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Abstract
Grammatical error correction (GEC) is the task of automatically correcting errors in text. It has mainly been developed
to assist language learning, but can also be applied to native text. This paper reports on preliminary work in improving
GEC for multiword expression (MWE) error correction. We propose two systems which incorporate MWE information
in two different ways: one is a multi-encoder decoder system which encodes MWE tags in a second encoder, and the
other is a BART pre-trained transformer-based system that encodes MWE representations using special tokens. We show
improvements in correcting specific types of verbal MWEs based on a modified version of a standard GEC evaluation approach.
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1. Introduction
Second language learners make various kinds of er-
rors in their writing. State-of-the-art Grammatical Er-
ror Correction (GEC) systems attempt to correct these
errors primarily using neural machine translation tech-
nology (Yuan and Briscoe, 2016). These systems are
often biased towards correcting the most common er-
ror types, however, such as determiner, preposition and
spelling errors. Learners can nevertheless also be more
creative in generating semantically incorrect phrases
such as by the other side or in the other hand rather
than on the other hand, or dream becomes true instead
of dream comes true.
Multiword expressions (MWEs), which are combina-
tions of two or more words with syntactic and semantic
idiosyncratic behaviours (Sag et al., 2002), are known
to be challenging for language learners (Christiansen
and Arnon, 2017; Meunier and Granger, 2008). How-
ever, like most machine translation (MT) systems, cur-
rent GEC systems do not take them into considera-
tion. One important challenge involved in the natu-
ral language understanding of these expressions is that
their meaning deviates from the meaning of their con-
stituent words. Shwartz and Dagan (2019) show that
even the state-of-the-art contextualised word represen-
tation models have problems in detecting such meaning
shifts and their performance is far from that of humans.
Previous studies pointed to the importance of MWEs in
GEC. In particular, Mizumoto et al. (2015) merged the
tokens in a MWE into a single unit and then applied
phrase-based MT and reported a generally better per-
formance for their GEC system that took MWEs into
consideration. It has also been reported that such errors
are related to learners’ L1 (Nesselhauf, 2003). In line
with this, Dahlmeier and Ng (2011) use L1-induced
paraphrases to correct learners’ erroneous use of col-
locations. Other works focusing on correcting colloca-

tion errors made by language learners include the stud-
ies by Kochmar (2016). She focused on adjective-noun
and verb-object combinations and extracted the mean-
ing representations of the combinations using models
of compositional semantics in order to distinguish be-
tween the representations of the correct and incorrect
content word combinations.
In this work, we deal with all types of MWEs which
are difficult to correct based solely on standard contex-
tualised information/embeddings. Specifically, we add
MWE information to existing GEC systems in order to
investigate how they can improve performance.
Contributions: We propose two different approaches
to encode MWE information in existing GEC systems:
1) We augment an encoder-decoder transformer-based
GEC model with a separate encoder which encodes
MWE tags, and 2) We add special MWE tokens around
automatically-detected MWEs in the input to help the
encoder-decoder model learn a special representation
for them. We show improvements in the performance
of the two GEC systems especially in correcting spe-
cific types of verbal MWE errors.

2. Grammatical Error Correction
Most recent work on GEC treats the task as a mono-
lingual machine translation problem from ‘incorrect’ to
‘correct’ English (Felice et al., 2014; Yuan and Briscoe,
2016; Grundkiewicz et al., 2019; Stahlberg and Kumar,
2021; Yuan et al., 2021). Specifically, given a corpus of
parallel erroneous and grammatical sentences, the task
is to generate corrected sentences from the erroneous
sentences. Alternatively, another recent promising ap-
proach treats the task as a sequence labelling problem
where each token label represents an edit in the sen-
tence (e.g. KEEP, DELETE, REPLACE) (Awasthi et
al., 2019; Omelianchuk et al., 2020; Stahlberg and Ku-
mar, 2020).
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In this paper, we employ two different Transformer-
based NMT systems (Vaswani et al., 2017) for GEC: 1)
An encoder-decoder GEC system based on Yuan et
al. (2021) and 2) A strong BART-based GEC system
(Katsumata and Komachi, 2020). The main advantage
of the first system is that it includes multi-encoders
for representing different features. In particular, while
Yuan et al. (2021) used the additional encoder to in-
clude features from grammatical error detection, we
use the extra encoder to incorporate MWE tags into the
model (see Section 4.2). In contrast, the main advan-
tage of the second system is that it is a strong base-
line GEC system that simply fine-tunes BART on in-
domain GEC data (and hence does not rely on addi-
tional techniques such as re-ranking or ensembling) to
produce results that are competitive with the state of
the art. We add special tokens for MWEs to the data
to allow the model to explicitly encode MWEs (Sec-
tion 4.3).

3. Multiword Expression Identification
As far as we are aware, no dataset in GEC has
been explicitly annotated with MWE information; i.e.
we do not know which tokens comprise ungrammat-
ical/grammatical MWEs in both the original and the
corrected text. Since this information is necessary in
an MWE-aware GEC system, we derive these labels
automatically.
Our MWE identification system is a transformer-based
pre-trained language representation model which we
fine-tune for sequence tagging. The model is similar
to MTLB-STRUCT (Taslimipoor et al., 2020) with the
difference that we use ELECTRA rather than BERT
and perform single-task learning for which they re-
ported better performance than for multi-task training
in most languages. ELECTRA (Clark et al., 2020) is
a variation of BERT (Devlin et al., 2019) that is pre-
trained to discriminate between original and replaced
tokens rather than generate masked tokens, on the data.
In order to predict various types of MWEs including
noun compounds, e.g. customer service; set phrases,
e.g. as well, so far; and idioms, e.g. go the extra
mile, we fine-tune our system on a combination of the
STREUSLE dataset (Schneider et al., 2014) and the
English side of the PARSEME dataset (Ramisch et al.,
2018). The newest version of STREUSLE, as used by
Liu et al. (2021), contains more detailed/fine-grained
tags for verbal MWEs (following Savary et al. (2017)).
Both these datasets are tagged following a variation of
IOB labeling (Inside, Outside, Beginning) where O in-
dicates that the token is not part of an MWE, B indi-
cates the token is the beginning of a new MWE and I
indicates that the token is a continuation of an MWE.
B, and I tags in these datasets are followed by the type
of MWE.
For evaluating our MWE identification system, we
follow Liu et al. (2021) and report standard
STREUSLE evaluation metrics for MWEs and also

MWE LinkAvg Verbal MWE-based
P R F1 P R F1

# Gold 433.5 66
Liu et al. (2021) 82.0 64.3 72.0 - - 63.9
Our system 90.7 66.8 76.7 65.2 68.2 66.7

Table 1: Overall performance of the MWE identifica-
tion system on STREUSLE test set.

PARSEME MWE-based metrics for verbal MWEs on
the STREUSLE test set. Table 1 shows that our
ELECTRA-based system outperforms the BERT-based
system used by Liu et al. (2021).
The MWE tags for English contain lexical category la-
bels from STREUSLE including ADJ (adjective), ADV
(adverb), DET (determiner) which are in line with
Universal part-of-speech tags, AUX (auxiliary), DISC
(discourse/pragmatic expression), N (noun, common
or proper), P (single-word or compound adposition),
PP (prepositional phrase MWE), and PRON (non-
possessive pronoun, including indefinites like some-
one) which indicate the holistic grammatical status of
strong multiword expressions plus the verbal MWE
tags as follows:

• IAV (Inherently adpositional verbs, also called
prepositional verbs e.g. come accross),

• LVC.full (light verb constructions in which the
verb is semantically totally bleached, e.g. make
a decision),

• VID (verbal expressions that have fully idiomatic
interpretations, e.g., go bananas),

• VPC.full (fully non-compositional verb parti-
cle constructions, in which the particle totally
changes the meaning of the verb, e.g. give up),

• VPC.semi (semi non-compositional verb particle
constructions, in which the particle adds a partly
predictable meaning to the verb, e.g. eat up)

Since verbal MWEs are often more challenging for
learners (Siyanova and Schmitt, 2007), we particularly
focus on this subset of MWE tags in our evaluation.

4. Experiments
4.1. MWE-Augmented GEC Data
Having built a system to annotate MWEs, we apply it to
several popular GEC corpora, including the public FCE
(Yannakoudakis et al., 2011), NUCLE (Dahlmeier et
al., 2013) and W&I (Bryant et al., 2019). Specifically,
we annotate the original, uncorrected side of the paral-
lel data with MWE information and convert the anno-
tations into two different formats for our experiments,
as explained below.

4.2. Experiment 1: Using MWE in
Multi-encoder GEC

Following the work of Yuan and Bryant (2021; Yuan
et al. (2021), we incorporate additional MWE infor-
mation into GEC by introducing a second encoder to
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S This reminds me of a trip that I have been to .
3-class O O O O O O O O O B I O
23-class O O O O O O O O O B-V I-V O
T This reminds me of a trip that I have been on .

Table 2: An example sentence with MWE tags at different levels of granularity. 3-class: Begin, Inside, Outside;
23-class: Begin-Verb, Inside-Verb.

the standard Transformer encoder-decoder model. The
original Transformer encoder reads the source sentence
Ssrc and learns a vector representation csrc as before.
An additional encoder is introduced to process any aux-
iliary MWE tags Smwe and compute another represen-
tation cmwe in parallel. The decoder now includes a
new MWE multi-head attention which attends directly
to the MWE encoder representation cmwe, and a linear
gating mechanism that combines the source multi-head
attention and the new MWE multi-head attention.
A two-step training strategy is employed to train the
new GEC model. In the first step, we follow the stan-
dard encoder-decoder model training procedure and
train a sequence-to-sequence model on parallel Cam-
bridge Learner Corpus (CLC) data (Nicholls, 2003)
without MWE information using Fairseq (Ott et al.,
2019). In the second step, we fine-tune this model us-
ing the auxiliary MWE-tagged data at different levels
of granularity. Specifically, the model is fine-tuned on
the MWE-tagged FCE, NUCLE and W&I training data
where each token is tagged with a coarse (IOB) or fine-
grained (IOB+type) MWE labels (Table 2).

4.3. Experiment 2: MWE Marker Tokens
Inspired by Baldini Soares et al. (2019) who used ‘en-
tity markers’ as special tokens to mark the beginning
and end of named entities, we similarly use special to-
kens to mark the spans of MWEs. This allows us to
encode a representation of an MWE as a special unit.
We augment our GEC training data with two reserved
special tokens [MWE] and [/MWE] to mark the begin-
ning and end of each MWE, respectively, as determined
by the MWE identification system (Section 3), in both
the original and corrected sides of the texts. We follow
two scenarios for marking MWEs in parallel GEC data:

1. We predict MWEs in the original text and map
the special tokens to the equivalent positions in the
corrected text.

2. We predict MWEs in the corrected text and map
the special tokens to the equivalent positions in the
original text.

In the first case, we simply annotate the texts in
the original (source) side with automatically identi-
fied MWE tags and use the GEC alignment algorithm
ERRANT (Bryant et al., 2017) to automatically find
the corresponding spans in the corrected (target) texts.
This scenario represents the realistic use-case since
we are always given the original text to be corrected.
The disadvantage of this approach, however, is that the

Model: Encoder-decoder P R F0.5

baseline 57.95 31.22 49.48
MWE-augmented [3-class] 57.80 33.60 50.53
MWE-augmented [23-class] 58.53 33.98 51.14

Table 3: Overall performance of the encoder-decoder
GEC systems on BEA dev set.

Model: BART P R F0.5

baseline 56.08 37.73 51.11
MWE-augmented (1) 56.88 35.36 50.71
MWE-augmented (2) 57.21 36.71 51.46

Table 4: Overall performance of the BART GEC sys-
tem fine-tuned on raw and MWE-tagged W&I data.

MWE identification system may not be very accurate
since it is trained on native texts with no errors yet ap-
plied to ungrammatical text.
In the second case, we hence annotate MWEs in the
corrected side, where they are more likely to be well-
formed, and again find the equivalent spans in the orig-
inal text using ERRANT. In contrast with the first case,
the disadvantage of this second approach is that we do
not have access to the corrected text in the realistic use-
case even though the identified MWEs may be more re-
liable. We nevertheless explore this scenario for com-
parison with the first scenario. Figure 1 shows an ex-
ample of a parallel sentence pair with marked MWEs. 1

S: they also [MWE] made talks [/MWE] and
presentations about the earth ’s problems
T: they also [MWE] give talks [/MWE] and
presentations about the earth ’s problems

Figure 1: A sentence pair with marked MWEs.

In this experiment, we use a pre-trained BART model
which we fine tune on the MWE-annotated W&I train-
ing corpus (Bryant et al., 2019). Katsumata and Ko-
machi (2020) have shown that this model produces
competitive results with the state of the art in GEC. Our
addition of explicit MWE markers helps the model to
better encode representations of MWEs.

4.4. Evaluation
We first report the general performance of our GEC
systems with and without incorporating MWE tags in

1This example is the same in both scenarios, however,
there are also cases where MWEs on one side are aligned
with non-MWEs on the other side.
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Baseline GEC MWE-augmented GEC
MWE type # P R F0.5 P R F0.5

Encoder-decoder

V.IAV 41 60.7 41.5 55.6 55.2 39.0 51.0
V.LVC.full 55 34.6 16.4 28.3 45.8 20.0 36.4
V.VID 47 55.6 21.3 42.0 62.5 21.3 45.1
V.VPC.full 25 38.5 20.0 32.5 54.6 24.0 43.5
V.VPC.semi 12 50.0 25.0 41.7 60.0 25.0 46.9

BART GEC

V.IAV 41 57.7 36.6 51.7 56.7 41.5 52.8
V.LVC.full 55 43.3 23.6 37.1 42.9 21.8 35.9
V.VID 47 55.6 21.3 42.0 78.6 23.4 53.4
V.VPC.full 25 31.6 24.0 29.7 41.7 40.0 41.3
V.VPC.semi 12 50.0 16.7 35.7 50.0 8.3 25.0

Table 5: GEC performance for different types of verbal MWEs.

terms of precision (P), recall (R) and F0.5 using the ER-
RANT evaluation framework. F0.5, which weights pre-
cision twice as much as recall, has been the most com-
mon evaluation metric for GEC since the CoNLL-2014
shared task (Ng et al., 2014).
Table 3 shows the overall performance of the
encoder decoder GEC system (Experiment 1) in
different settings: baseline (no MWE informa-
tion), MWE-augmented [3-class] (auxiliary IOB
MWE labels), MWE-augmented [23-class] (auxiliary
IOB+type MWE labels). We can see that adding MWE
information improves GEC system performance.
Table 4 shows the overall performance of the BART
model (Experiment 2) fine-tuned on the standard W&I
GEC data compared to the models trained on the MWE
tagged data in scenarios 1 (where we predict MWEs in
the original side) and 2 (where we predict MWEs in the
corrected side). Overall, we see a slight improvement
on the F0.5 performance only in the case of MWE-
augmented model (2).

4.5. Fine-grained analysis
We furthermore analyse the performance of our GEC
models for specific types of MWEs. In particular, we
aim to determine whether our systems are able to de-
tect and correct incorrect usages of MWEs by learners.
In order to perform this evaluation, we annotate our
system output with MWE tags using the MWE iden-
tification system (Section 3) and find the overlap be-
tween MWE spans and ERRANT edit spans to deter-
mine which hypothesis edits involve MWEs. In this
way, we can compare how our system performs on
MWE errors irrespective of other errors. We particu-
larly focus on verbal MWE errors.
Table 5 shows the results for both experiments. We
focus on five types of verbal MWEs present in the
corrected side of the data (V.IAV, V.LVC.full, V.VID,
V.VPC.full, and V.VPC.semi) and compare the perfor-
mance of the two GEC systems (encoder-decoder and
BART) with or without MWE-augmentation. We focus
on the 23-class MWE augmentation for the encoder-
decoder system and scenario 2 for the BART system.
In Table 5, we can see that GEC performance im-

proves for four out of five verbal MWE types when we
use MWE-augmented systems for the encoder-decoder
GEC method and for three out of five verbal MWE
types when we use setting 2 of the BART system. The
highest improvement is in the case of VPC.full and
VID, and the BART model results in more improve-
ment (11.6 compared to 11 for VPC.full and 11.4 com-
pared to 3.1 for VID). The BART system being unsuc-
cessful in the case of V.LVC.full might be due to the
fact that LVCs can have multiple arbitrary words in be-
tween their canonical form components (e.g. make a
very good decision). The marking system cannot dif-
ferentiate them and considers words in between the
MWE components as part of the MWE span which
brings some noisy information to the system.

4.6. Discussion
In Table 6, we show two examples of sentences con-
taining MWE errors corrected by each system. In the
first example, none of the baseline systems were suc-
cessful, but both MWE-augmented systems managed
to correct the VPC sign up. In the second example, only
the MWE-augmented BART system managed to cor-
rect the idiom get to know. This perhaps suggests the
multi encoder-decoder system, which only uses MWE
tags as token-level features, finds it hard to learn the
notion of relationships between the components of the
expression. The fact that we incorporate labels in the
IOB labelling format combined with the MWE types
helps the system have more informative features. How-
ever, the system still lacks direct linking information
between MWE components. The BART system, on the
other hand, has a different perspective and works with
the text span representations that are encoded by spe-
cial tokens. However it also treats all MWEs as con-
tinuous spans of texts of the same type and adds some
arbitrary words in between their components. This is
not favourable in the case of more structurally flexi-
ble MWEs such as LVCs. Non of the systems are yet
successful in correcting more conceptual errors, for ex-
ample in replacing end up with with bring an end to in
the erroneous sentence, ‘cars don’t need necessarily to
end up with the public transport’.
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sentence
Original the course was fantastic and I am looking forward to signing it again next year .
enc-dec
baseline the course was fantastic and I am looking forward to signing it again next year .
MWE-augmented the course was fantastic and I am looking forward to signing up for it again next year .
BART
baseline the course was fantastic and I am looking forward to signing it again next year .
MWE-augmented the course was fantastic and I am looking forward to signing up for it again next year .
Original it could allow you to communicate with people , know different cultures ...
enc-dec
baseline it could allow you to communicate with people , know different cultures ...
MWE-augmented it could allow you to communicate with people , know different cultures ...
BART
baseline it could allow you to communicate with people , know different cultures ...
MWE-augmented it could allow you to communicate with people , get to know different cultures ...

Table 6: Example sentences with MWEs corrected by the encoder-decoder (enc-dec) and the BART MWE-
augmented systems.

5. Conclusions
In this paper, we propose incorporating MWE infor-
mation into two different GEC systems in order to im-
prove GEC for MWEs which are challenging for lan-
guage learners. The experiments show that the ad-
ditions help GEC in the case of more conventional
MWEs, like verbal idioms and verb particle construc-
tions. More research is needed to improve GEC for
more syntactically-flexible MWE types which allow ar-
bitrary words in between their components. Our sys-
tem relies on the performance of MWE detection sys-
tems as no GEC data is annotated for MWE type errors.
This makes it more difficult for automatically correct-
ing conceptual errors made by learners. Future work
in this area benefits from more detailed annotation of
learner errors related to their understanding of MWEs.
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