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Abstract

Transformer language models (TLMs) are crit-
ical for most NLP tasks, but they are difficult
to create for low-resource languages because
of how much pretraining data they require. In
this work, we investigate two techniques for
training monolingual TLMs in a low-resource
setting: greatly reducing TLM size, and com-
plementing the masked language modeling ob-
jective with two linguistically rich supervised
tasks (part-of-speech tagging and dependency
parsing). Results from 7 diverse languages in-
dicate that our model, MicroBERT, is able to
produce marked improvements in downstream
task evaluations relative to a typical monolin-
gual TLM pretraining approach. Specifically,
we find that monolingual MicroBERT models
achieve gains of up to 18% for parser LAS and
11% for NER F1 compared to a multilingual
baseline, mBERT, while having less than 1%
of its parameter count. We conclude reduc-
ing TLM parameter count and using labeled
data for pretraining low-resource TLMs can
yield large quality benefits and in some cases
produce models that outperform multilingual
approaches.

1 Introduction

Pretrained word embeddings are an essential in-
gredient for high performance on most NLP
tasks. Transformer language models (TLMs)1

such as BERT/mBERT (Devlin et al., 2019)
RoBERTa/XLM-R, (Liu et al., 2019; Conneau
et al., 2020), and ELECTRA (Clark et al., 2020)
provide state-of-the-art performance, but they ex-
pect at least tens of millions of tokens in training
data. High-resource languages like English, Arabic,
and Mandarin are able to meet this requirement, but
most of the world’s languages cannot. Two major
lines of work have arisen in order to address this

1Following popular usage, we will informally refer to
TLMs similar to the original BERT as “BERTs” throughout
this work.

gap: the first attempts to use multilingual transfer
to pool different languages’ data together to meet
TLMs’ data demands, and the second attempts to
lower TLMs’ data demands by changing their ar-
chitectures and training regimens.

In this study, we take up work in the latter direc-
tion, asking specifically whether (1) vast reduction
of model size and (2) incorporation of explicitly
supervised, rather than self-supervised, tasks into
model pretraining can produce better monolingual
TLMs. The former method is motivated by the
intuition that normal-sized TLMs are so large as
to be severely overparameterized for low-resource
settings, and the latter method is motivated by an
intuition that in the absence of large volumes of
unlabeled text, signal from a supervised task with
linguistic annotations is less likely be redundant to
the model. We find evidence that indicates both
methods are helpful: our MicroBERT models pro-
duce monolingual embeddings that can outperform
comparable multilingual approaches. We summa-
rize our contributions as follows:

1. We describe a method for training monolin-
gual BERTs for low-resource settings, Mi-
croBERT, characterized by a small parame-
ter count and multitask pretraining which in-
cludes masked language modeling (MLM),
part-of-speech (PoS) tagging and dependency
syntax parsing.

2. Using evaluations on named-entity recogni-
tion (NER) and Universal Dependencies (UD)
parsing across 7 diverse languages, we show
that this approach is competitive with multi-
lingual methods and often outperforms them
for languages unseen by mBERT, even when
the only pretraining task is MLM. Our eval-
uation reveals a 7% higher parser LAS and
6% higher NER F1 on average for unseen lan-
guages, with gains up to 18.87% and 11.81%
for parsing and NER.
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3. We release all MicroBERT models trained
for this work at https://github.com/
lgessler/microbert.

4. We publicly release our code at https://
github.com/lgessler/microbert
for reproducing our results and as a turnkey
facility for training new MicroBERTs.

2 Previous Work

At least since the development of pretrained static
word embeddings (Mikolov et al., 2013b,a; Pen-
nington et al., 2014; Bojanowski et al., 2017),
pretrained word representations have been indis-
pensable resources for NLP models, providing
dense numerical representations of tokens’ linguis-
tic properties. Pretrained contextualized embed-
dings (McCann et al., 2018; Peters et al., 2018;
Devlin et al., 2019) based on the Transformer archi-
tecture (Vaswani et al., 2017) have since overtaken
them in popularity. Throughout this period, high-
resource languages have received the majority of
attention, and although interest in low-resource set-
tings has increased in the past few years, there re-
mains a large gap (in terms of linguistic resources,
pretrained models, etc.) between low- and high-
resource languages (Joshi et al., 2020).

2.1 Multilingual Models
The publication of BERT (Devlin et al., 2019) also
included a multilingual model, mBERT, trained on
104 languages. mBERT and other massively mul-
tilingual models such as XLM-R (Conneau et al.,
2020) achieve impressive performance not just on
those 104 languages but also in some zero-shot set-
tings (cf., inter alia, Pires et al. 2019; Rogers et al.
2020), despite the fact that models like mBERT
do not have any explicit mechanism for inducing
shared representations across languages. However,
large language models like XLM-R suffer from the
fact that languages necessarily compete for parame-
ters, meaning that barring fortuitous synergies each
additional language should tendentially degrade
the overall performance of the model for a fixed
parameter count. Moreover, languages with less
training data tend to perform more poorly in LMs
like XLM-R (Wu and Dredze, 2020).

While the majority of multilingual models seek
to include many languages, with a large propor-
tion of them being high-resource, there are some
low-resource approaches to training multilingual
models from scratch where there may not even be

any high-resource languages. For example, Ogueji
et al. (2021) train an mBERT on data totaling less
than 1GB (≈100M tokens) from 11 African lan-
guages, and find that their model often outperforms
comparable massively multilingual models.

2.2 Adapting Multilingual Models
One response to the difficulties posed by massively
multilingual models has been to leave aside the goal
of fitting ever more languages into a single model,
and to investigate whether it would be more fruitful
to adapt pretrained massively multilingual models
for a given target language. Enriching the TLM’s
vocabulary with additional tokens (e.g. wordpieces
for BERT-style models) has been shown to be help-
ful because of how it improves tokenization and
reduces the rate of out-of-vocabulary tokens (Wang
et al., 2020; Artetxe et al., 2020; Chau et al., 2020;
Ebrahimi and Kann, 2021). Transliteration has
also been shown to be beneficial when there are
related languages that would not have been able to
benefit from transfer in the form of shared repre-
sentations otherwise, e.g. between Turkish (Latin
script) and related Uyghur (Arabic script) (Muller
et al., 2021; Chau and Smith, 2021). Using adapter
modules (Houlsby et al., 2019) has also proven ef-
fective (Pfeiffer et al., 2020a). All these approaches
are typically combined with continued pretraining,
where MLM and other pretraining tasks are used to
update model weights, and some formulations of
continued pretraining are multitask (Pfeiffer et al.,
2020b; Chau and Smith, 2021, inter alia).

2.3 Monolingual Models
Whereas multilingual approaches have tried to ad-
dress low-resource settings with transfer from high-
resource languages, other approaches have investi-
gated the question of how much data is needed for
a given level of quality in a BERT-like model, and
the question of what alternative training regimens
might help reduce this data requirement.

Several studies have examined notable thresh-
olds on dataset size. Martin et al. (2020) find in
a series of experiments that for French, at least
4GB of text is needed for near-SOTA performance,
and Micheli et al. (2020) show further that at least
100MB of text is needed (again for French) for
“well-performing” models on some tasks. (Micallef
et al., 2022) perform similar experiments for a
monolingual Maltese BERT, finding that even when
trained with only 46M tokens, the monolingual
BERT, BERTu, was able to achieve results competi-
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tive with an mBERT model adapted with the vocab-
ulary augmentation methods of Chau et al. (2020).
(Warstadt et al., 2020) train English RoBERTa mod-
els on datasets ranging from 1M to 1B tokens and
find that while models acquire linguistic features
readily on small datasets, they require more data
to fully exploit these features in generalization on
unseen data.

To our knowledge, there has been little work on
examining whether significantly reducing model
size could help in the low-resource monolingual
setting. As a baseline, Chau and Smith (2021) and
Muller et al. (2021) train monolingual BERTs with
6 instead of 12 layers for low-resource languages,
but this does not even halve the model’s param-
eter count. The only exception we were able to
find is work from Turc et al. (2019), where very
small models (as low as 4.4M parameters to BERT
base’s 110M) are pretrained directly prior to train-
ing via distillation, but the condition where the
small model is only pretrained and not trained via
distillation is not evaluated in their work.

2.4 Non-TLM Models

Finally, it is worth noting that while BERT-like
TLMs are the clear winner overall for high-resource
languages in most tasks, in low-resource settings,
other embedding models may be superior. Arora
et al. (2020) and Ortiz Suárez et al. (2020) show
that ELMo (Peters et al., 2018), static (Pennington
et al., 2014), and even random embeddings are
often not too far behind BERT-like TLMs on some
tasks even for high-resource languages. Riabi et al.
(2021) show that a character-based language model
is competitive with mBERT for one low-resource
language, NArabizi.

3 Motivation

As we have seen, monolingual BERTs trained with
standard methods tend to perform poorly when
less than 20-40M tokens are available during train-
ing, and there is evidence that they do not learn to
fully generalize some linguistic patterns without a
large (≈1B tokens, Warstadt et al. 2020) amount
of training data. However, most popular methods
for pretraining BERTs are self-supervised, using
only unlabeled text. This has turned out well for
high-resource languages, where unlabeled text is
available in far greater quantities than labeled text,
to the point where incorporating labeled text into
pretraining does not always provide large gains.

However, even in very low-resource settings, it is
common for sources of linguistic signal beyond un-
labeled text to be available, such as treebanks, inter-
linearized text, and dictionaries. It is natural to ask
whether using them as data for auxiliary supervised
tasks during model pretraining could help mono-
lingual models overcome a lack of unlabeled data,
and perhaps even interact synergistically with the
main pretraining task, such as MLM. It is known,
for example, that BERTs learn to represent words’
parts of speech (Rogers et al., 2020), and it seems
possible that providing direct supervision for pre-
dicting parts of speech may help a model acquire
good PoS representations with less data. This leads
us to our first hypothesis H1, that monolingual
models should benefit from multitask pretraining
with auxiliary tasks incorporating labeled data.

Previous results also lead us to our second hy-
pothesis H2, that in low-resource settings, mono-
lingual BERTs are typically severely overparam-
eterized. Most BERTs are overparameterized in
the sense that they can have modules removed,
disabled, or compressed while showing minimal
regressions (or sometimes even improvements)
(Rogers et al., 2020), but in H2 we mean further
that there are so many parameters that the model
cannot be effectively learned given the amount of
data. As noted in §2, there appears to be a gap
in the literature on whether pretraining a vastly
scaled down BERT model could help monolingual
BERTs perform better in low-resource settings, and
we take up the question in this work.

4 Approach

We propose an architecture and training regime for
monolingual BERTs which we call MicroBERT.
We keep the basic architecture of BERT, but we
reduce encoder layer count to 3, hidden represen-
tation size to 100, and number of attention heads
to 5. (Compare this to BERT base’s 12, 768, and
12, respectively.) Excluding prediction heads, this
reduces parameter count from 108M2 to 1.29M, or
just 1.19% of a normal BERT model’s size. After
the encoder stack, one dedicated head is used for
each task, where each head is provided with the
last encoder layer’s hidden states.

For training, assume a task set T = t1, . . . , t|T |,
corresponding datasets D = d1, . . . , d|T |, and a set

2Obtained from bert-base-cased using the
BertModel implementation in HuggingFace’s
transformers library.
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of weights for each task λ1, . . . , λ|T |, s.t.
∑

i λi =
1. To prepare the sequences of batches B =
b1, . . . , b|B| for a given epoch, construct each batch
bi using only instances from exactly one dataset
dt, and sample batches so that each dataset dt is
represented at least ⌊λt|B|⌋ times in B. Each batch
is sent not only to its dataset’s corresponding pre-
diction head, but also to any other prediction heads
which are compatible with it. For example, a batch
containing dependency syntax labels would be sent
to the parsing prediction head, and it would also be
sent to the MLM head, since the MLM head only
requires unlabeled text.3 If a dataset is exhausted in
the course of this procedure, new instances are sam-
pled anew from the beginning of the dataset. This
is a simple means for addressing the fact that some
datasets will be much larger than others, which
without intervention could have led to one task’s
parameter updates drowning out others.

We consider three tasks in this work. The first
is MLM implemented as whole-word, dynamic
masking, as in RoBERTa (Liu et al., 2019). The
second is PoS tagging, for which our prediction
head is a simple linear projection. The third is
dependency parsing, for which we use a modified
form of the biaffine dependency parser of Dozat
and Manning (2017) which has had the encoder
LSTM stack removed. Cross-entropy loss is used
for all tasks and summed together: each head pro-
duces an associated loss ℓi, which is summed into
a single loss ℓ which is used to begin backpropa-
gation. We note that it would be straightforward
to add other tasks, though we choose PoS tagging
and parsing for this work since PoS tagged and
dependency parsed datasets are relatively common
for low-resource languages. This multitask setup is
not novel—in fact, Chau and Smith (2021) use the
the same three tasks for a similar purpose, though
instead of pretraining a BERT from scratch, they
use the multitask setup to perform adaptive finetun-
ing on a pretrained multilingual model, and find a
negative result.

5 Experimental Methods

To evaluate our approach, we train MicroBERT
models on several languages and compare them to

3Actually, matters are a bit more complicated than this.
The MLM head requires representations that included a
[MASK] token from the start, whereas other heads require rep-
resentations from unmasked sequences. For multitask batches,
therefore, the batch must be fed through the encoder stack
twice: once with masking, and once without masking.

Language Unlabeled UD NER
Wolof 517,237 9,581 10,800
Coptic 970,642 48,632 –
Tamil 1,429,735 40,236 186,423
Indonesian 1,439,772 122,021 800,063
Maltese 2,113,223 44,162 15,850
Uyghur 2,401,445 44,258 17,095
Anc. Greek 9,058,227 213,999 –

Table 1: Token count for each dataset by language,
sorted in order of increasing unlabeled token count. Re-
call that unlabeled data for Indonesian and Tamil was
downsampled, and all other sources of unlabeled data
were used in full.

a variety of baselines. All our experiments are im-
plemented using AllenNLP (Gardner et al., 2018),
Transformers (Wolf et al., 2020), and PyTorch
(Paszke et al., 2019). All code and models are avail-
able at https://github.com/lgessler/
microbert.

5.1 Data

We prepare datasets for seven diverse languages:
Wolof, Uyghur, Ancient Greek, Maltese, Coptic,
Indonesian, and Tamil. These languages were se-
lected according to several criteria. First, two hard
requirements were that they needed to have a Uni-
versal Dependencies (Nivre et al., 2016) treebank
with a train, dev, and test split; and that they needed
to have a “large-enough” source of unlabeled text
totaling between 500,000 and 10,000,000 tokens.
Second, languages were prioritized based on phy-
logenetic diversity: six unrelated language fami-
lies are represented (Niger–Congo, Turkic, Indo-
European, Afro-Asiatic, Austronesian, Dravidian),
and languages vary widely in syntax (for exam-
ple, Uyghur is morphologically rich, while Coptic
is morphologically poor). Third, we sample lan-
guages along the spectrum of data quality—for
example, some have very high quality tokenization,
while others have noisier tokenization.

For each language, we obtain a UD treebank, a
larger unlabeled corpus, and for all languages ex-
cept Ancient Greek and Coptic, an NER dataset
from WikiAnn (Pan et al., 2017). Unlabeled data
for each language was taken from Wikipedia, ex-
cept for Ancient Greek and Coptic, whose unla-
beled corpora were taken from open access digital
humanities projects. Note that the unlabeled cor-
pora for Indonesian and Tamil were downsampled
by randomly choosing Wikipedia articles until a
quota of around 1.5M tokens was met. A sum-
mary of corpus statistics is given in Table 1, and
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a full description of the languages’ datasets and
their preparation is given in Appendix B. Note that
Uyghur is written in Arabic script; Wolof, Indone-
sian, and Maltese are written in Latin script; and
Tamil, Coptic, and Ancient Greek are written in
their own scripts.

5.2 Conditions

We compare four baselines, as well as six variants
of the MicroBERT approach.

• WORD2VEC: a 100-dimensional static word
embedding baseline, motivated by observa-
tions that static word embeddings can perform
well in low resource settings (cf. §2).

• MBERT: the bert-base-multilingual-cased
pretrained model. Note that only two of our
seven languages (Indonesian and Tamil) have
been seen by MBERT.

• MBERT-VA: the bert-base-multilingual-cased
pretrained model adapted in the vocabulary
augmentation method of Chau et al. (2020),
where 99 wordpieces are added to the vocabu-
lary and the model is pretrained further.

• µBERT-M, µBERT-MX, µBERT-MXP: our
MicroBERT models with MLM; MLM and
XPOS4 tagging; and MLM, XPOS tagging,
and UD parsing used in pretraining. µBERT-
MX performs tasks at an 8:1 ratio, and µBERT-
MXP performs tasks at an 8:1:1 ratio.

• µBERT4-M, µBERT4-MX, µBERT4-MXP:
like the corresponding MicroBERT models,
but approximately 4 times larger, having 200
instead of 100 hidden units; 8 instead of 5
attention heads; and 6 instead of 3 layers.

Our µBERT models are all trained for 200 epochs
with a batch size of 32 and 8,000 batches per epoch,
and we save the model that achieves best MLM per-
formance on the validation split of the unlabeled
dataset. This results in our models being trained
on only 20% of the batches that BERT was, though
we hypothesize that due to our smaller model and
dataset sizes, this may not be an issue. A full de-
scription of our methods is given in Appendix C.

4In Universal Dependencies parlance, an XPOS tag is a
part of speech tag from a language-specific tag inventory, as
opposed to a UPOS, which is drawn from a universal tag
inventory.

5.3 Evaluation

To evaluate our pretrained models, we perform
NER on the WikiAnn datasets and dependency
parsing on the UD datasets for each language–
model pair, following previous work (Chau et al.,
2020; Muller et al., 2021, inter alia). We choose
these tasks because they are common in the litera-
ture of TLM evaluation, because datasets are com-
mon even in low-resource languages for them, and
because they both assess somewhat complementary
linguistic information: informally, parsing requires
grammatical knowledge, and NER requires seman-
tic and world knowledge. Combined, they ought to
give a holistic view of a model’s abilities.

We use common hyperparameter settings to train
the evaluation models which allow for fine-tuning
of the BERT model at a reduced learning rate. A
standard Dozat and Manning (2017) parser is used
for the parsing evaluation, and a linear chain CRF
with stacked LSTM encoders is used for the NER
evaluation. Our metrics for these tasks are LAS
and span-based F1 score respectively. Gold tok-
enization is used in both evaluations. No auxiliary
input signals (e.g. PoS embeddings, morphological
feature embeddings, static embeddings) are used.
We forgo auxiliary inputs even though they would
likely improve our scores, and even though it means
no longer being able to compare our performance
directly to numbers reported in some other works,
since we believe providing the model’s representa-
tions as the sole input provides the clearest picture
of its quality.5 Full descriptions of the evaluation
models is available in Appendix D.

6 Results

Results for the parser evaluation are given in Ta-
ble 2, and results for the NER evaluation are given
in Table 3. For both tables, we also include addi-
tional rows comparing important model pairs.

It is possible to directly compare our parsing
evaluation results with those of Chau and Smith
(2021, Table 2), whose evaluation methodology we
closely follow for parsing. For our three overlap-
ping languages—Maltese, Uyghur, and Wolof—we

5This is motivated by our experience in preliminary exper-
iments of using a parser with these auxiliary inputs, with the
result that differences between our models were no larger than
3% since the auxiliary inputs were contributing so much to
the model’s performance, obscuring the content of the model
representations. We also notice a similarly small difference
between comparable models in other works where auxiliary
inputs were used in a parsing evaluation.
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Wolof Coptic Maltese Uyghur An. Gk. Tamil Indon. Avg.

WORD2VEC 72.35 85.69 73.41 54.27 73.30 50.91 74.10 69.15
MBERT 76.40 14.43 78.18 46.30 72.30 66.73 78.63 61.85
MBERT-VA 72.94 82.11 72.69 42.97 65.89 54.92 75.67 66.74
Chau and Smith (2021) 60.12 65.92 60.34
µBERT-M 75.69 86.45 74.33 61.26 78.95 59.75 74.66 73.01
µBERT-MX 77.83 88.25 78.90 65.17 80.55 61.00 74.69 75.20
µBERT-MXP 73.30 86.35 75.11 59.98 79.08 58.05 73.28 72.16
µBERT4-M 74.42 82.72 79.25 57.79 79.59 61.09 74.32 72.74
µBERT4-MX 73.99 82.52 78.61 57.14 79.09 60.82 74.21 72.34
µBERT4-MXP 74.30 82.73 78.99 57.01 79.56 60.92 74.34 72.55
µBERT-MX – MBERT-VA 4.89 6.14 6.21 22.20 14.66 6.08 -0.97 8.46

Table 2: Labeled attachment score (LAS) by language and model combination for UD parsing evaluation. The
final row shows the difference in score between µBERT-MX and MBERT-VA. Results from Chau and Smith (2021)’s
half-sized monolingual BERT are included for comparison.

Wolof Maltese Uyghur Tamil Indon. Avg.

WORD2VEC 86.89 82.67 86.37 82.71 94.28 86.58
MBERT 83.79 73.71 78.40 70.47 91.04 79.48
MBERT-VA 79.37 78.11 77.03 69.38 91.05 78.99
µBERT-M 83.92 75.89 81.36 82.28 92.25 83.14
µBERT-MX 81.12 84.80 85.45 81.61 92.43 85.08
µBERT-MXP 82.21 88.79 82.52 82.00 92.27 85.56
µBERT4-M 78.69 78.22 80.28 80.57 93.05 82.16
µBERT4-MX 80.95 80.00 79.36 80.12 92.55 82.60
µBERT4-MXP 79.02 79.31 81.59 80.11 93.01 82.61
µBERT-MX – MBERT -2.67 11.09 7.05 11.14 1.39 5.60

Table 3: Span-based F1 score by language and model combination for NER evaluation. The final row shows the
difference in score between µBERT-MX and MBERT. Boldface indicating top performance for a language does not
consider WORD2VEC.

find that LAS for mBERT is similar, which estab-
lishes that evaluation conditions are comparable.
We include their half-size BERT model’s numbers
in Table 2 for comparison, which were obtained by
training a bert-base-sized BERT from scratch
on the target language with 6 instead of 12 layers.

Non-DNN Baseline First, corroborating prior
work, we can see that static word embeddings are
competitive for many languages, often outperform-
ing the multilingual models in both tasks, and often
performing best overall for NER.

Multilingual Baselines Note the generally poor
performance of MBERT-VA, which we had hoped
would be a baseline stronger than MBERT, but often
underperforms relative to MBERT. An exception to
this is parsing for Coptic, where MBERT’s lack of
wordpieces for Coptic script causes a high out-of-
vocabulary rate, giving MBERT-VA an obvious ad-
vantage. After carefully ruling out implementation
errors, we reason that MBERT-VA underperformed
because fine-tuning a large BERT can produce un-
predictable results (Rogers et al., 2020) and our
hyperparameters for adaptive pretraining may have
been suboptimal (Chau et al. 2020 perform a hy-
perparameter search for vocabulary augmentation—
see Appendix D). In correspondence with the au-
thors of Chau et al. (2020), we discussed our results,
and they shared our assessment. In sum, MBERT-VA

appears to produce volatile results without careful

hyperparameter selection, which we take to be a
result of large model size and small dataset size.

Monolingual Model Size We can see that for
parsing and NER, the µBERT4 model performs
worse in almost all cases than the equivalent µBERT

model. The degradation is -0.27% on average for
-M variants, and -2.86% on average for -MX vari-
ants. The one language for which the µBERT4
model performs much better on parsing is Mal-
tese, where the µBERT4-M model performs 5%
better than the µBERT-M model, indicating that in
this experimental condition greater model size may
help, though note that the Chau and Smith’s half-
BERT does much worse than µBERT4-M showing
a 13% lower score compared to µBERT-M and re-
versing the trend. On our two other languages in
common with Chau and Smith, we see an 18%
(Wolof) and 5% (Uyghur) degradation relative to
µBERT-MX. For NER, we similarly observe that
the µBERT4 variants have worse average perfor-
mance than µBERT variants. We take this all to be
strong evidence for H2, that monolingual BERTs
trained at common sizes are severely overparame-
terized in low-resource settings, to the point that
large performance degradations are observed.

Parsing Considering the five languages unseen
by mBERT (all except Tamil and Indonesian), we
see in the parsing results that in every case the
best monolingual model, usually µBERT-MX, is
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able to outperform the best multilingual model. In
some cases the difference is very large, such as in
Uyghur parsing where there is an absolute gain in
18.87% LAS, and in others it is within the range
of chance, such as in Maltese parsing. For the
languages mBERT has seen, Tamil and Indone-
sian, MBERT outperforms the µBERT by several
points, though we find it remarkable that µBERT

is able to still provide a competitive score despite
being trained on very small subsets of Tamil and
Indonesian Wikipedia (150K and 600K articles,
respectively), which mBERT had full access to.
µBERT-MX performs best of all the models, achiev-
ing a score 8.5% higher than that of MBERT-VA on
average.

NER Turning now to NER results, we see that in
three cases, our µBERT models are able to clearly
outperform other models, including Tamil, which
MBERT has seen. In the other two cases, Indone-
sian and Wolof, µBERT models technically keep a
lead but with margins thin enough to be noise. For
all languages except Maltese however, WORD2VEC

is able to meet or beat top performance from TLMs.
Taken together with the parsing results, where
WORD2VEC underperforms, and with the strengths
and weaknesses of contextualized and static em-
beddings in mind, we hypothesize that NER on the
WikiAnn dataset may require rote capacities, such
as name memorization, instead of sophisticated lin-
guistic knowledge, especially on an automatically-
constructed dataset like WikiAnn.

Validation MLM Perplexity In order to better
understand the effects of our auxiliary tagging and
parsing tasks, we examine the validation MLM
perplexity of our models during pretraining. An ex-
ample of these curves is given in Figure 1. We first
observe that for all languages, validation MLM
perplexity is lower at all times for the multitask
models compared to the perplexity curve for the
MLM only model. Moreover, validation MLM per-
plexity converges more quickly on its asymptotic
value for multitask models. For µBERT-MX in par-
ticular, validation MLM perplexity usually comes
very close to its final value even within the first 10
epochs of pretraining. Validation MLM perplexity
is only one incomplete measure of model quality,
and indeed it is not entirely predictive of down-
stream performance since µBERT-M sometimes out-
performs µBERT-MX and µBERT-MXP. But we take
these results as evidence that our auxiliary tasks

Figure 1: MLM perplexity vs. epoch for the validation
split of the Uyghur dataset. The top line is µBERT-M,
the middle line is µBERT-MXP, and the lowest line is
µBERT-MX.

are helping our models learn more quickly. More-
over, while proving this would require additional
work, it seems possible from the shapes of the vali-
dation curves that for the smallest datasets, multi-
task learning (MTL) might be helping models learn
more than they could have through MLM alone.

Within validation MLM perplexity, we also see
that each language follows one of two patterns:
either the perplexity curves for µBERT-MX and
µBERT-MXP are nearly identical, or the perplexity
curve for µBERT-MXP remains a bit higher than for
µBERT-MX.6 With the intuition that more auxiliary
tasks ought to make MLM easier, we had hypoth-
esized that if anything the curve for µBERT-MX

would have been higher than for µBERT-MXP, but
instead the reverse sometimes turned out to be true.
We hypothesize that the difference in task propor-
tions between µBERT-MX and µBERT-MXP might
have been partially responsible for this: in the for-
mer, 1 in 9 batches are for auxiliary tasks, and in
the latter, 2 in 10 batches are for auxiliary tasks. If
this is true, then finding the right proportion of pri-
mary and auxiliary tasks during pretraining would
be critical for the multitask pretraining approach.

7 Discussion

Main Findings We take our most important re-
sult to be our demonstration that it is possible to
train a monolingual BERT from scratch that can
compete with and even outperform multilingual
models by up to 18% LAS and 11% NER F1 using

6The former pattern holds for Wolof, Maltese, Greek, In-
donesian, and Tamil, and the latter pattern holds for Uyghur
and Coptic.
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as little as 500,000 tokens and a UD treebank of
44,000 tokens and less than 1% of the parameters.

Multilingual Baselines We chose to use mBERT
as a baseline because it is widely used and well
studied. Moreover, given the the architectural ho-
mogeneity of mBERT and other leading multilin-
gual LLMs, we additionally believe mBERT is
strong enough to be representative of the state of
multilingual LLMs for this work. While MBERT-VA

appeared to severely underperform in some cases,
we observe that it was still a strong baseline for
both tasks (on average 5% better than MBERT for
parsing, and 0.5% worse). In sum, while slightly
stronger multilingual baselines may exist, we be-
lieve the ones in this work were still strong enough
to show the MicroBERT approach holds promise,
given that MicroBERTs were able to perform bet-
ter than multilingual LLMs by several percentage
points on average in both tasks.

Hypotheses We find strong support in these re-
sults for H1, that monolingual TLMs often, though
not always, benefit from multitask learning on la-
beled data in low-resource settings. We addition-
ally find strong support for H2, that when data is
severely limited, typical BERT configurations are
harmfully overparameterized.

Future Work There remain some unanswered
questions in this work. The addition of the third
parsing task proved harmful to performance in most
cases, and it is unclear why. Parsing and XPOS
tagging involve much of the same linguistic phe-
nomena, and it seems possible that replacing one
of them with a more semantic auxiliary task might
have led to better results. Another possibility is that
having loss computed for auxiliary tasks only on
some batches may lead to jerky or suboptimal paths
along the loss gradient, a problem which could be
mitigated by having batches where only some se-
quences are suitable for use in auxiliary tasks.

It is natural to ask whether any of the elements
of our approach here could find use in multilingual
settings. Reducing the size of multilingual models
may not be a promising direction due to the curse of
multilinguality (Conneau et al., 2020). Ogueji et al.
(2021) show further that even for low-resource mul-
tilingual models, size still seems to be important.
As for multitask learning, Chau and Smith (2021)
find a negative result for using MTL in multilingual
model adaptation, though given the complex nature
of MTL, many possible approaches remain untried.

Most languages in the world lack PoS tagged and
parsed datasets, and if the MicroBERT approach is
to be extended to very low-resource languages, it
is likely that other auxiliary tasks would be needed.
We leave this direction to future work, though we
speculate that there are plenty of alternatives that
may work. Parallel corpora, often in the form of
a Bible translation, are readily available for over a
thousand of the world’s languages. High-quality
rule-based morphological parsers are sometimes
available for very low-resource languages, and their
outputs could be used like PoS tags. Interlinearized
texts and dictionaries are also common products
of language documentation which are rich in lin-
guistic information. All of these resources could
be adapted for use in an auxiliary task.

8 Conclusion

We have shown that it is possible to train monolin-
gual TLMs that are competitive with multilingual
models using as little as 500K tokens and a 40K
token treebank with greatly reduced model size
and multitask learning on PoS tagging and depen-
dency syntax parsing. While multilingual models
did have some advantages over our approach, we
observe that our MicroBERT approach has unique
strengths for work on low-resource TLMs, includ-
ing its lack of reliance on successful cross-lingual
transfer and radically reduced computational de-
mands for pretraining and downstream use.

We take this result to call into question whether
multilingual representation learning can scale down
effectively to truly “low-resource” languages that
have less than a few million tokens in training data.
Sometimes languages like these can be well served
by transfer from related languages, even if all lan-
guages are low-resource (Ogueji et al., 2021), but
not all languages may be so lucky: language iso-
lates by definition lack related languages, and small
language families are likely less able to benefit
from transfer, since transfer tends to be enabled by
phylogenetic (Nguyen and Chiang, 2017) or areal
(Goyal et al., 2020) relatedness between languages.
While multilingual methods hold much promise,
it is important to examine other approaches to
low-resource representation learning which, if not
strictly better, may at least be complementary.
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B Datasets

Treebank Tokens
UD_Coptic-Scriptorium v2.9 48,632
UD_Ancient_Greek-PROEIL v2.9 213,999
UD_Indonesian-GSD v2.10 122,021
UD_Maltese-MUDT v2.9 44,162
UD_Uyghur-UDT v2.9 40,236
UD_Wolof-WDT v2.9 44,258
UD_Tamil-TTB v2.10 9,581

Table 4: Token count statistics for UD treebanks used
in this work. Note that for this count, we count the con-
stituent tokens of multiword tokens instead of counting
a multiword token as a single token.

Unlabeled For Coptic, we use v4.2.0 of the Cop-
tic SCRIPTORIUM corpora (Schroeder and Zeldes,
2016), obtained from https://github.com/
copticscriptorium/corpora. For An-
cient Greek, we use the initial release of the
Diorisis corpus (Vatri and McGillivray, 2018),
obtained from https://figshare.com/
articles/dataset/The_Diorisis_
Ancient_Greek_Corpus/6187256. Both
corpora are preprocessed (tokenized, etc.) using
language-specific tools to a quality higher than
would have been obtained with a generic prepro-
cessing pipeline. In Coptic’s case, the data is
further checked and with parts gold annotated by
humans.

All other corpora are derived from Wikipedia.
For Maltese, Uyghur, and Wolof, we use all avail-
able namespace 0 articles7 as of February 2022,
and for Indonesian and Tamil, we take a random
sampling of namespace 0 articles as of June 2022,
up to around 1.5M tokens.

All data is derived from Wikipedia’s public
dump files. While it is popular in NLP to use the
text in the dump files directly, this is suboptimal,
as the dump files’ text contains markup, which
makes the text noisy and means that document
structural information cannot be used in the tok-
enization and sentence splitting process. We there-

7Wikipedia articles belonging to namespace 0 are main
content articles instead of e.g. user pages or template pages.

fore take the additional step of rendering the dump
into HTML using https://github.com/
lgessler/wiki-thresher , which can then
be used to obtain useful information about guaran-
teed sentence splits, e.g. between HTML elements
like <p>. We perform rule-based sentence splitting
and tokenization on this HTML to obtain our final
tokenized texts.

For all 7 languages, we reserve around 10% of
documents for validation and use the rest for train-
ing. A test split is unnecessary because our models
are not being evaluated on unlabeled data.

UD Treebanks A summary of the treebanks we
use and their versions is given in Table 4. We use
the standard train/dev/test splits for all treebanks.

WikiAnn Datasets New train/dev/test splits
were created in an 8:1:1 ratio for the WikiAnn
dataset, which only divides sentences by language.
It was not possible to split at the document level
because no document metadata is available in the
WikiAnn dataset. Tags are converted from the na-
tive IOB1 scheme into the BIOUL scheme. Some
manual edits, logged in our version control history,
were made to sentence boundaries in order to keep
wordpiece sequence lengths below 512.

C Conditions

All experiments for both pretraining and evaluation
were performed on NVIDIA Tesla T4 GPUs with
16GB GDDR6 SDRAM.

Word2vec We use the Gensim (Rehurek and So-
jka, 2011) implementation of the Word2vec skip-
gram with negative sampling algorithm for pre-
trained static word embeddings. The embeddings
are trained just on the train split of the unlabeled
corpus for each language. The vectors are 100-
dimensional, window size is 5, and negative sam-
pling factor is 5.

mBERT-VA We implement the Vocabulary Aug-
mentation method exactly as prescribed by Chau
et al. (2020) by training a new wordpiece tokenizer
on the train split of the unlabeled data with a vo-
cabulary size of 5,000, yielding a new monolingual
vocabulary. The monolingual vocabulary is ranked
by frequency of wordpieces, and the 99 unused
tokens in mBERT’s vocabulary indexed between 1
and 99 are replaced by tokens from the monolin-
gual vocabulary which are not already present in
mBERT’s vocabulary. Since only preexisting token
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indices are used, it is not necessary to modify the
model’s pretrained weights.

To train the weights of the previously unused
token indices, adaptive pretraining with MLM is
performed, again following Chau et al. (2020).
Whereas Chau et al. perform a hyperparameter
search, due to resource constraints we are forced
to pick a single set of hyperparameters for adaptive
pretraining, which we choose within the bounds of
Chau et al.’s hyperparameter search. First, due to
memory constraints on our GPUs, we are forced to
set the batch size to 2. We pretrain for 20 epochs
with 16,000 batches per epoch. The PyTorch
AdamW optimizer is used with β1 = 0.9, β2 =
0.999, learning rate at 1e-4, and weight decay at
0.05. The model which achieved lowest validation
set perplexity is chosen.

MicroBERT Our tokenizer for MicroBERT is
a WordPiece tokenizer. We scale vocabulary size
from a minimum of 8,000 wordpieces up to 14,000
wordpieces, where the number of unique whites-
pace tokens for a given language determines how
large the vocabulary will be. All models are un-
cased and perform Unicode NFD normalization as
a preprocessing step during tokenization.

Since some tasks require wordpieces while oth-
ers require tokens (e.g. PoS tagging), our encoder
produces both wordpiece sequences and token se-
quences. The token sequence is constructed by
keeping track of which wordpieces correspond to
which original input tokens, and average pooling
wordpieces for each token so that the sequence
length reflects the number of original input tokens.

During data loading, sequences longer than 500
wordpieces are split into chunks of no more than
500 wordpieces each. Sequences this long only
occur in the unlabeled datasets, so this does not
pose a problem for producing valid losses on PoS
tagging or parsing.

We train with a batch size of 32 for 200 epochs
with 8,000 batches per epoch. We again use the
AdamW optimizer with a learning rate of 3e-3,
β1 = 0.9, β2 = 0.999, and weight decay at 0.05.
We allow early stopping if the validation metric,
MLM perplexity, shows no improvement for 40
epochs. The model with the best validation MLM
perplexity is selected.

While it is traditionally popular to train BERTs
with triangular learning rates (Howard and Ruder,
2018), we chose not to use them for training our
MicroBERTs. The reason is that, as noted by Raf-

fel et al. (2020), it is necessary to know in advance
approximately how many training steps are neces-
sary to train a model, but since our MicroBERT
architecture is much smaller, it is not obvious how
many steps would be required to train it, making
its use difficult. We do not expect this to lead to
much worse performance compared to a properly
configured triangular learning rate, as Raffel et al.
(2020) also note that the triangular schedule often
leads to only marginal gains compared to other
schedules. Instead, we use PyTorch’s ReduceL-
ROnPlateau scheduler, which reduces learning rate
when a certain number of validation steps have
shown no improvement in MLM perplexity. We
configure the scheduler so that if no improvement
occurs for 2 epochs, the learning rate is halved,
down to a minimum learning rate of 5e-5. Our
results have shown that this training regimen can
achieve good results, but we expect there is room
for improvement and leave the task of refining it to
future work.

D Evaluation

Parsing We use the AllenNLP implementation
of a biaffine attention parser (Dozat and Manning,
2017). In line with previous work, we set the di-
mensionality of the arc and tag representations to
100, and dropout and input dropout are set to 0.3.
An encoder stack of 3 bidirectional LSTMs is used,
with a recurrent dropout of 0.3, hidden size of 400,
and highway connections. A scalar mix of repre-
sentations from each layer of the BERT model is
learned (Peters et al., 2018) to allow the model to
fully exploit information present in earlier layers.
Gold tokenization is used, and no supplementary
representations (such as static word embeddings or
feature or PoS embeddings) are provided.

We train for 300 epochs with a batch size of
16 and patience of 50 with LAS as our validation
metric. To account for the very large size of some
treebanks (e.g. Greek), we train for 200 batches
per epoch. The AdamW optimizer is used with
β1 = 0.9, β2 = 0.999, learning rate at 1e-3, and
gradient clipping at 5.0. A reduced learning rate of
5e-5 is used for all parameters in the TLM.

NER We use AllenNLP’s linear chain CRF tag-
ger with BIOUL encoding. As with parsing, a
scalar mix of representations from each layer of the
BERT model is learned (Peters et al., 2018) to allow
the model to fully exploit information present in
earlier layers. An encoder stack of 2 bidirectional
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LSTMs is used, with a dropout of 0.5 and hidden
size of 200. The model’s dropout is set to 0.5.
Gold tokenization is used, and no supplementary
representations (such as static word embeddings or
feature or PoS embeddings) are provided.

We train for 300 epochs with a batch size of
16 and patience of 50 with span-based F1 as our
validation metric. The AdamW optimizer is used
with β1 = 0.9, β2 = 0.999, learning rate at 1e-3,
and gradient clipping at 5.0. A reduced learning
rate of 1e-5 is used for all parameters in the TLM.
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