor for PLMs’
abilities in Table 8 of Appendix A.

Besides ElitePLM being an evaluation bench-
mark of PLMs’ language ability, more importantly,
the predicted results of ElitePLM can be used as
an open resource for more depth and granularity in
analyzing PLMs performance on each ability. For
example, we further analyze the comprehension
test results of PLMs across answer types in QA
tasks. The analysis shows that PLMs are good at
simple single-token answers such as dates but more

challenged on intricate phrase answers. Moreover,
by analyzing human test and Turing test results
on composition, we observe that summaries with
high accuracy are more likely to pass the Turing
test while rich information is more important for
story generation. Overall, ElitePLM can act as an
analysis tool to gain more insight into PLMs. We
show the details of our used datasets and predicted
outputs of PLMs in Appendix B.

This paper is intended to help establish sound
principles for choosing, applying, interpreting and
designing PLMs for NLP tasks in practical settings.
We have released the code and predicted results
of each ability experiment, providing the research
and industry community with off-the-shelf tools to
evaluate and analyze their PLMs.

2 ElitePLM

In this section, we will detail these four kinds of
language abilities, i.e., memory, comprehension,
reasoning, and composition, in ElitePLM.

Memory Ability. Memory is the most basic abil-
ity of humanity, involved in how much informa-
tion we recall throughout our lives (Miyake and
Shah, 1999). By analogy, ElitePLM will measure
how much knowledge and language patterns PLMs
have memorized in pretraining, as assessed by tests
of recalling words based on contexts. Based on
the memorized information, PLMs can effectively
adapt to downstream tasks for understanding and
reasoning about the similar context in a specific
text. On the other hand, efficiency is also a critical
aspect of memory ability for PLMs learning from
new data distribution in the fine-tuning stage. Thus,
besides recalling words, we also compare the mem-
ory efficiency of PLMs in terms of memorizing the
given new information.

Comprehension Ability. Comprehension is an in-
tricate and multifaceted ability. It typically consists
of understanding a text’s vocabulary, background
knowledge of a specific topic, and comprehension
of its linguistic structures like grammar (Cain and
Oakhill, 2008). In particular, background (prior)
knowledge is used to comprehend a special situa-
tion, lesson, or text. For example, readers should
be aware of the background knowledge of dog be-
havior when reading a text about dog training. In
ElitePLM, we will assess PLMs’ comprehension
ability from three aspects, i.e., vocabulary, back-
ground knowledge, and linguistic structures.
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Reasoning Ability. Based on the comprehension
of a text, reasoning ability refers to the power of the
processes and strategies used in drawing inferences,
reaching conclusions, arriving at solutions, and
making decisions (Kyllonen and Christal, 1990).
In ElitePLM, we mainly focus on three types of rea-
soning abilities. In detail, commonsense reasoning
requires PLMs to draw inferences using common-
sense knowledge about the world, like the fact that
“matches” plus “logs” usually equals “fire” (Sap
et al., 2020); Note that subtle differences exist be-
tween commonsense knowledge and background
knowledge in comprehension ability. Common-
sense knowledge is broadly defined as the total
accumulation of facts and information that a per-
son has gained from previous experiences. Deduc-
tive reasoning involves PLMs drawing conclusions
from a set of given premises in the form of cate-
gorical syllogisms (e.g., all x are y) or symbolic
logic (e.g., if p then q) (Johnson-Laird, 1999); Ab-
ductive reasoning involves reaching the most likely
explanation for a set of facts, such as a scientific
theory to explain a set of empirical findings (Wal-
ton, 2014).

Composition Ability. In the literature (Connors,
1997), composition is a highly intelligent and syn-
thetic process where a writer assembles words and
sentences to create a coherent and meaningful work
(e.g., poem, music, and novel) from scratch, which
closely resembles to the text generation task in
NLP (Berninger, 1999). Therefore, in ElitePLM,
we introduce several text generation tasks to eval-
uate the composition ability of PLMs, including
story generation, text summarization, and question
generation. Note that, story generation is a repre-
sentative composition task which needs PLMs to
not only comprehend the given story background,
but also reason about and create reasonable and
coherent story endings (Fan et al., 2018). During
the composition process, PLMs should include a
good vocabulary, grammar, spelling, and punctua-
tion knowledge, and deliberate the text structure.

3 Experiments

In this section, we first set up baselines, and then
report the results and analysis on four ability tests.

3.1 Models
As mentioned before, we compare the performance
of ten publicly released PLMs from five categories:
(1) Bidirectional LMs: BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019b), and ALBERT (Lan
et al., 2020); (2) Unidirectional LMs: GPT-2 (Rad-
ford et al., 2019); (3) Hybrid LMs: XLNet (Yang
et al., 2019) and UniLM (Dong et al., 2019); (4)
Knowledge-enhanced LMs: ERNIE (Zhang et al.,
2019); (5) Text-to-Text LMs: BART (Lewis et al.,
2020), T5 (Raffel et al., 2020), and ProphetNet (Qi
et al., 2020). We implement these models and abil-
ity tests mostly on huggingface (Wolf et al., 2020),
fairseq (Ott et al., 2019), and jiant (Phang et al.,
2020). To reflect the true level of language abilities,
we adopt the best hyper-parameter values reported
in their original papers for each PLM.

3.2 Memory Tests

Datasets and Metrics. The goal of memory tests
is to assess how much knowledge and language
patterns PLMs have memorized during pretraining.
For this purpose, we adopt two datasets for evalua-
tion, i.e., LAMA (F. Petroni and Riedel, 2019) and
English Wikipedia (2,500M words). Specifically,
LAMA is a knowledge probe corpus containing
a set of knowledge facts, where facts are either
subject-relation-object triples or question-answer
pairs. Each fact is converted into a cloze state-
ment where the subject or object entity is masked.
Wikipedia is one of the widely-used pretraining
corpora for our selected PLMs (except GPT-2 and
T5). Therefore, to conduct a fair comparison, we
continuously train GPT-2 and T5 on Wikipedia us-
ing their pretraining objectives. Similar to LAMA,
we randomly sample 100,000 texts from Wikipedia
and then mask a proportion of 15% tokens follow-
ing BERT. By querying PLMs with the missing
tokens on Wikipedia and LAMA, we can test the
language patterns and factual knowledge in PLMs’
memory. For metrics, we use Mean Precision at
One (P@1) of predicting missing tokens. For ef-
ficiency, we measure it as the performance w.r.t.
the number of training epochs: the more efficient a
model is, the fewer epochs to achieve a reference
performance.

Results and Analysis. To evaluate how much text
PLMs have recalled in pretraining, we directly test
PLMs using Wikipedia and LAMA without fine-
tuning, similar to zero-shot learning. The results
on P@1 metric are shown in Table 1. Compared
with bidirectional and hybrid LMs (e.g., BERT and
XLNet), GPT-2 uses auto-regressive self-attention
where every token can only attend to the context to
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Models
Bidirectional Uni. Hybrid KE Text-to-Text

BERT RoBERTa ALBERT GPT-2 XLNet UniLM ERNIE T5 BART ProphetNet

Vocab Size 28996 50265 30000 50257 32000 28996 28996 32100 50295 30522

LAMA
Google-RE 11.0 7.1 3.3 3.9 10.0 9.6 1.3 4.0 9.4 0.1

T-REx 29.2 23.9 21.0 12.0 28.9 28.4 13.4 21.7 15.8 1.1
ConceptNet 19.1 21.6 20.0 6.4 19.5 18.3 13.0 17.1 7.7 0.3

SQuAD 17.0 21.0 20.6 5.6 20.8 17.4 8.1 11.7 3.1 0.7

Wikipedia 70.9 71.1 63.9 42.7 68.7 71.5 45.7 65.0 47.8 31.3

Table 1: Memory test results on LAMA and Wikipedia datasets (test set). These results are based on the LARGE
version of each PLM and more results can be found in the Appendix C. Bold and underlined fonts denote the best
and the second best performance of a PLM (the same as below).

Relation Template BERT RoBERTa GPT-2 BART T5

<[X], place_of_death, [Y]>
[X] died in [MASK]. 13.98 0.46 0.15 11.09 4.19

[X] passed away in [MASK]. 13.46 0.46 0.62 3.54 1.51
[X]’s place of death was [MASK]. 3.27 0.00 0.00 0.00 1.51

<[X], place_of_birth, [Y]>
[X] was born in [MASK]. 16.07 12.52 7.53 14.77 6.32

[X] was born in the place of [MASK]. 2.83 1.29 0.00 0.00 1.39
[X]’s place of birth was [MASK]. 12.16 1.87 0.00 0.00 3.12

Table 2: The impact of template on eliciting PLMs’ stored knowledge.
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Figure 1: Memory efficiency (P@1) of five PLMs on
Google-RE and T-REx datasets.

its left. This unidirectional training objective natu-
rally limits the performance of GPT-2 in terms of
memorizing information. It has been previously re-
ported that PLMs can remember more information
by scaling up the model size (Brown et al., 2020).
However, in our tests, BART-large (400M) achieves
worse results than RoBERTa-base (125M) with the
same training corpus and similar vocabulary sizes
(50,295 vs 50,265). During pretraining, RoBERTa
adopts bidirectional objectives and novel strategies
like larger training batches. It can be concluded
that, as opposed to model size, training objectives
and strategies reflect the way that PLMs memo-
rize information, making significant impacts on
PLMs’ memory ability. Besides, we can clearly
observe that all PLMs achieve their best results

in T-REx (created from Wikipedia triples) among
LAMA, and perform relatively well on Wikipedia.
This implies that PLMs indeed remember a large
proportion of knowledge and language patterns
from pretraining corpora.

To test the memory efficiency, we fine-tune five
models, BERT, ALBERT, GPT-2, BART, and XL-
Net, for several epochs. As shown in Figure 1, to
achieve a reference performance, the bidirectional
training objective like BERT needs fewer epochs
than other kinds of objectives. This further im-
plies that the bidirectional training objective is also
helpful to facilitate the memory efficiency since
bidirectional language modeling can make PLMs
more quickly capture the language patterns.

Based on the memory test results, we further
analyze how to effectively elicit the information
from PLMs’ memory. LAMA hand-crafts tem-
plates to test PLMs by filling the [MASK] token.
Therefore, we conduct a pilot study on designing
different templates for two relations in Google-RE.
Table 2 shows that different templates can result in
substantial differences in eliciting PLMs’ memory.
The bidirectional LMs, e.g., BERT, show relatively
adaptability to varying templates, further verifying
their strength in memory ability. Therefore, with
large-scale knowledge stored in PLMs, how to de-
rive an effective and appropriate method to provoke
them is a key challenge.
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Models WNLI CoLA MNLI RTE QNLI SST-2 QQP STS-B MRPC Avg.
Acc. Matt. M./MM. Acc. Acc. Acc. F1/Acc. P/S Corr. F1/Acc.

BERTBASE 65.1 52.1 84.6/83.4 66.4 90.5 93.5 69.9/88.2 77.4/73.7 79.0/85.1 76.5
BERTLARGE 65.1 60.5 86.7/85.9 70.1 92.7 94.9 72.1/89.3 87.6/86.5 85.4/89.3 80.5
RoBERTaBASE 65.1 61.4 87.4/87.2 75.1 92.9 95.7 72.5/89.4 89.2/88.5 87.5/90.7 81.8
RoBERTaLARGE 89.0 67.8 90.8/90.2 88.2 98.9 96.7 74.3/90.2 92.2/91.9 89.9/92.4 88.5
ALBERTXLARGE 65.8 58.2 35.6/36.5 62.5 94.2 95.1 71.7/88.9 87.6/86.6 69.8/80.3 72.7
ALBERTXXLARGE 64.4 64.7 89.7/89.6 70.4 95.3 96.0 70.7/88.4 91.3/90.6 68.1/80.4 80.6
GPT-2SMALL 54.8 33.8 81.1/81.4 62.1 86.7 91.2 69.8/87.9 79.0/76.5 76.9/83.6 71.9
GPT-2MEDIUM 54.1 50.5 84.8/84.5 63.6 91.2 92.1 71.4/88.6 84.3/82.7 80.0/85.5 75.8
XLNetBASE 58.9 26.2 86.1/85.3 59.9 91.3 94.0 71.5/88.9 83.9/82.9 84.3/88.3 74.0
XLNetLARGE 92.5 70.2 90.9/90.9 88.5 99.0 97.1 74.7/90.4 93.0/92.6 90.5/92.9 89.5
UniLMBASE 65.1 49.0 83.0/82.2 60.3 88.7 92.3 70.7/88.4 82.3/81.4 84.3/88.7 76.2
UniLMLARGE 65.1 61.1 87.0/85.9 70.9 92.7 94.5 71.5/89.2 86.6/85.3 85.2/89.1 80.5
ERNIEBASE 65.1 52.3 84.0/83.2 68.8 91.3 93.5 70.5/88.4 85.1/83.8 80.3/85.9 70.7
T5BASE 78.8 51.1 87.1/86.2 80.1 93.7 95.2 72.6/89.4 89.4/88.6 87.5/90.7 82.7
T5LARGE 85.6 61.2 89.9/89.6 87.2 94.8 96.3 73.9/89.9 89.9/89.2 89.8/92.4 86.4
BARTBASE 65.1 52.8 85.1/84.3 69.5 92.6 94.4 72.5/89.7 87.6/86.6 86.1/89.5 79.5
BARTLARGE 58.9 62.4 90.2/89.3 83.5 94.8 96.3 73.6/90.1 91.1/90.4 87.8/91.1 83.1
ProphetNetLARGE 52.1 24.2 81.3/80.8 51.3 93.2 93.6 70.6/88.1 73.5/72.3 69.7/80.8 69.2

Table 3: Comprehension tests results on GLUE (test set). All results are scored by the GLUE evaluation server1.
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Figure 2: Few-shot results of four PLMs on CoLA and
QNLI tasks.

3.3 Comprehension Tests

Datasets and Metrics. In comprehension tests, we
take into account three aspects of comprehension
ability, including vocabulary, background knowl-
edge, and linguistic structures. Therefore, we em-
ploy five datasets for comprehension tests, i.e.,
GLUE (Wang et al., 2019b), SuperGLUE (Wang
et al., 2019a), SQuAD v1.1 (Rajpurkar et al.,
2016), SQuAD v2.0 (Rajpurkar et al., 2018), and
RACE (Lai et al., 2017). Among these datasets,
GLUE and SuperGLUE are two widely-used com-
prehension benchmarks. Several tasks, like word
sense disambiguation and coreference resolution,
can assess PLMs’ understanding of vocabulary
meaning and grammatical structure of a text. By
contrast, SQuAD v1.1&v2.0, and RACE are three
popular question answering datasets. To answer the

1https://gluebenchmark.com/

Date Person Noun Adjective Verb
Answer Type
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BERT
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Figure 3: PLMs Performance on SQuAD v1.1&v2.0
stratified by five types of answer.

natural language questions, PLMs should be aware
of the background knowledge about some partic-
ular topic. For example, to answer the question
“what can be used as rewards for dog training?”,
the background knowledge “dogs like bones” will
be helpful for PLMs to answer “bones”. For evalu-
ation, we report the corresponding metrics results
for each task, such as the Matthews corr. metric for
CoLA.

Results and Analysis. Table 3 presents the results
of comprehension test in GLUE dataset (results in
other four datasets can be found in Appendix D).
The last column in this table indicates the average
overall performance across all tasks. Interestingly,
the models behaving well in memory tests (e.g.,
RoBERTa and XLNet) also present good results
in many comprehension tasks. The results indi-
cate that the improvement on memory ability is
beneficial for the performance of comprehen-
sion ability, which is in line with our intuition.
Compared with bidirectional language modeling in
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Datasets
Bidirectional Uni. Hybrid KE Text-to-Text

BERT RoBERTa ALBERT GPT-2 XLNet UniLM ERNIE T5 BART ProphetNet

CQA 55.9 72.2 80.0 60.8 62.9 62.3 54.1 69.8 75.8 21.3
ROCStories 90.2 97.4 97.1 59.9 93.8 86.9 84.7 91.4 91.7 82.2
SWAG 86.3 89.9 90.7 79.7 86.8 83.1 80.2 73.7 87.9 70.1
HellaSwag 47.3 85.2 90.1 60.4 79.7 46.7 44.5 79.1 76.6 26.4
SM-A 89.4 93.0 92.5 88.7 83.7 89.3 88.7 92.7 82.9 85.5
SM-B 85.8 92.3 92.3 73.4 88.7 86.4 87.7 88.2 67.9 78.0
ARCT 71.2 57.9 79.5 66.7 83.1 72.3 73.7 69.4 84.2 65.5

Table 4: Reasoning tests results on seven datasets (test set). CQA is short for CommonsenseQA. SM-A and SM-B
denote the Task A and Task B of Sense Making, respectively. We report the results of LARGE version for each
model in this table and more results can be found in the Appendix E.

BERT, permutation language modeling (relying on
all permutations of the factorization order) used in
XLNet enables PLMs to learn more context for en-
hancing PLMs’ understanding of text, which seems
to be effective for good comprehension ability.

Among these tasks, we observe a significant per-
formance drop in the linguistic acceptability task
(CoLA) since it has different data distribution from
the pretraining corpora (Wang et al., 2021). This
kind of sensitiveness to unfamiliar tasks is also re-
flected in Figure 2, where the model performance
on CoLA shows a more volatile fluctuation (rang-
ing from 10 to 35) than QNLI (ranging from 15 to
20). It indicates that the performance of PLMs is
closely related to the similarity of data distribu-
tions in pretraining and fine-tuning. To solve this
challenge, it will be better to adopt intermediate
fine-tuning, which involves first fine-tuning PLMs
on an intermediate dataset similar to the final target
dataset and then transferring tuned PLMs to the
final dataset.

To gain more insights into PLMs’ comprehen-
sion ability, we choose four representative PLMs
(i.e., BERT, RoBERTa, ALBERT, and BART) and
humans to analyze their performance across the
answer types of SQuAD v1.1&v2.0. The results
in Figure 3 show that PLMs perform well on sim-
ple answers such as dates and persons. For these
categories of answers, there are usually only a few
plausible candidates and most answers are single
tokens. The models are more challenged on other
intricate answer types (e.g., noun and verb phrases)
because there are many more plausible candidates
and multiple tokens. Thus, improving PLMs’ un-
derstanding of intricate named entities during the
pretraining phase will possibly benefit PLMs’ com-
prehension ability later.
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Figure 4: Heatmaps of two-stage transfer learning.

3.4 Reasoning Tests

Datasets and Metrics. In reasoning tests, we
mainly consider three forms of reasoning, i.e., com-
monsense reasoning, deductive reasoning, and ab-
ductive reasoning, focusing on commonsense uti-
lization, conclusion induction, and reason deriva-
tion, respectively. For evaluation, we choose six
reasoning datasets, namely CommonsenseQA (Tal-
mor et al., 2019), ROCStories (Mostafazadeh
et al., 2016), SWAG (Zellers et al., 2018), Hel-
laSwag (Zellers et al., 2019), Sense Making (Wang
et al., 2019c), and ARCT (Habernal et al., 2018).
Specifically, CommonsenseQA requires PLMs to
reason about commonsense knowledge in human
experience of everyday life (Liu and Singh, 2004).
ROCStories, SWAG, HellaSwag, and Sense Mak-
ing Task A are concerned with deriving the con-
clusions of stories and events, while Sense Making
Task B and ARCT focus on identifying the reason
behind a statement. For evaluation, we report the
Accuracy results for each dataset.

Results and Analysis. Table 4 shows the model
performances in reasoning ability. It can be clearly
observed that performing well in comprehension
tests, ALBERT and RoBERTa also achieve stronger
performance in almost all reasoning tasks. In pre-
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Models
CNN/DailyMail GigaWord SQuAD WritingPrompts

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L ME B-4 R-L ME

GPT-2 27.00 8.00 23.08 23.72 8.12 21.56 8.48 18.82 26.77 14.47 3.23 7.29
UniLm 43.44 20.21 40.51 38.45 19.45 35.75 4.42 17.43 20.13 26.88 1.84 5.01
T5 42.50 20.68 39.75 34.75 16.26 31.49 11.19 22.35 30.53 8.61 4.19 9.51
BART 44.16 21.28 40.90 39.41 20.21 36.42 15.87 25.47 38.42 14.72 3.14 7.08
ProphetNet 44.20 21.17 41.30 39.51 20.42 36.69 14.20 23.97 35.99 19.31 2.59 7.19

Table 5: Composition tests results on four datasets. R-1, R-2, R-L are short for ROUGE-1, ROUGE-2, ROUGE-L
respectively. B-4 and MT denote BLEU-4 and METEOR, respectively. We report the result of LARGE version for
each model in this table and more results can be found in the Appendix F.

training, ALBERT introduces an inter-sentence co-
herence objective to capture the relationship among
sentences, which is helpful for the sentence-level
reasoning ability of PLMs. It has been found
that the next sentence prediction (NSP) loss in
BERT might hurt the performance of PLMs in
sentence-level tasks of downstream datasets (Liu
et al., 2019b). Interestingly, despite being the best
in comprehension tests, XLNet does not perform
as well as we expected in reasoning tests. We spec-
ulate that the permutation operation in XLNet dis-
turbs the semantic relationship between sentences,
thus leading to poor reasoning ability. To improve
PLMs’ reasoning ability, it would be useful to
design sentence-level reasoning objectives like
inter-sentence coherence loss in ALBERT. More-
over, despite incorporating knowledge, ERNIE still
shows mediocre performance in knowledge-related
datasets such as CQA. A possible reason might be
that ERNIE only uses trained KB embeddings to
enhance semantic representations but ignores the
reasoning structure of KBs. This inspires us that
designing appropriate and effective fusion methods
to integrate knowledge is more important.

To further analyze the transferability of PLMs’
reasoning ability, we conduct a two-stage study on
three task datasets, i.e., ROCStories, SM-A, and
ARCT. We first train PLMs on source tasks with
full data and then fine-tune PLMs on target tasks
with ten instances. In Figure 4, it can be observed
that PLMs have better reasoning transferability
between similar tasks such as deductive reason-
ing tasks (ROCStories and SM-A). This shows that
model performance on data-scarce reasoning tasks
can be improved by incorporating additional train-
ing on data-rich similar tasks (Wang et al., 2021).

3.5 Composition Tests

Datasets and Metrics. Composition is similar to
the text generation task, aiming at generating new

Models
GigaWord

TT (%) Flu. Info. Acc. Overall

GPT-2 26.09 3.11 2.79 2.64 4.87
UniLM 50.34 4.02 3.49 3.45 6.73
T5 53.67 3.95 3.45 3.46 6.68
BART 51.10 4.01 3.46 3.49 6.73
ProphetNet 53.02 3.99 3.52 3.45 6.74

Gold 40.77 3.61 3.29 3.15 6.05

Models
WritingPrompts

TT (%) Flu. Info. Rel. Overall

GPT-2 45.70 3.42 3.17 3.20 5.87
UniLM 1.20 1.32 1.88 2.03 2.74
T5 34.40 3.01 2.80 3.09 5.18
BART 45.20 3.37 3.16 3.39 5.96
ProphetNet 29.60 2.95 2.91 3.10 5.18

Gold 71.30 3.79 4.07 3.87 7.37

Table 6: Turing test (TT) and human scores on the test
set of GigaWord and WritingPrompts. Flu., Info., Acc.
and Rel. denote fluency, informativeness, accuracy and
relevance respectively. We report the result of LARGE
version for each model in this table and more results can
be found in the Appendix F.

content from scratch. Therefore, we use four text
generation benchmarks for composition tests, i.e.,
WritingPrompts (Fan et al., 2018) on story genera-
tion, CNN/Daily Mail (Hermann et al., 2015) and
GigaWord (Rush et al., 2015) on text summariza-
tion, and SQuAD v1.1 (Rajpurkar et al., 2016) on
question generation. According to the length of
the target text, text summarization and question
generation is short text generation, while story gen-
eration is long text generation. For evaluation, we
adopt three automatic metrics, i.e., BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005). Besides, follow-
ing (Zou et al., 2021), we conduct human test from
five aspects, i.e., Fluency, Informativeness, Accu-
racy, Relevance and Overall. The overall score is
rated from 1 to 10, while the others are rated from
1 to 5. Inspired by Turing (2009), we further de-
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Figure 5: Impact factors of Turing Test.

sign a Turing test to assess the generation ability of
PLMs, where a human interrogator is requested to
distinguish whether the given text is generated by
a human. From the generated texts of each model
and gold texts, we randomly select 500 texts scored
by judges. More details of human test and Turing
test are shown in Appendix F.

Results and Analysis. Table 5 and Table 6 present
the automatic evaluation and human evaluation re-
sults on composition ability, respectively. We can
observe that ProphetNet and BART achieve great
performance on short text generation, while GPT-2
and T5 show better results on long text generation.
Specifically, BART employs denoising objectives
for reconstructing the corrupted original text, and
ProphetNet adopts future n-gram prediction, which
is flexible for modeling the semantic relations be-
tween tokens and phrases in short texts. However,
in long texts, a small ratio of masked tokens (i.e.,
15%) might be not effective in capturing the com-
plex long-range dependency. By comparison, the
left-to-right prediction objective in GPT-2 can be
more suitable to model the long-range semantic
continuity in long texts, and T5 has the largest
model size to achieve a strong composition abil-
ity. For composition ability, we conclude that the
denoising objective is helpful for short text com-
position, while the left-to-right objective is more
powerful for long text composition. Besides, the
model size is also an important factor in improving
PLMs’ composition ability.

To further investigate what factors affect the pass
rate of the Turing test, we deeply analyze the in-
termediate scoring results in the human test and
Turing test. As shown in Figure 5, we calculate
the pass rate of the Turing test for each human
test metric across 1 to 5 scale. Moreover, we com-
pute the Pearson correlation coefficient between
the pass rate and each metric. In story genera-

tion (WritingPrompts), the coefficients for Fluency,
Informativeness, and Relevance are 96.63, 97.93,
96.44, respectively. While, in text summarization
(GigaWord), the coefficients for Fluency, Informa-
tiveness, and Accuracy are 96.08, 97.67, 98.38,
respectively. From these analysis results, we can
conclude that Informativeness is more important
for story generation, while Accuracy is more influ-
ential in text summarization. Besides, we compute
the text similarity between the generated texts from
different PLMs, which is shown in Appendix F.

4 Discussion

Based on the above four ability tests, we intend to
provide a guideline for helping researchers choose,
apply, interpret and design PLMs for NLP tasks.

In section 3.3, we observe that the improvement
in memory ability is likely to be helpful for the
performance of comprehension ability. Hence, de-
signing PLMs with special objectives like bidirec-
tional language modeling in BERT and strategies
like larger training batches in RoBERTa for larger
memory capacity will further benefit PLMs in the
downstream comprehension tasks. Besides, when
applying PLMs to downstream tasks, the similarity
of data distribution between pretraining and fine-
tuning has a great impact on PLMs performance.
Possible solutions such as introducing intermedi-
ate tasks or datasets can alleviate such a discrep-
ancy. Moreover, we further find some limitations
in PLMs’ comprehension ability, where PLMs are
good at simple single-token answer types in QA
such as dates but perform worse in complex phrase
answers.

Compared to comprehension, reasoning in sec-
tion 3.4 is much more intricate and usually in-
volves inferring the semantic relationships among
multiple sentences. Therefore, PLMs such as AL-
BERT trained with sentence-level objectives can
be more suitable for conducting reasoning tasks.
Intuitively, incorporating sentence-level objectives
during pretraining will help PLMs learn the corre-
lation among different sentences. Note that PLMs
have better reasoning transferability between sim-
ilar tasks, thus data-scarce reasoning tasks can be
improved by first training on data-rich tasks.

For composition ability, PLMs with denoising
training objectives perform much better on short
text composition, while PLMs with left-to-right
objectives or larger model size are more suitable
for long text composition. This might be because
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PLMs with different training objectives can finally
capture different ranges of semantic dependency
between tokens and phrases. Moreover, to obtain a
higher pass rate of Turing test, different text gener-
ation tasks will be concerned with varying factors,
such as informativeness is much more critical for
story generation.

5 Related Work

Pretrained Language Models. Owing to the
great achievements Transformer (Vaswani et al.,
2017) has made, the paradigm of pretrained lan-
guage models (PLMs) is thriving (Radford et al.,
2019; Devlin et al., 2019; Liu et al., 2019b; Lewis
et al., 2020; Raffel et al., 2020). It is widely rec-
ognized that PLMs can learn massive knowledge
from corpora (Li et al., 2021c), leading to signifi-
cant progress in various language tasks (Li et al.,
2021a,b). With such encouraging results in exten-
sive NLP tasks, it is a non-trivial topic to system-
atically evaluate the abilities of PLMs, which can
further deepen our understanding of PLMs and fa-
cilitate their application to more fields.

Language Model Evaluation. Many efforts have
studied the evaluation of language model perfor-
mance. Liu et al. (2019a) evaluate BERT (De-
vlin et al., 2019), GPT (Radford et al., 2018), and
ELMo (Peters et al., 2018) on a variety of linguis-
tics tasks. Their findings indicate that the features
generated by PLMs are sufficient for good perfor-
mance on a board set of tasks but fall short on tasks
requiring fine-grained linguistic knowledge. Ten-
ney et al. (2019) evaluate similar models on a range
of sub-sentence linguistic analysis tasks, showing
that PLMs encode both syntax and semantics into
parameters. Zhou et al. (2020) also report that
PLMs can learn rich knowledge but focus on eval-
uating the commonsense. However, these studies
only look at one dimension of PLMs ability evalua-
tion. Other work such GLUE (Wang et al., 2019b)
and CLUE (Liang Xu, 2020) just consider a simple
mixture of multiple tasks lacking comprehensive
evaluation. To the best of our knowledge, this is
the first work to systematically evaluate PLMs by
defining various kinds of language abilities and
performing extensive comparison.

6 Conclusion

This paper investigates the general language abil-
ity evaluation of pretrained language models. We

design four kinds of language abilities of PLMs,
including memory, comprehension, reasoning, and
composition, and measure ten widely-used PLMs
within five categories. For each language ability,
we select multiple representative tasks to quanti-
tatively evaluate the performance of PLMs. Our
experimental results demonstrate that PLMs with
varying objectives and strategies are good at dif-
ferent ability tests. Note that our final predicted
outputs of PLMs can also be reused as an open re-
source for more depth and granularity in analyzing
PLMs’ language abilities. As a result, it is believed
that this study will benefit future work about choos-
ing or designing suitable PLMs for the target NLP
tasks based on their properties.
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Supplementary Material for ElitePLM

We give some experiment-related information
as supplementary materials. The appendix is orga-
nized into six sections:

• Configurations and pretraining setting com-
parisons for selected models are presented in
Appendix A;

• Data statistics of each test are presented in
Appendix B;

• Full results for memory tests are presented in
Appendix C;

• Full results for comprehension tests are pre-
sented in Appendix D;

• Full results for reasoning tests are presented
in Appendix E; and

• Full results for composition tests are presented
in Appendix F.

A Configurations of Pretrained Language
Models

The selected ten PLMs within five categories and
the comparisons of these PLMs in configuration
and pretraining setting have been shown in Table 7.
The effect extent of each factor for PLMs abilities
in Table 8.

B Data Statistics

Memory Tests. The data statistics of LAMA and
Wikipedia of each model are presented in Table 9.
Due to the differences of each PLM, we drop the
data that are not in the vocabulary.

Comprehension Tests. The data statistics of
GLUE, SuperGLUE, SQuAD and RACE are pre-
sented in Table 10.

Reasoning Tests. The data statistics for common-
sense reasoning, deductive reasoning and abductive
reasoning are presented in Table 11.

Composition Tests. The data statistics for text
summarization, question generation and story gen-
eration are presented in Table 12. For the first three
datasets, we truncate the source text considering
the input length of PLMs during training. And
for WritingPrompts, we reconstruct the original

dataset and discard examples where text contains
more than 512 tokens.

C Memory Tests

Full results on LAMA and Wikipedia datasets are
presented in Table 13.

D Comprehension Tests

Full results on SuperGLUE, SQuAD and RACE
are presented in Table 14 and Table 15.

E Reasoning Tests

Full results on CommonsenseQA, ROCStories,
SWAG, HellaSwag, Sense Making, and ARCT are
presented in Table 16.

F Composition Tests

For automatic metrics, BLEU-n and ROUGE-n
compute the ratios of overlapping n-grams between
generated and real text, while METEOR measures
word-to-word matches based on WordNet between
generated and real text. For the human test, Flu-
ency evaluates whether the text is well-formed and
logical to read; Informativeness measures whether
the text contains useful information; Accuracy tests
whether the text describes the given content ac-
curately; Relevance measures whether the text is
relevant to the given context; Overall evaluates the
overall quality of the text.

In the human test, we ramdomly select 500 gen-
erated texts for each PLM and 500 gold text. There-
fore, there are 3000 texts totally. The judges are
all PhD students which do not know about where
each text comes from. Each text will be scored by
two judges from the above five aspects, and the
final score is the average of the two scores. In the
Turing test, each text will also be distinguished by
two judges. Only when two judges make the same
decisions that the text is generated by human, we
will consider the text is true.

Full results on CNN/Daily-Mail, GigaWord,
SQuAD, and WritingPrompts are presented in Ta-
ble 17. Turing test results are presented in Table 6.
We also show some summaries and stories gener-
ated by different PLMs in Table 19, Table 20, and
Table 21.
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Type Models
Configurations Pretraining Setting

Size #Parameter Corpus Size

Bidirectional

BERT base/large 110M/340M BooksCorpus, English Wikipedia 16GB

RoBERTa base/large 125M/355M BooksCorpus, CC-News,
WebText, Stories 160GB

ALBERT xlarge/xxlarge 60M/235M BERT Corpus 16GB

Unidirectional GPT-2 small/medium 117M/345M WebText (removing Wikipedia) 40GB

Hybrid XLNet base/large 110M/340M BooksCorpus, English Wikipedia,
Giga5, ClueWeb, Common Crawl 158GB

UniLM base/large 110M/340M BERT Corpus 16GB

Knowledge-
Enhanced ERNIE base 114M English Wikipedia, Wikipedia 17GB

Text-to-Text
T5 base/large 220M/770M Colossal Clean Crawled Corpus 745GB

BART base/large 140M/400M RoBERTa Corpus 160GB
ProphetNet large 373M RoBERTa Corpus 160GB

Table 7: Configurations and pretraining setting comparisons for our selected models.

Ability MA DD MS PO PS

Memory ⋆⋆ ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆
Comprehension ⋆⋆ ⋆⋆ ⋆ ⋆⋆ ⋆⋆⋆

Reasoning ⋆ ⋆⋆⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆
Composition ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆

Table 8: The impact extent of each factor for four language abilities of PLMs. MA, DD, MS, PO, and PS are short
for model architecture, data distribution, model size, pretraining objective, and pretraining strategy, respectively

G-RE T-REx ConceptNet SQuAD Wikipedia

#Origin 6,106 34,014 14,878 305 100,000
#Relation 3 41 16 - -

BERT / UniLM 5,527 34,014 11,658 305 85,836
RoBERTa 4,618 29,500 12,505 286 85,862
ALBERT 5,469 33,636 12,389 291 86,533
ERNIE 1,900 9,071 11,649 173 -
BART 4,618 29,500 12,505 286 85,862
T5 4,256 25,850 10,905 230 78,069
GPT-2 4,618 29,500 7,477 196 1,184
XLNet 5,202 32,293 12,080 279 85,228
ProphetNet 5,527 34,014 12,506 305 87,516

The Predicted Outputs The predicted token of “[MASK]” in each template.

Table 9: Statistics of datasets in memory tests, including LAMA and Wikipedia. #Origin and #Relation denote
the number of examples and relations in original dataset, and the number of each model denotes the number of
examples after selected. The predicted outputs is the intermediate result resources we provide.
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Corpus #Train #Valid #Test The Predicted Outputs

GLUE

CoLA 8,551 1,043 1,063 The predicted binary class whether a sentence is grammatical.
SST-2 67,349 872 1,821 The predicted sentiment (positive/negative) of a sentence.

MRPC 3,668 408 1,725 The predicted binary class whether two sentences are
QQP 363,846 40,430 390,965 semantically equivalent.

STS-B 5,749 1,500 1,379 The predicted similarity score (1-5) of two sentences.
MNLI

-M. 392,702 9,815 9,796 The predicted relation (entailment/contradiction/neutral)

MNLI
-MM. 9,832 9,847 between two sentences.

QNLI 104,743 5,463 5,463
RTE 2,490 277 3,000 The predicted relation (entailment or not) between two sentences.

WNLI 635 71 146

Super
GLUE

BoolQ 9,427 3,270 3,245 The predicted answer (yes/no) to the passage-based question.

CB 250 57 250 The predicted relation (entailment/contradiction/neutral)
between two sentences.

COPA 400 100 500 The predicted cause or effect of the premise from two choices.
MultiRC 5,100 953 1,800 The predicted answer choice to the passage-based question.

Wic 6,000 638 1,400 The predicted binary class whether a word is used with the same
sense in two sentences .

WNLI 635 71 146 The predicted relation (entailment or not) between two sentences.

WSC 554 104 146 The predicted noun phrase referrent of the pronoun from among
the provided choices.

SQuAD v1.1 88,567 10,790 - The predicted answer span to the passage-based question.v2.0 131,924 12,165 -

RACE

all 25,137 1,389 1,407

The predicted answer choice to the passage-based question.

87,866 4,887 4,934

middle 6,409 368 362
25,421 1,436 1,436

high 18,728 1,021 1,045
62,445 3,451 3,498

Table 10: Statistics of datasets in comprehension tests including GLUE, SuperGLUE, SQuAD and RACE. #Train,
#Valid and #Test denote the number of instances in train, valid and test set, respectively (the same as below).
MNLI-M. and MNLI-MM. denote MNLI-match and MNLI-mismatch, respectively. SQuAD doesn’t have test set,
and we utilize the valid set as the test set. The predicted outputs is the intermediate result resources we provide.

Reasoning Task Corpus #Train #Valid #Test The Predicted Outputs

Com.sense CQA 9,741 1,221 1,140 The predicted answer choice to a commonsense question.

Deductive

ROCS. 1,257 314 1,571 The predicted ending choice based on the context.
SWAG 73,546 20,006 20,005 The predicted answer choice based the grounded situation.
HellaS. 39,905 10,042 10,003
SM-A 10,000 1,000 1,000 The predicted valid sentence between two sentences.

Abductive SM-B 10,000 1,000 1,000 The predicted reason choice why the sentence is invalid.
ARCT 1,210 316 444 The predicted warrant choice that justifies reason and claim.

Table 11: Statistics of datasets in reasoning tests, including commonsense reasoning, deductive reasoning and
abductive reasoning. CQA is short for CommonsenseQA. SM-A and SM-B denote the Task A and Task B of Sense
Making, respectively. The Predicted outputs is the intermediate result resources we provide.
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Task Corpus #Train #Valid #Test #Input #Output The Predicted Outputs

TS

CNN/
DailyMail 287,113 13,368 11,490 822.3 57.9 The generated summary given a news.

Gigaword 3,803,957 189,651 1,951 33.7 8.7 The generated headline given a paragraph and
corresponding Turing test and aspect scores.

QG SQuAD 75,722 10,570 11,877 149.4 11.5 The generated question given a passage and
corresponding answer.

SG Writing
Prompts 67,765 3,952 3,784 30.2 281.2 The generated story given a prompt and

corresponding Turing test and aspect scores.

Table 12: Statistics of datasets in composition tests, including text summarization (TG), question generation (QG)
and story generation (SG). #Input and #Output denote the average number of tokens in the input text and output text.
The Predicted outputs is the intermediate results and human evaluation resources we provide.

Models Vocab Size LAMA-G LAMA-T LAMA-C LAMA-S Wikipedia Average

BERTBASE 28996 10.3 27.5 15.3 12.8 66.8 41.6
BERTLARGE 28996 11.0 29.2 19.1 17.0 70.9 45.0
RoBERTaBASE 50265 7.5 19.9 17.9 13.3 66.9 40.8
RoBERTaLARGE 50265 7.1 23.9 21.6 21.0 71.1 44.8
ALBERTXLARGE 30000 2.9 19.6 16.8 14.4 64.3 38.9
ALBERTXXLARGE 30000 3.3 21.0 20.0 20.6 63.9 40.1
GPT-2SMALL 50257 1.3 6.8 4.0 3.0 36.0 19.9
GPT-2MEDIUM 50257 3.9 12.0 6.4 5.6 42.7 24.8
XLNetBASE 32000 0.0 0.0 2.8 0.0 64.6 32.7
XLNetLARGE 32000 0.0 0.0 5.5 0.4 68.7 35.1
UniLMBASE 28996 8.5 27.6 15.4 11.8 66.9 41.4
UniLMLARGE 28996 9.6 28.4 18.3 17.4 71.5 46.4
ERNIEBASE 28996 1.3 13.4 13.0 8.1 - -
T5BASE 32100 5.5 20.0 13.2 9.6 60.5 36.3
T5LARGE 32100 4.0 21.7 17.1 11.7 65.0 39.3
BARTBASE 50295 5.7 11.7 9.5 4.2 47.9 27.8
BARTLARGE 50295 9.4 15.8 7.7 3.1 47.8 28.4
ProphetNetLARGE 30522 0.1 1.1 0.3 0.7 31.3 15.9

Table 13: Memory tests results on LAMA and Wikipedia datasets (test set). We report accuracy score for each
dataset. Average is computed by averaging the scores of LAMA and Wikipedia (the score of LAMA is averaged
among four dataset first). LAMA-G, LAMA-T, LAMA-C and LAMA-S denote the LAMA corpus Google-RE,
T-REx, ConceptNet and SQuAD, respectively.

3534



Model WSC CB RTE COPA Wic BoolQ MultiRC Avg
Acc. F1/Acc. Acc. Acc. Acc. Acc. F1/EM

BERTBASE 60.6 78.7/80.4 66.4 65.0 69.9 74.6 68.1/16.9 65.5
BERTLARGE 63.5 89.0/92.9 70.1 73.0 72.7 75.6 69.4/22.6 70.3
RoBERTaBASE 71.1 89.1/91.1 75.1 78.0 67.2 81.1 72.6/31.9 73.6
RoBERTaLARGE 75.0 95.0/96.4 88.2 84.0 72.7 85.4 81.7/47.2 80.8
ALBERTXLARGE 63.5 81.1/85.7 62.5 75.0 66.5 62.2 63.6/12.4 64.4
ALBERTXXLARGE 64.4 87.6/92.9 70.4 91.0 74.3 62.2 85.1/54.0 74.6
GPT-2SMALL 54.8 64.0/76.8 62.1 62.0 64.1 68.2 67.3/19.5 60.7
GPT-2MEDIUM 61.5 84.4/82.1 63.6 63.0 67.2 73.9 71.5/29.2 66.1
XLNetBASE 64.4 91.0/91.1 59.9 65.0 67.9 76.9 72.5/29.6 68.0
XLNetLARGE 65.3 87.6/92.9 88.5 82.0 69.7 84.7 79.0/41.6 77.3
UniLMBASE 63.5 74.7/82.1 60.3 67.0 68.5 73.3 67.9/20.5 65.0
UniLMLARGE 65.4 86.5/87.5 70.9 76.0 72.3 82.3 75.7/36.3 72.8
ERNIEBASE 65.4 81.6/82.1 68.8 64.0 70.8 74.4 68.7/21.3 67.2
T5BASE 79.8 86.2/94.0 80.1 71.2 68.3 81.4 79.7/43.1 76.0
T5LARGE 84.6 91.6/94.8 87.2 83.4 69.3 85.4 83.3/50.7 81.4
BARTBASE 64.4 86.6/85.7 69.5 70.0 65.7 75.7 74.2/31.7 69.2
BARTLARGE 65.4 97.4/96.4 83.5 86.0 70.4 85.1 82.9/50.6 79.2
ProphetNetLARGE 63.5 94.7/92.9 51.3 61.0 60.7 67.4 64.7/17.2 62.7

Table 14: Comprehension tests results on SuperGLUE (valid set). Avg column is computed by averaging the scores
of tasks to its left (the scores for CB and MultiRC are first averaged).

Models
SQuAD v1.1 SQuAD v2.0 RACE

EM F1 EM F1 RACE RACE-M RACE-H

BERTBASE 80.8 88.5 72.8 76.0 65.0 71.7 62.3
BERTLARGE 84.1 90.9 78.7 81.9 72.0 76.6 70.1
RoBERTaBASE 86.1 92.3 80.3 83.4 72.8 72.6 26.6
RoBERTaLARGE 88.9 94.6 86.5 89.4 83.2 86.5 81.3
ALBERTXLARGE 86.1 92.5 83.1 86.1 78.1 76.7 79.8
ALBERTXXLARGE 88.3 94.1 85.1 88.1 87.4 85.9 87.1
GPT-2SMALL 63.6 75.1 57.1 61.5 61.2 62.9 58.2
GPT-2MEDIUM 70.3 80.8 61.5 66.0 62.2 65.0 61.4
XLNetBASE 12.8 14.7 78.5 81.3 71.3 72.8 67.5
XLNetLARGE 89.7 95.1 87.9 90.6 85.4 88.6 84.0
UniLMBASE 82.8 89.9 74.9 78.0 59.0 64.1 50.3
UniLMLARGE 86.5 92.7 80.5 83.4 70.3 70.0 66.4
ERNIEBASE - - - - - 67.8 -
T5BASE 85.4 92.1 77.6 81.3 70.6 74.4 68.4
T5LARGE 86.7 93.8 - - 80.4 82.6 77.8
BARTBASE 84.6 91.0 76.0 79.2 70.1 72.4 63.2
BARTLARGE 88.8 94.6 86.1 89.2 82.2 82.5 79.6
ProphetNetLARGE - - - - - 74.1 -

Table 15: Comprehension tests results on SQuAD and RACE (test set).
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Model CQA ROCStories SWAG HellaSwag SM-A SM-B ARCT

BERTBASE 53.0 88.1 81.6 40.5 87.3 80.1 65.1
BERTLARGE 55.9 90.2 86.3 47.3 89.4 85.8 71.2
RoBERTaBASE 72.1 93.3 82.6 61.0 89.3 87.5 46.1
RoBERTaLARGE 72.2 97.4 89.9 85.2 93.0 92.3 57.9
ALBERTXLARGE 66.2 90.4 84.6 75.9 87.9 89.4 56.1
ALBERTXXLARGE 80.0 97.1 90.7 90.1 92.5 92.3 79.5
GPT-2SMALL 47.8 58.8 48.1 39.9 84.2 74.7 66.0
GPT-2MEDIUM 60.8 59.9 79.7 60.4 88.7 73.4 66.7
XLNetBASE 53.8 92.0 80.4 55.1 81.6 85.4 80.2
XLNetLARGE 62.9 93.8 86.8 79.7 83.7 88.7 83.1
UniLMBASE 47.6 80.6 77.0 36.3 86.2 83.6 48.4
UniLMLARGE 62.3 86.9 83.1 46.7 89.3 86.4 72.3
ERNIEBASE 54.1 84.7 - - 88.7 - 73.7
T5BASE 61.9 88.2 65.8 55.2 89.2 82.9 63.3
T5LARGE 69.8 91.4 73.7 79.1 92.7 88.2 69.4
BARTBASE 61.0 88.9 81.2 53.4 72.0 67.9 71.8
BARTLARGE 75.8 91.7 87.9 76.6 82.9 67.9 84.2
ProphetNetLARGE 21.3 82.2 70.1 26.4 85.5 78.0 65.5

Table 16: Reasoning tests results on seven datasets (test set). We report accuracy score for each dataset. CQA is
short for CommonsenseQA. SM-A and SM-B denote the Task A and Task B of Sense Making, respectively.

Models
CNN-DailyMail GigaWord SQuAD WritingPrompts

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L ME B-4 R-L ME

GPT-2SMALL 24.60 7.21 21.06 25.25 9.03 23.20 5.13 14.83 21.06 11.58 3.80 8.18
GPT-2MEDIUM 22.95 5.99 22.08 23.72 8.12 21.56 8.48 18.82 26.77 14.47 3.23 7.29
UniLMBASE 17.83 0.11 5.50 16.64 6.11 15.12 4.47 17.65 20.30 27.71 2.35 5.47
UniLMLARGE 43.44 20.21 40.51 38.45 19.45 35.75 4.42 17.43 20.13 26.88 1.84 5.01
T5BASE 42.05 20.34 39.40 33.13 15.60 30.18 11.18 21.82 29.93 6.04 4.61 9.81
T5LARGE 42.50 20.68 39.75 34.75 16.26 31.49 11.19 22.35 30.53 8.61 4.19 9.51
BARTBASE 36.36 20.87 33.32 38.65 19.43 35.82 14.44 24.11 36.92 11.91 3.57 7.69
BARTLARGE 44.16 21.28 40.90 39.41 20.21 36.42 15.87 25.47 38.42 14.72 3.14 7.08
ProphetNetLARGE 44.20 21.17 41.30 39.51 20.42 36.69 14.20 23.97 35.99 19.31 2.59 7.19

Table 17: Composition tests results on four datasets. R-1, R-2, R-L are short for ROUGE-1, ROUGE-2, ROUGE-L
respectively. B-4 and MT denote BLEU-4 and METEOR, respectively.

Models TT (%) Fluency Informativeness Accuracy Coherence Overall

GPT-2MEDIUM 45.7 3.42 3.17 3.20 3.23 5.87
UniLMLARGE 1.2 1.32 1.88 2.03 1.71 2.74
T5LARGE 34.4 3.01 2.80 3.09 2.87 5.18
BARTLARGE 45.2 3.37 3.16 3.39 3.22 5.96
ProphetNetLARGE 29.6 2.95 2.91 3.10 2.89 5.18

Gold 71.3 3.79 4.07 3.87 3.80 7.37

Table 18: Turing test and human scores on the test set of WritingPrompts. TT is short for Turing Test and represents
the percentage of makers who believe the text is written by human. Coherence evaluates how content is coherent
considering both intra- and inter-sentence correlation of a paragraph. Rated from 1 to 5.
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Passage japan ’s nec corp. and UNK computer corp. of the united states said wednesday they had agreed to join
forces in supercomputer sales .

GPT-2MEDIUM unk computer to jointly sell supercomputers
UniLMLARGE nec [UNK] to join forces in supercomputer sales
T5LARGE nc and unk computer to join forces in supercomputer sales
BARTLARGE nec and unk computer to join forces in supercomputer sales
ProphetNetLARGE nec unk computer to join forces in supercomputer sales

Gold nec UNK in computer sales tie-up

Passage the sri lankan government on wednesday announced the closure of government schools with immediate
effect as a military campaign against tamil separatists escalated in the north of the country .

GPT-2MEDIUM closed as military campaign escalates
UniLMLARGE sri lankan gov t shuts down schools in north
T5LARGE sri lanka closes schools as fighting escalates
BARTLARGE sri lanka closes government schools
ProphetNetLARGE sri lanka closes schools as military escalates

Gold sri lanka closes schools as war escalates

Table 19: Test set examples of GigaWord dataset for each model.
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Prompts [ WP ] You have a very shitty type of precognition .

GPT-2MEDIUM <newline>“ I’m sorry, ” I said. “ I don’t know what you’re talking about. ” I looked around the
room, trying to find the source of the noise. “ What do you mean? ” I asked. “ It’s not like I’ve never
heard it before. ” He looked at me, confused. “ No, ” he said, “ it’s never happened to me before.
I ’d be surprised if it ever did. ” “ What’s that supposed to mean? You’re telling me that I can’t
remember anything before? ” “ No. ” he replied. “ That’s exactly what it means. You’ve always been
precognitions, and you ’ll never be able to remember anything. ”

UniLMLARGE i’m not sure what i’ve done wrong. i’d rather not be able to do it. i don’t know what i have done wrong,
i don’t know what it has done. i have been told that i have n’ve been wrong. <newline ><new york.
<york ><yoline >i’ll never forget that day. «new >«line >the day i was born. the day that i was raised.
the one that i never forget. the time that i first met her. the moment that i met her, the time when i first
saw her. <nowline >my life is a blur. the blur is the blur. i am not sure if i have ever been wrong, or
if i had ever been right. i ca n’re sure if it was the blur or the blur, but i do know it was. <tim. <the
blur <new newline. <i am a blur, the blur and the blur are the same. the same, the same is the same
thing. the difference is the difference between the two. the two are the difference. the differences are
the differences. the different things. the things... the changes. the change. the changing. the thing.. is
the change, the change is the thing that is the different. the new thing. <.. <this is the story of a man
who was born in the blur of the two, the one where i was n’s. the other where i am. the first time i met.
the second time i saw her, and the first where i never forgot. the story is the one in the middle of the
blur where i met the woman i loved. the woman who i loved, the woman that i loved the woman. the
man who i love the woman with the most. the person who i hate the most, the person that i hate most.
<cline >* * * <new story ><nbsp >i am the blur ; i am i. <pline »<bsp. i was a blur ; <new line ><i was
the one who was the first to be born. <first time. <np ><do nbs. <do ibs. i did n’i do it, i did not know
it had happened. <line i woman i <i i i ve, the <blur ve

T5LARGE <newline>It’s been a long time since I’ve been able to use my powers. I haven’t had a chance to use
them in a while, but I do have a few things I can do to help. The first thing I do is go to the bathroom,
and I have to wash my hands. It is a pain, I know it. But I do it anyways, because I have the ability to
see things. And I can see them. They can see me in the mirror, they can see my eyes, their eyes. My
hands, my feet, the way they move, how they feel. How I feel, what they do to me. What I do to them?
How do they know I am? I can hear them in my ears, a scream, or a cry. A sigh of relief, as I look at
the mirror and see them in front of me, like a mirror. You’re gon na see me? ”

BARTLARGE I’ve always been a bit of a weirdo. <newline>I’m not sure why, but I always knew I was going to die at
some point in my life. I don’t know if it’s because I was born in the wrong year, or if it was because my
parents died when I was very young. I just knew that I would die. I’ve never been able to explain it
to anyone, but it was always there in the back of my mind. It’s not like I could do anything about it.
I couldn’t even do anything to stop it. It was just always there. I never knew what it was, or what it
would do to me. I didn’t want to know. I wanted it to be over. But it never was. It just kept getting
worse and worse. I can’t explain it, I just know that I ’ll die.

ProphetNetLARGE it’s been a long time since i’ve had a precognition, but i don’t think i’ll ever be able to get rid of it.
<newline >it started when i was a kid. i was told that i had a very shitty type of pre - lucid dreaming. i
had no idea what it was until i was in my late teens. it was like i could see the future in front of me. i
knew exactly what i was going to do when i saw the future. i could feel it in my bones. i can feel it. i
know exactly what’s going to happen when i look at the future, and i know it will be the best thing
that’s ever happened to me. the future is going to be better than i ever thought it would be. i’m not
going to let it happen again.

Gold Just looking at the guy I already knew it . He was in for a seven on the Bristol scale and it was only
hours away . <newline><newline>Looking at his carefree face from below as he was slowly transported
towards me on the escalator , I wondered , not for the first time , if I should warn him . But as always I
asked myself : How could I tell him ? How could I tell anyone ? <newline><newline>Tell people that I
could see the future . That I could see their fate ? That I could feel the forces that were at work , often
without their knowledge and beyond their control , inside their own bodies ? That I could see shape of
things to come ? That I was a coproscognitive ? <newline><newline>Nobody would believe me . Not
until after a few predictions had been proven to be correct at least and few humored me for long enough
to realize the truth of my predictions . <newline><newline>And this guy did n’t have a few predictions
to confirm the authenticy of my gift . He needed to know and believe me about the very next event I
could foresee and there was no way to convince him in time . <newline><newline>And thus I stayed
silent again as the escalator carried us past one another leaving him to his fate . I was going up and
he was going down . <newline><newline>I could only hope for him that he would be close to the
right place two hours and thirteen minutes from now , because I could tell it would be a fast and quite
explosive one and without my word he would not have much advanced warning telling him to run for
salvation . <newline><newline>I put him out of my mind I had my own future to worry about and I did
n’t need my gift to tell me about it . I started looking for the signs pointing the way to closest lavatory .

Table 20: Test set examples of WritingPrompts dataset for each model.
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Prompts [ WP ] “ Before we allow humankind to live among us in the stars , tell us the faults of your kind . ”

GPT-2MEDIUM <newline>“ I’m sorry, sir, but I don’t think we’re ready for this. ” I said. “ We’ve been here for
thousands of years, and we’ve never seen anything like this before. ” He looked at me with a look of
horror on his face. “ What do you mean? ” I asked. He looked down at his hands, and then back up at
me. “ It’s like this, ” he said, “ You can’t see it, but it’s there. It ’ll be here for a long time, and it ’ll kill
us all. ” <newline>I looked at him, and he looked back at me, and both of us looked at the stars.

UniLMLARGE ‘ ‘ we allow humanskind to be among us, tell them the faults.’<newline ><new new >‘ ‘ humanskind,” i
said, ‘ ‘ you are the one who has been chosen to be our leader.’‘ ‘ humankind, you are our leader,’‘ i said.
<new york. <york ><yoline >‘’humanskind.’* <newrk >* <yo >«new ><>humanskind : <new name
><nowline >humans : <now name >humans. <now names ><the name of the universe. <the names of
the stars. «line >* humanskind * <now named ><first name >the universe, <new names >the stars and
the stars <new stars. the names <new planets. <first names >* * humans * <firstline >the name <new
species ><humanline »<humans ><last name >* humankind *. <last names >humans * * <lastline
>humankind. <name »* humanity * <name <><* humans. * <* human * «»humans, <now known as
humans. the name. <.. <* humanity. <human name >... * * * humanity <new humans >*.. humans *. *.
humans.. ’. <line. <humans.’s.. human.’the humans. they were the humans, the humans of the galaxy.
<: «<humans : humans. humans. humans, humans. humankind <new galaxy ><: / / www. reddit. com /
r / writingprompts / comments / 2jclq / comments _ 2jflq _ comments / 1xxxfxxgxxcxxbxxdxxkxxqxx
<new _ ><_ _ <new i am humankind : the humankind of the galactic system. <_ «_ >i am the human
race. <tv ><tline >i was the human. <pline >it was a long time since i was human. i was a human.. i
am a human race,..kind <. <’humans human «race humans <* <human of * <the «* i humans. new..

T5LARGE Before we allow humankind to live amongst the stars, tell us the faults of your kind. ” newline>I don’t
know, I’m not a scientist, but I do have a degree in astronomy, and I do know a thing or two about
science. I know that a lot of people think that science is a good thing, that it’s a great thing. But, if you
think about it, you’re a fucking shithole. You’ve got a bunch of crazies, all of them. So, what do you
think?? Do you know what? I mean, they ’ll tell you. And, of course, we ’d like to know what you
think of us.

BARTLARGE “ Before we allow humankind to live among us in the stars, tell us the faults of your kind. ” <new-
line><newlines>“ Well, first of all, they aren’t very smart. They don’t know how to read. They’re not
very good at math. They haven’t learned how to write yet. They are also very lazy. They spend most of
their time staring at their screens. They can’t even get up to go to the bathroom. They just sit there and
stare at the screen. They also have a tendency to stare at their phones for hours at a time. I’m not sure
why they do that, but I guess it’s because they’re bored. ”

ProphetNetLARGE ‘ ‘ before we allow humankind to live among us in the stars, tell us the faults of our kind.” <newline >‘
‘ i’m sorry, sir, but we don’t have the technology to do that. we’re too afraid of the consequences of our
actions, and we’ve spent too much time trying to find a way to stop them.’cause they’re just too stupid
to do anything about it. we have to do something about it, or we’ll never be able to get out of here. we
need to find some way to get them out of there, and if they do, then we’d have to go back to earth and
start all over again. and if that’s the case, then i’d like to thank you for your time, and i hope to see you
again soon,”

Gold Tell us your faults ? Really ? This was the question - the shibboleth - that unlocked the cosmos ?
<newline><newline>The Masters could have picked a scientist to answer but they feared she might
mask ignorance . They could have picked from our global leaders bit they feared that they would mask
deceit . They could have picked a holy man but feared he would mask violence , oppression , hate ,
intolerance ... the list of disqualifying sins was almost too long to enumerate . <newline><newline>So
they picked Josh Thornton , a 45 year old MBA in human resources . <newline><newline>“ Our
greatest weakness ? Well , I think we work a little too hard and , as a race , we might be a bit of a
perfectionist .

Table 21: Test set examples of WritingPrompts dataset for each model.
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