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Abstract
This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword
expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We
compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform
MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation
steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the
shared task, and present some best practices for minority languages addressing this task.

Keywords: Irish, BERT, multiword expressions, identification, pre-trained language models, hyperparameter-tuning, su-
pervised learning, low-resource language NLP

1. Introduction
The automatic identification of multiword expressions
(MWEs) has been highlighted as one of the two main
subtasks of MWE processing (Constant et al., 2017),
with their successful identification assisting a number
of NLP tasks, such as parsing, machine translation and
information retrieval. The PARSEME shared task on
the automatic identification of verbal MWEs (vMWEs)
(Savary et al., 2017), now in its third iteration, has
recognised vMWEs as being of particular interest in
this task, due to challenging properties that they can
present, such as variability, ambiguity, and discontigu-
ity. Its most recent edition (1.2), further highlighted the
challenges inherent to identifying unseen vMWEs, that
is, vMWEs that did not occur in either the training or
development stage of model learning (Ramisch et al.,
2020).
In this paper, we present a system for the identification
of vMWEs in Irish and compare our results to other
systems submitted to the PARSEME shared task. We
use multilingual and monolingual language models,
and demonstrate that monolingual models can lead to
superior results, even compensating for small amounts
of data. We also explore some of the optimisation steps
that allow for lower-resourced languages, such as Irish,
to fully exploit such resources, and report on patterns
we find in these optimisation experiments.

2. Background
The Irish language is a minority language of the Celtic
family of languages. Despite its status as the official
language of Ireland, and an official working language
of the European Union, it is recognised as a low re-
source language, particularly in the field of NLP (Judge
et al., 2012; Lynn, 2022). Many NLP tasks lack the

necessary resources for research in Irish, and the de-
velopment of these resources has been an ongoing ini-
tiative for the past several years. Research into MWEs
is one of those areas.

The PARSEME shared task on the identification of
verbal MWEs came about as demand for a multilin-
gual framework for the treatment of MWEs in NLP in-
creased. Verbal MWEs, or vMWEs, are MWEs with
a head verbal component, and include Light Verb Con-
structions (‘LVCs’) such as ‘make a decision’, and Ver-
bal Idioms ‘VIDs’ such as ‘a little birdie told me’.
The latest edition (1.2) saw 14 languages included,
as systems attempted to tackle the problem of unseen
vMWEs, which has been recognised as a significant
challenge in the task of MWE identification to date.
Irish was one of the languages included, with the cre-
ation of the PARSEME annotated corpus of verbal
MWEs for Irish (Walsh et al., 2020).

Of the nine systems participating in the shared task, five
systems made use of neural networks: MultiVitamin-
Booster (Gombert and Bartsch, 2020), TRAVIS-mono
and TRAVIS-multi (Kurfalı, 2020), MTLB-STRUCT
(Taslimipoor et al., 2020) and ERMI (Yirmibeşoğlu
and Güngör, 2020). Three used methods based on
filtering using association measures: HMSid (Col-
son, 2020), Seen2Seen (Pasquer et al., 2020b) and
Seen2Unseen (Pasquer et al., 2020a), while one system
used a rule-based joint parsing and MWE identification
system: FipsCo. Of the systems using neural networks,
four of them included the use of pre-trained language
models, those being multilingual BERT, monolingual
BERT (Devlin et al., 2019) and XLM-Roberta (Con-
neau et al., 2020).

Pre-trained language models have become the defacto
standard language resource for many NLP tasks, with
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a track record of beating previous SOTA results (Min
et al., 2021). The MTLB-STRUCT system, which
uses multilingual BERT fine-tuned for joint parsing and
identification, achieved the best results for the open
track in both the tasks of the identification of vMWES,
and the subtask of identifying unseen vMWEs, when
averaged across all languages. For individual lan-
guages, the only system in the open track to outperform
the MTLB-STRUCT system was the TRAVIS-mono
system, which uses a monolingual BERT model with a
classification layer for MWE identification, where that
language had a monolingual BERT model.

2.1. BERT and gaBERT
Bidirectional Encoder Representations from Trans-
formers (BERT) is the transformer-based pre-trained
language model that has seen applications in a wide
variety of NLP tasks (Devlin et al., 2019). It is trained
on two tasks: (1) a masked language modelling task,
where words are masked and then predicted from their
context, and (2) next sentence prediction, where the
task is to determine if the second sentence in a pair
follows the first one. These two tasks have proven
to be sufficiently general that the resulting language
model can be fine-tuned on a large number of NLP
tasks, through the addition of a classification layer, and
the adjustment of model parameters.1 Two English
language BERT models (BERT-base and BERT-large)
were released, along with a multilingual BERT model
(mBERT), which had been trained on a concatenation
of Wikipedia data for 104 languages. Since the release
of BERT, monolingual models have been built for many
other languages, including Irish.
gaBERT (Barry et al., 2022) is a monolingual language
model for Irish trained on approximately 7.9 million
sentences in Irish. The training process and hyperpa-
rameters were largely kept the same as that of BERT,
with the distinction of a smaller batch size to accommo-
date memory size limitations. gaBERT was evaluated
on dependency parsing and a cloze test, and the results
were compared with mBERT, showing that gaBERT
was more effective than mBERT for both these tasks.

2.2. Irish in the PARSEME Shared Task
Until recently, Irish research on MWEs has been
mostly limited to the field of theoretical linguistics or
corpus linguistics. Developments on this topic for NLP
include the publication of the Peadar Ó Laoghaire col-
lection of idioms (Nı́ Loingsigh and Ó Raghallaigh,
2016), and the creation of a lexicon of Irish MWEs for
research purposes (Walsh et al., 2019). The Irish UD
treebank (Lynn and Foster, 2016) recently saw a uni-

1While the precise reason for this ability for language
models to generalise across many tasks is not well under-
stood due to the black box nature of the pre-training, Zhang
and Hashimoto (2021) suggests that the MLM task encour-
ages the LM to capture statistical dependencies, which corre-
sponds to general syntactic information.

fied treatment of MWEs applied to the data (McGuin-
ness et al., 2020). The release of the PARSEME an-
notated corpus of verbal MWEs for Irish was the first
corpus to be manually annotated for these types of ver-
bal MWEs in Irish (Walsh et al., 2020). The corpus2

consists of 1700 sentences originally from the Irish
UD Treebank3, which includes gold-standard POS-
information, morphological features, and dependency
relations. These sentences are manually annotated with
seven categories of verbal MWEs: Light verb construc-
tions (‘LVC.full’ and ‘LVC.cause’), Inherently Adpo-
sitional Verbs (‘IAV’), Verbal Idioms (‘VID’), Verb-
Particle constructions (‘VPC.full’ and ‘VPC.semi’),
and Inherently Reflexive Verbs (‘IRV’).
‘LVCs’ are the most numerous label in the Irish corpus,
including constructions such as the ‘LCV.full’ déan
iarracht ‘make an attempt/try’, or the ‘LVC.cause’ cuir
tús ‘put a start/start’. ‘IAVs’ are also frequent in Irish,
such as buail le (lit. hit with) ‘meet’ or éirigh le (lit.
rise with) ‘succeed’.
The corpus was split according to the specifications of
the PARSEME shared task (Ramisch et al., 2020), with
a training dataset size of 257 sentences (100 vMWEs)
and a development dataset size of 322 sentences (126
vMWEs), with the rest of the data in the test set (1120
sentences, and 442 vMWEs). Compared to the other
languages in the shared task, the Irish corpus is small,
with only Hindi (1684 sentences) being smaller. The
number of vMWEs annotated in the corpus was also
low, with only 662 vMWEs in total, compared to 1034
for Hindi. This, combined with the high ratio of unseen
vMWEs present (69% of the vMWEs occurring in the
test set were not present in either the training data or
development data), as well as the relatively high num-
bers of categorisation labels used (7 labels, compared
to a language average of 5), makes the task of vMWE
identification in Irish particularly challenging.

3. Experiment Design
Approaching the task of vMWE identification as a
sequence labelling task, we follow the example of
the TRAVIS system and fine-tune both a multilin-
gual BERT model (mBERT) and a monolingual BERT
model (gaBERT) with a classification layer on this task,
and compare the results. The classification layer is a
linear layer connected to the language models’ hidden
states to perform token-level classification. The Hug-
gingFace Transformers library (Wolf et al., 2020) pro-
vides both the mBERT (Devlin, J. et. al., 2018) and
gaBERT (Barry, J. et. al., 2021) models, which can be
integrated with their tokenising library to easily fine-
tune language models.
The data we use is in cupt format, which is a com-
bination of CoNLL-U format and parseme-tsv for-
mat. For this sequence labelling task, we only required

2(Walsh, A. et. al., 2020)
3(Lynn, T. et. al., 2015)
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Hyperparameter Default Tuning range
Number of epochs 20 5, 10, 15, 20, 25, 30, 35, 40
Batch size 8 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20
Learning rate 2e-5 1e-6, 2e-6, 1e-5, 2e-5, 1e-4, 2e-4, 1e-3, 2e-3, 1e-2, 2e-2, 0.1, 0.2
Random seed 10 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100

Table 1: Default values used and range for tuning each hyperparameter.

the tokens and the MWE labels, so the data was pro-
cessed into a json format containing this information.
For labelling the vMWES, we used a modified IOB2
scheme, as described in Section 3.2.1.

3.1. Series 1: Hyperparameter Optimisation
Fine-tuning hyperparameters is an important step in op-
timising a model’s performance on a task, and even
small adjustments to the hyperparameters can have a
huge impact on model performance. There are many
options to consider when tuning hyperparameters, from
the selection of which hyperparameters to adjust, to the
range of values being evaluated, to the method of hy-
perparameter optimisation being applied.
In this first series of experiments, we explore the im-
pact that adjusting certain key hyperparameters has on
our dataset, which is notably small. To best analyse
the impact of this tuning, we opted to tune the hy-
perparameters manually and individually, selecting a
combination of the best performing hyperparameters to
fine-tune an optimised system for both the mBERT and
gaBERT models.
We selected learning rate, batch size, number of train-
ing epochs, the number of layers being fine-tuned, and
the random seed variable as our tunable parameters,
defaulting to the values used by Devlin et al. (2019) for
all other hyperparameters. We train both the mBERT
and gaBERT models on three settings of layers: (i)
fine-tuning all layers of the model, (ii) freezing layers
1-8 and only fine-tuning on the top-most 4 layers, (iii)
freezing all layers and fine-tuning only the classifica-
tion layer. The default values and range of values for
tuning are represented in Table 1. To avoid over-fitting
with the test data, we evaluated the model performance
on the development set, and selected the best perform-
ing parameters based on these results.

3.1.1. Transformer Instability
A known issue in the training of transformer models
is the tendency for instability of those models (Dodge
et al., 2020; Bouscarrat et al., 2021; Mosbach et al.,
2021), where the selection of a random seed value can
have a significant impact on model performance. This
effect appears to be magnified when training on small
datasets, although, as Mosbach et al. (2021) find, this
may be in fact due to the reduced number of itera-
tions that training on smaller datasets may produce.
To demonstrate the effects of this factor, we trained
10 mBERT-based models with a different random seed
each time, which resulted in 2 models that failed to pre-
dict any MWEs at all.

Accounting for this instability, we perform the hyper-
parameter tuning first on the number of epochs, batch
size and learning rate, before selecting the best per-
forming hyperparameters and tuning this model on the
random seed value, selecting the best performing ran-
dom seed as our optimised hyperparameter. While the
random seed value does not provide information on the
model’s structure as with the other hyperparameters,
the selection of this value can drastically affect the per-
formance of the model. The goal of our first series of
experiments is to select an optimised model for com-
parison with the systems submitted at the PARSEME
shared task so we have elected to tune this variable also.

3.2. Series 2: Data and Labelling
The second series of experiments focuses on some of
the challenges for this task that are related to the data,
such as data scarcity, relatively high number of labels,
and the labelling scheme applied. We attempt to ad-
dress these issues through optimising the data and com-
paring the baseline results to the models trained on
these adjusted datasets.

3.2.1. Labelling Scheme
The labelling scheme used for the first series of ex-
periments was a modified IOB2 scheme, which is a
version of the Inside-Outside-Beginning (IOB) format
designed for chunking tasks such as NER detection
(Ramshaw and Marcus, 1995). This required a conver-
sion from the labels used in cupt, where vMWES are
tagged with a number corresponding to the order the
vMWE occurs within the sentence, to which a category
label was appended for the first token of the vMWE.
Our initial method was simply to select the first MWE
label attached to each token, and discard any subse-
quent labels, a solution which was not always adequate.
For instance, in converting from the cupt (Example 1)
to the IOB2 labelling (Example 2), the two LVCs dhein
staidéir ‘did study’ and dhein taighde ‘did research’
have been incorrectly reduced to what appears to be a
single LVC dhein staidéir taighde ‘did study research’.

(1) dhein
1:LVC.full;2:LVC.full

sé
*

an-chuid
*

staidéir
1

agus
*

taighde
2

(2) dhein
B-LVC.full

sé
O

an-chuid
O

staidéir
I-LVC.full

agus
O

taighde
I-LVC.full

‘he did a lot of study and research’

To address this, we propose a modified scheme IOB2-
double, which uses the same labels as IOB2, but at-
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tempts to represent these ‘doubly-annotated’ tokens by
adjusting the usage of the ‘B-’ labels: when encoun-
tering a token which has more than one vMWE label,
the ‘B-’ prefix can be applied to both the initial token
(vMWE #1), and the first subsequent token in the sec-
ond vMWE (vMWE #2), as in Example 3. Using this
scheme, the two LVCs are represented as ‘did study’
and ‘research’, which still does not capture the full pic-
ture, but prevents the loss of vMWEs through merging
labels.

(3) dhein
B-LVC.full

sé
O

an-chuid
O

staidéir
I-LVC.full

agus
O

taighde
B-LVC.full

This labelling scheme does not address the discontigu-
ity of dhein, staidéir and taighde, which are interleaved
with non-lexicalised components. Berk et al. (2019)
discuss this issue, and propose an alternative labelling
scheme, bigappy-unicrossy, which uses lower case la-
bels and label prefixes (‘b-’, ‘i-’, ‘o’) to allow for one
level of nested MWEs, two levels of discontinuity of
MWEs (including nested discontinuous MWEs), and
one level of crossing MWEs. Their scheme does not
address the issue of double-tagged tokens or overlap-
ping vMWEs, so we apply our adjusted ‘B-’ criteria.
In this scheme, the previous text is annotated as in Ex-
ample 4. The lower case labels indicate that the vMWE
dhein staidéir ‘do study’ is partially nested, as elements
of it come between construction dhein taighde ‘do re-
search’.

(4) dhein
B-LVC.full

sé
o

an-chuid
o

staidéir
i-LVC.full

agus
o

taighde
B-LVC.full

3.2.2. Data Optimisation
The data-optimisation experiments address potential
challenges that the Irish dataset presents over other
languages: (i) the number of tags in the tagset, (ii)
the complexity of the data, and (iii) the small size
of the training and development datasets. To ad-
dress these challenges, Exp 2A reduces the number of
tags through first merging the two fine-grained labels
(‘LVC.full’ and ‘LVC.cause’ → ‘LVC’; ‘VPC.full’ and
‘VPC.semi’ → ‘VPC’), and Exp 2B merges all tags
into a single ‘MWE’ tag. Exp 3 reduces the complexity
of the data through removing two challenging vMWE
labels (‘IRV’ and ‘VID’), while Exp 4 increases the
size of the training and development datasets through
re-splitting of the data, with 219 vMWEs annotated
in the training data (+119 vMWEs), 216 vMWEs an-
notated in development data (+90 vMWEs) and 230
vMWEs in the test data (-212 vMWEs).
Of note, one of the so-called challenging vMWE la-
bels, the ‘IRV’ label (e.g. iompair mé mé féin ‘I be-
haved myself’), was identified previously (Walsh et al.,
2020) as a label potentially worth removing due to the

scarcity of this label occurring in the data (only 6 in-
stances of this label were annotated) and the contro-
versial nature of the label. The ‘VID’ label (e.g. cuir
isteach sa chomhrá (lit. put into the conversation) ‘in-
tervene’, dar le ‘according to’) presents the most syn-
tactically and semantically diverse of the vMWE cat-
egories, given the highly variable nature of verbal id-
ioms, whose lexicalised components can differ by part-
of-speech, number, open-slots, etc.

4. Results and Analysis
4.1. Evaluation Metrics
We use both the evaluation library provided by seqe-
val (Nakayama, 2018), as well as the evaluation algo-
rithm used in the PARSEME Shared Task (Ramisch
et al., 2018) to evaluate our models, reporting pre-
cision, recall and F1 scores. Two important differ-
ences between these algorithms are noted: (i) discon-
tinuous MWE chunks are counted as separate MWEs
by the seqeval calculations, and (ii) the PARSEME
shared task evaluation metrics allow for partial matches
of predicted vMWEs that share tokens with the gold
annotated vMWEs (‘Token-based’ measures). When
comparing our systems with those submitted for the
PARSEME shared task, we limit the evaluation to the
metrics calculated by the evaluation script provided for
that task.

4.1.1. Analysis of Series 1
We trained each language model on the three layer set-
tings mentioned in Section 3.1, resulting in six models
for each hyperparameter tuning step: mBERT-0 and
gaBERT-0 (layers 1-12 frozen, fine-tuned on 0 layers
of language model), mBERT-4 and gaBERT-4 (lay-
ers 1-8 frozen, fine-tuned on final 4 layers of language
model), and mBERT-12 and gaBERT-12 (no layers
frozen, fine-tuned on all 12 layers).
mBERT-12 and gaBERT-12 models generally per-
formed the best across our experiments, while
mBERT-0 and gaBERT-0 generally performed the
worst. From our experiments, we found training the
models for more epochs improved performance, while
batch size was inversely correlated with performance.
The range of values containing the optimal learn-
ing rate varies depending on the layer settings, with
mBERT-0 and gaBERT-0 requiring a larger learning
rate. These trends are explained in more detail.

Number of Epochs: Training mBERT-4 and
mBERT-12 for less than 5 epochs almost always
produced a model that failed to predict any vMWE
labels at all, with the same applying to gaBERT-4
and gaBERT-12. This tendency to not predict labels
decreased significantly as the number of epochs
approached 15, while the F1 score for the models
increased. This increase in F1 score continued an
upwards trend to our upper bound of 40 epochs, though
improvement slowed after 20 epochs.



93

Batch Size: The F1 score followed an inverse trend
for batch size, with the peak F1 score achieved when
batch size was between 1-4 for models mBERT-4,
mBERT-12, gaBERT-4 and gaBERT-12. Of note,
when training with batch size of 20 for mBERT-12, the
training halted due to memory limitations, highlight-
ing the impact of hardware limitations on such experi-
ments.

Learning Rate: Initially, the learning rates tuned
were those described in Table 1. Noting the range
of values that yielded the best performing models, we
conducted a secondary tuning experiment using these
optimised learning rates as anchor values for each of
the layer settings, and training on a range of values
on either side of these initial values. For mBERT-4,
mBERT-12, gaBERT-4 and gaBERT-12, when
combined with the other default parameters, learn-
ing rates needed to be small; if the learning rate
was larger than 8e-4 it invariably produced a model
that failed to predict any MWE labels. The best
performing models used a learning rate of 4e-5 for
mBERT-4 and mBERT-12, and 2e-4 for gaBERT-4
and gaBERT-12.
For mBERT-0 and gaBERT-0, a larger learning rate
was necessary to train a model that predicted MWE la-
bels (greater than 2e-4), and even learning rates as large
as 0.8 will result in an F1 score of 10.1 (mBERT-0)
and 23.2 (gaBERT-0). Combining this larger learning
rate with the other hyperparameter tuning steps may re-
sult in even better performance.
Following these investigative experiments, we selected
the best performing hyperparameter values from each
trial and performed a series of experiments tuning
the random seed value. As the best results for both
models was consistently achieved for mBERT-12 and
gaBERT-12, we limited tuning to these layer settings.
When using a combination of the best learning rate and
batch size for gaBERT-12, we found that none of the
models across any of the seed values succeeded in pre-
dicting any MWE labels, indicating that this particular
combination of hyperparameters was not useful for our
task. To find an optimised mode, we trained one series
of models using the optimised learning rate parameter
(gaBERT-12-rate) and one series of models using
the optimised batch size (gaBERT-12-batch), with
the values for the other hyperparameters taken from the
default values in Table 2.

Random Seed: The box plot average of F1 scores
from random seed tuning experiments are shown in
Figure 1. We can see from the diagram that the
gaBERT-12-batch model was more sensitive to in-
stability than the gaBERT-12-rate, with the highest
performing model achieving an F1 score of 43.0, but
several seed values yielded a model that gave an F1
score of 0.0. The optimised gaBERT model was found
with gaBERT-12-rate trained on random seed 10,
while the optimised mBERT model (mBERT-12) was
found on random seed 75.

Figure 1: Box plot of F1 scores generated by mBERT-
12, gaBERT-12-batch and gaBERT-12-rate models
trained across 20 random seed values.

4.1.2. Analysis of Series 2
In our data optimisation experiments, we compare the
results of models trained with the optimised hyperpa-
rameters of Series 1 on the baseline dataset (Exp 1),
and datasets modified to address the challenges out-
lined in Section 4.1.2 (Exps 2A, 2B, 3 and 4). For
each experiment, we apply the three labelling schemes
discussed in Section 3.2.1: IOB2, IOB2-double, and
bigappy-unicrossy. The F1 scores for each of these
three datasets are displayed in Figure 2 (Exp 1), Fig-
ures 3 and 4 (Exp 2A and Exp 2B), Figure 5 (Exp 3)
and Figure 6 (Exp 4). The precision, recall and F1
scores for each of these experiments are displayed in
full in Table 3.
No clear discernible pattern emerges as to which la-
belling scheme produces the best results. In Figure
6 we see the results of models trained on reshuffled
data (Exp 4) appears to show the IOB2-double labelling
scheme out-performing IOB2 labelling, with bigappy-
unicrossy labelling giving the best results, however this
trend was reversed for the mBERT model in Exp 2B,
and for gaBERT in Exp 1.
The results of experiments 2A, 2B and 3 show that
while modifying the dataset impacts the results of the
model, it is difficult to predict whether this impact will
be positive or negative. The results for Exp 2A demon-
strate that the mBERT model trained on IOB2-double
data failed to predict any MWE labels, again highlight-
ing the model’s susceptibility to instability. The exper-
iments indicate that the language models’ sensitivity to
changes in dataset make it difficult to draw conclusions
regarding the impact of the dataset optimisation, with-
out further investigation into hyperparameter tuning.

4.2. Manual Inspection of Data
After inspecting the predicted labels, a large number
of single-token predicted vMWEs were found. While
single-token vMWEs did occur in the data as a result
of converting from doubly-annotated tokens (see Sec-
tion 3.2.1), these are relatively rare occurrences, and
will only ever occur in combination with a multi-token
vMWE. In contrast, the predicted single-token vMWEs
would often occur with no other vMWE in context.
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Parameter mBERT-12 gaBERT-12-rate gaBERT-12-batch
Number of epochs 30 30 30
Batch size 4 8 2
Learning rate 4e-5 2e-4 2e-5

Table 2: Hyperparameter settings for random seed tuning experiments.

Experiment Model Labelling Precision Recall F1

Exp 1: Baseline dataset

mBERT-op
IOB2 16.09 12.93 14.34

IOB2-d 20.05 17.09 14.34
bi-uni 17.96 13.86 15.65

gaBERT-op
IOB2 41.67 35.80 38.51

IOB2-d 39.37 29.10 33.47
bi-uni 39.59 26.79 31.96

Exp 2A: Fine-grained MWE labels merged

mBERT-op
IOB2 12.85 9.51 10.93

IOB2-d 0.00 0.00 0.00
bi-uni 12.83 9.05 10.61

gaBERT-op
IOB2 46.21 31.09 37.17

IOB2-d 45.25 37.59 41.06
bi-uni 48.55 42.69 45.43

Exp 2B: All MWE labels merged

mBERT-op
IOB2 22.83 14.55 17.77

IOB2-d 20.19 14.55 16.91
bi-uni 16.86 10.16 12.68

gaBERT-op
IOB2 41.83 33.72 37.34

IOB2-d 36.75 25.64 30.20
bi-uni 41.69 33.03 36.86

Exp 3: VID and IRV removed

mBERT-op
IOB2 15.69 12.83 14.12

IOB2-d 9.35 8.82 9.08
bi-uni 14.33 11.23 12.59

gaBERT-op
IOB2 43.43 29.15 34.88

IOB2-d 41.56 27.01 32.74
bi-uni 48.28 41.18 44.44

Exp 4: Data resplit

mBERT-op
IOB2 18.06 16.96 17.49

IOB2-d 22.47 22.17 22.32
bi-uni 32.00 24.35 27.65

gaBERT-op
IOB2 42.51 38.26 40.27

IOB2-d 46.03 37.83 41.53
bi-uni 46.53 40.87 43.52

Table 3: Precision, recall and F1 scores for the mBERT and gaBERT models trained on experiment data from
Experiments 1–4, using optimised hyperparameters found in Series 1. Results obtained using the PARSEME ST
evaluation script for global MWE-based evaluation, before the post-processing script was applied.

A post-processing script was added to each system
where these single-token vMWEs were removed from
the data, and this resulted in improved MWE-based
precision and F1 scores for both models, an increase
of 5.59 and 7.15 for global MWE-based F1 scores for
mBERT- and gaBERT-optimised models respectively.

Between the models, this tendency to predict single-
token vMWEs is more prevalent with the mBERT-
based models than with gaBERT-based models, with
the rate of single-token to multi-token MWE predic-
tions almost double for the mBERT models, across all
labelling schemes. Additionally, generating a bag-of-
words of the predicted tokens of both models shows
gaBERT-based models predict labels attached to a

wider variety of tokens than mBERT-based models,
particularly for ‘LVC’ type vMWEs.

Certain patterns in predictions were consistent across
all experiments. Most of the ‘VPC’ label predictions
were assigned to the tokens bain + amach (extract out)
‘get’, or some variation of these tokens, which make up
the majority of the ‘VPC’ annotations in the training
and development data. Verbs such as cuir ‘put’ were
highly associated with ‘LVC.cause’ labels, reflecting
the use of this verb in causative constructions, e.g. cuir
fearg (ar) (put anger (on)) ‘anger’, while déan and tab-
hair (‘make/do’ and ‘give’) are highly associated with
‘LVC.full’, e.g. déan iarratas ‘make an application’.

On examining individual categories of vMWES, it ap-
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Figure 2: F1 scores for mBERT and gaBERT models
for Exp 1: Using baseline data and comparing perfor-
mance of labelling schemes (IOB2, IOB2-double and
bigappy-unicrossy).

Figure 3: F1 scores for mBERT and gaBERT mod-
els for Exp 2A: Simplifying tagset by merging ‘LVC’
and ‘VPC’ sub-tags. Data labelled using IOB2, IOB2-
double and bigappy-unicrossy.

mBERT Freq gaBERT Freq
le 35 le 39
cuir 25 cuir 23
déan 23 ar 18
déanamh 16 déan 18
ar 14 déanamh 15
bain 12 cur 14
éirigh 11 bain 13
amach 10 tabhair 11
as 9 éirigh 11
tabhair 8 i 10

Table 4: Table showing 10 most frequently labelled
words for mBERT-optimised and gaBERT-optimised
models.

pears some labels were easier to predict than others.
Both gaBERT and mBERT appear to achieve high pre-
cision but low recall for ‘VPC.full’ MWEs, reflecting
the scarcity of this label in the training data. gaBERT-
based models appear to perform better on predicting

Figure 4: F1 scores for mBERT and gaBERT models
for Exp 2B: Simplifying tagset by merging all vMWE
labels. Data labelled using IOB2, IOB2-double and
bigappy-unicrossy.

Figure 5: F1 scores for mBERT and gaBERT mod-
els for Exp 3: Simplifying dataset by removing chal-
lenging vMWEs ‘IRV’ and ‘VID’. Data labelled using
IOB2, IOB2-double and bigappy-unicrossy.

both ‘LVC.full’ and ‘LVC.cause’ MWEs than mBERT-
based models, with the baseline results showing a dif-
ference of 27.86 and 41.71 in the MWE-based F1
scores, respectively. ‘VID’ vMWEs proved challeng-
ing for both models to predict, with mBERT-based
models outperforming gaBERT-based models, with an
MWE-based F1 score of 12.35 vs 10.64.4 These scores
decreased further with the reshuffled dataset, with the
mBERT-based model achieving an F1 score of 5.56
and the gaBERT-based model scoring 4.48.4

4.3. Optimised Model
When comparing the results of Exp 4 with the results
of our optimised baseline model, we noted that the
mBERT-based model sees a significant improvement
for each of the evaluation metrics with the additional
data, however, the gaBERT-based model actually saw
a slight decline in the token-based and unseen MWE-
based scores, particularly in precision scores. This re-
sult may be due to the addition of a larger variety of

4MWE-based F1 scores after removing single-token pre-
dictions.
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Figure 6: F1 scores for mBERT and gaBERT models
for Exp 4: Increasing training and development data
by reshuffling dataset splits. Data labelled using IOB2,
IOB2-double and bigappy-unicrossy.

certain vMWEs such as ‘VPCs’, which in turn may
prompt the model to attempt to predict these vMWEs
attaching to a wider variety of tokens, making some in-
correct predictions.

4.3.1. Comparison with Systems Submitted to the
PARSEME Shared Task

Table 5 displays the results of systems submitted to
the open track of the PARSEME shared task 1.2 for
the Irish language. We see that our fine-tuned mBERT
model from Series 1 compares favourably with the sys-
tems submitted for this task in Irish. Our mBERT-based
system, if hypothetically submitted to the open track
for Irish, would rank 3rd for unseen MWE identifi-
cation, as well as MWE-based and token-based rank-
ings. Our gaBERT-based system outperforms all other
systems in this track, ranking 1st across all metrics,
beating the MTLB-STRUCT system’s MWE-based F1
score by 20.79 for unseen vMWE identification.

On the multilingual level, MTLB-STRUCT, the over-
all highest-performing system, achieved an MWE-
based F1 score of 38.53 on unseen MWEs, a global
MWE-based F1 score of 70.14, and a Token-based F1
score of 74.14, when averaged across all 14 languages.
Even with the improvement in scores generated by
the gaBERT-based model, Irish is still the language
with the lowest performance score for global MWE-
based and Token-based scores. However, the unseen
MWE-based F1 score given by gaBERT is actually
higher than the language average, and gaBERT out-
performs the best system for several other languages
(Basque, Hebrew, Italian, Portuguese and Romanian).
This could be due to many Irish vMWE constructions
consisting of common verbs (bain ‘extract’, cuir ‘put’,
tabhair ‘give’, faigh ‘get’) and the language’s procliv-
ity for ‘LVC’ and ‘IAV’ constructions, which follow
regular syntactic patterns.

4.4. Lessons Learned for Low-Resource
MWE Identification

Following these experiments, we draw some conclu-
sions from our method, and hope these learnings will
be applicable to other lower-resourced languages tack-
ling this task.
The results demonstrate the value of monolingual lan-
guage models in such tasks. Our gaBERT-based mod-
els outperformed the mBERT-based models in almost
all experiments conducted, barring some models which
failed to predict any MWEs at all. This significant in-
crease in performance is particularly reflected in the
case of unseen VMWEs, which by their nature, present
a great challenge to low-resource languages, as they are
likely to be more prevalent where there is a scarcity of
data/resources. Our experiments show how even a very
small dataset can yield results similar to languages with
much larger datasets (e.g. Portuguese, which had 6437
annotated vMWEs, almost 10 times the number anno-
tated in the Irish dataset).
Clearly, such monolingual language models are ex-
pensive to train, both in language resources and in
hardware required, and may be a challenge for lower-
resource languages to build. However, our experi-
ments show that multilingual models such as mBERT
show promising capabilities to capture even unseen
vMWES, and even small additions to the data can dra-
matically improve these results. These experiments
also highlighted the importance of careful hyperpa-
rameter tuning, as the manual explorations of the hy-
perparameter space resulted in an improvement of 4.73
(8.86 after single-tokens were removed) in the unseen
MWE-based F1 score compared to the mBERT-based
system submitted by TRAVIS-multi.
Our experiments confirm the susceptibility of
transformer-based models to instability, where even
small variations in the data or in the hyperparameters
selected (particularly the varying of the random seed
variable) can result in a model that fails to predict
any labels whatsoever. This problem seems to be
exacerbated by the small size of the training data.
However, our experiments indicate that the issue
can be combatted through increasing the number of
epochs trained for, and by varying the learning rate.
This finding of ours parallels the work of Mosbach
et al. (2021) who, upon investigating the topic of
instability in fine-tuning BERT, recommend using
small learning rates with bias correction to avoid
vanishing gradients early in training, and increasing
the number of iterations considerably and training
to near zero training loss. However, as discussed in
Section 4.1.1, some combinations of hyperparameters
may result in unexpected model behaviour during
training. As such, a random search hyperparameter
tuning approach may be the most effective, as there is
little guarantee that a well-performing hyperparameter
setting will still perform well when combined with a
different well-performing hyperparameter.
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Category Model Precision Recall F1

Unseen MWE-based

gaBERT-optimised 53.30 32.44 40.33
MTLB-STRUCT 23.08 16.94 19.54
Seen2Unseen 21.74 9.97 13.67
mBERT-optimised 25.88 07.36 11.46
Travis-multi 3.75 1.99 2.6
MultiVitaminBooster 0.0 0.0 0.0

Global MWE-based

gaBERT-optimised 63.01 35.80 45.66
MTLB-STRUCT 37.72 25 30.07
Seen2Unseen 44.16 23.39 30.58
mBERT-optimised 43.41 12.93 19.93
Travis-multi 12.36 5.05 7.17
MultiVitaminBooster 0.0 0.0 0.0

Global Token-based

gaBERT-optimised 74.31 42.89 54.38
MTLB-STRUCT 65.02 33.79 44.47
Seen2Unseen 50.41 24.11 32.62
mBERT-optimised 65.76 19.30 29.85
Travis-multi 65.48 16.3 26.11
MultiVitaminBooster 0.0 0.0 0.0

Table 5: Precision, recall and F1 scores for unseen MWE-based, global MWE-based and global Token-based
metrics for open-track systems submitted to the PARSEME shared task 1.2 for the Irish annotated corpus, with our
optimised gaBERT and mBERT-based models included for comparison.

We also investigated the potential for alternative se-
quence labelling schemes that more accurately cap-
ture the vMWE labels. Our experiments on this topic
are inconclusive, as there is no guarantee that the re-
sults we found are consistent when applied to a model
trained on different hyperparameter settings. However,
these alternative labelling schemes do allow for captur-
ing doubly-annotated tokens, which previously would
have been lost when using a traditional IOB2 labelling
scheme.

5. Conclusion & Future Work
In this paper we report on an exploration of the applica-
tion of pre-trained language models (both multilingual
and monolingual) for the task of vMWE identification
in Irish. Following the example of the TRAVIS systems
submitted to the PARSEME shared task 1.2, we fine-
tune language models to perform sequence labelling
classification of the tokens, describing two series of ex-
periments, exploring hyperparameter tuning, and data
modifications addressing potentially challenging is-
sues. We briefly discuss the labelling scheme used, fo-
cusing on the issue of labelling doubly-annotated (over-
lapping) tokens.
Our results reveal patterns in hyperparameter tuning,
and these insights lead us to developing an optimised
mBERT and gaBERT-based model. Five experiments
exploring data modification and labelling of the data
show inconclusive patterns with F1 scores achieved.
A manual inspection of the data reveals some pat-
terns in predicted MWEs by model and category. A
comparison of our optimised systems for both mBERT
and gaBERT with the PARSEME shared task results

demonstrate the importance of careful hyperparameter
tuning.
These experiments particularly highlight the value of
monolingual language models in this task, as the
gaBERT-based model achieved unseen MWE-based
F1 scores that outperformed other systems submitted
for the Irish corpus, and even outperformed systems
submitted for other, higher-resourced languages, in-
dicating that high-quality language-specific resources
can compensate for a lack of language data in certain
NLP tasks.
Future work includes continuing hyperparameter opti-
misation following the data optimisation strategies ex-
plored in this work and application of alternative la-
belling schemes, to investigate the full impact of these
changes to a potentially optimised MWE identification
model. We would also consider experiments in joint-
learning tasks, such as the joint parsing and MWE iden-
tification systems trained by MTLB-STRUCT, which
showed promising results. Such experiments allow for
exploitation of other linguistically rich Irish resources,
such as the Irish UD Treebank.
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Constant, M., Eryiǧit, G., Monti, J., van der Plas, L.,
Ramisch, C., Rosner, M., and Todirascu, A. (2017).
Survey: Multiword Expression Processing: A Sur-
vey. Computational Linguistics, 43(4):837–892, De-
cember.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A.,
Hajishirzi, H., and Smith, N. A. (2020). Fine-
tuning pretrained language models: Weight initial-
izations, data orders, and early stopping. ArXiv,
abs/2002.06305.

Gombert, S. and Bartsch, S. (2020). MultiVitamin-
Booster at PARSEME shared task 2020: Combining
window- and dependency-based features with multi-
lingual contextualised word embeddings for VMWE
detection. In Proceedings of the Joint Workshop

on Multiword Expressions and Electronic Lexicons,
pages 149–155, online, December. Association for
Computational Linguistics.

Judge, J., Nı́ Chasaide, A., Nı́ Dhubhda, R., Scannell,
K. P., and Uı́ Dhonnchadha, E. (2012). The Irish
Language in the Digital Age. Springer Publishing
Company, Incorporated.

Kurfalı, M. (2020). TRAVIS at PARSEME shared
task 2020: How good is (m)BERT at seeing the un-
seen? In Proceedings of the Joint Workshop on Mul-
tiword Expressions and Electronic Lexicons, pages
136–141, online, December. Association for Com-
putational Linguistics.

Lynn, T. and Foster, J. (2016). Universal Depen-
dencies for Irish. In Proceedings of the Second
Celtic Language Technology Workshop, pages 79–
92, Paris, July.

Lynn, T. (2022). Report on the Irish language.
https://european-language-equality.eu/deliverables/.
Technical Report D1.20, European Language
Equality Project.

McGuinness, S., Phelan, J., Walsh, A., and Lynn, T.
(2020). Annotating MWEs in the Irish UD tree-
bank. In Proceedings of the Fourth Workshop on
Universal Dependencies (UDW 2020), pages 126–
139, Barcelona, Spain (Online), December. Associ-
ation for Computational Linguistics.

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen,
T. H., Sainz, O., Agirre, E., Heinz, I., and Roth, D.
(2021). Recent advances in natural language pro-
cessing via large pre-trained language models: A
survey.

Mosbach, M., Andriushchenko, M., and Klakow, D.
(2021). On the stability of fine-tuning bert: Mis-
conceptions, explanations, and strong baselines. In
International Conference on Learning Representa-
tions, pages 847–869, Vienna, Apr.

Nakayama, H. (2018). seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.
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