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Abstract
In historical encrypted sources we can find encrypted text sequences, also called ciphertext, as well as non-encrypted cleartexts
written in a known language. While most of the cryptanalysis focuses on the decryption of ciphertext, cleartext is often
overlooked although it can give us important clues about the historical interpretation and contextualisation of the manuscript.
In this paper, we investigate to what extent we can automatically distinguish cleartext from ciphertext in historical ciphers and
to what extent we are able to identify its language. The problem is challenging as cleartext sequences in ciphers are often short,
up to a few words, in different languages due to historical code-switching. To identify the sequences and the language(s), we
chose a rule-based approach and run 7 different models using historical language models on various ciphertexts.

1. Introduction
Since humankind created written language there has
been a need to send messages to each other in a safe
way, without the interference of a third party.
Historical ciphers are encoded, hand-written
manuscripts aiming at hiding the content of the
message. Historical ciphers usually contain encoded
sequences of various symbols, so called ciphertexts, as
well as cleartexts, i.e. non-encrypted text written in a
known language. All text sequences that have not been
encrypted, but are left in its original form are called
cleartext.
During the decryption process, the ability to distin-
guish cleartext from ciphertext is essential, since clear-
text can give clues to the underlying language of the
cipher and help us in the historical interpretation and
contextualisation of the manuscript. By analyzing the
cleartext of the cipher we can make educated guesses
about the topic and the context of the document, which
can lead to the decryption of important keywords, or
the encoded named entities, such as locations or names
of persons (Megyesi et al., 2019).
Cleartext might be a longer text, or short sequences of
words making language identification more challeng-
ing. The scribe might use one or several languages in
the same cipher, as code-switching was common in our
history. And while ciphertexts are often represented
by a specific symbol system designed for the particu-
lar cipher, such as digits, alphabets, graphic signs or a
combination of them, cleartext consists of the alphabet
of the language(s) involved. An example of cleartext
and ciphertext sequences following each other in a his-
torical cipher from 1625 is illustrated in Figure 1.
The goal of our study is to automatically identify the
cleartext sequences in ciphers, and their language(s).
We use historical language corpora for which we cre-
ate word-based and character-based language models
of various orders from unigrams to fivegrams. We build
models for 16 European languages: Czech, Dutch, En-
glish, French, German, Greek, Hungarian, Icelandic,

Figure 1: Excerpt of a cipher with ciphertext (in red)
and cleartext (in green). Record 69 in the DECODE
database (ASV, 2016b).

Italian, Latin, Polish, Portuguese, Russian, Slovene,
Spanish and Swedish.
The work has been carried out within the DECRYPT
project (Megyesi et al., 2020) aiming at the develop-
ment of a research infrastructure for the study of his-
torical cryptology. More specifically, the purpose of
the project is to create resources and tools for (semi-
)automatic transcription, cryptanalysis and decryption
of historical encrypted documents.
In the remaining part of the paper, we give an overview
of language identification in historical text followed by
attempts made with regard to language identification in
ciphers. In Section 3, we present the method to auto-
matically segment cleartext and ciphertext in ciphers,
and identify the language of the cleartext. In Section 4,
we describe the results and in Section 5, we conclude
our findings.

2. Background
Automatic language identification of a text is claimed
to be a solved problem in natural language processing.
When we browse or translate text using Google, the
system identifies the language of the text with high ac-
curacy. This applies especially to longer and modern
text. However, when only a few words are typed in
and/or when we are dealing with historical text, iden-
tifying the language becomes harder with less reliable
results. In this section, we give an overview of lan-
guage identification in general, and then we describe
previous studies on attempts made for language identi-
fication in historical ciphers in particular.
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2.1. Language Identification
Language identification is the task of recognizing the
language a text is written in. The aim is to create sys-
tems that are able to recognize any human language,
being it in the form of speech, sign language or hand-
written text. The methods used are many, ranging from
decision rules to neural networks, and the task can be
applied to many areas. In the field of translation the
use of language identification can be dated back to the
80s when (Beesley, 1988) created a prototype system
for language identification for online texts. Another
use of language identification we can find is in mul-
tilingual document storage and retrieval where one of
the challenges is to disambiguate the so called “false
friends”, i.e. a word that holds different meanings in
two languages, but is written in the same way in both
languages (e.g. gift meaning ”present” in English, but
”married” in Swedish).
Texts in which several languages are present and also
alternated, a phenomenon called code-switching, are
commonly occurring, both in modern and in historical
texts. Within the NLP community, several studies have
been carried out to identify where code-switching oc-
curs and which languages are involved. The First and
Second Workshops on Computational Approaches to
Code Switching organized in 2014 (Diab et al., 2014)
and 2016 (Diab et al., 2016) were the first workshops
dedicated to the topic. They organized shared tasks to
identify languages in code-switched data. The most
popular and successful approaches were based on ma-
chine learning algorithms. In (Shirvani et al., 2016),
they performed token-level identification using a Lo-
gistic Regression model with L2-regularization to gen-
erate language labels on the tokens. The results out-
performed the other participants, ranking the system at
first place for the language pair Spanish-English.
There have been attempts in using deep learning algo-
rithms to perform code-switching identification, with
very good results. In (Samih et al., 2016), the au-
thors present a long short-term memory (LSTM) ap-
proach relying on word and character representations,
where the output is fine-tuned using a conditional ran-
dom field (CRF) classifier to capture contextual mean-
ing. They did not use any linguistic resources, mak-
ing the model language independent. The results out-
performed the other participants ranking the system
at first place for the language pair Modern Standard
Arabic-Dialectal Arabic and second for the language
pair Spanish-English at the Second workshop.
Despite the highly rising interest in the use of deep
learning ones, there are still researchers interested in
using rule-based methods. In (Chanda et al., 2016), the
authors tag their dataset of Spanish-English tweets at a
word level and use three different dictionaries to recog-
nize the language of each word. If the word is tagged as
both languages, it is given to a Predictor-Corrector al-
gorithm, which checks the tag given to the previous and
next word; if they are the same it will give the same tag

to the mixed word, otherwise it will tag it as ambigu-
ous. Although the results achieved in the second work-
shop in 2016 do not outperform the other participants’
systems, they outperformed the baseline.

2.2. Language Identification in Ciphers
When it comes to language identification in ciphers,
like research on detecting cleartext in a cipher and iden-
tifying its language, this task presents a noticeable lack
of literature. To the best of our knowledge, the only
attempt in language identification in this field has been
carried out in (Pettersson and Megyesi, 2019), where
the authors present an approach to automatically map-
ping ciphertext sequences to keys in order to return the
plaintext from the ciphertext by using homophonic sub-
stitution. Historical language models are consulted to
guess the language used to write the decrypted plain-
text. They use three ciphertexts from the DECODE
database (Megyesi et al., 2019) for training and one for
evaluation.
The first step for the cipher-key mapping algorithm
consists of storing code-value pairs and the length of
the longest code processed from the key file. In the
second step, the transcribed text is matched against
the code-value pairs. The search method is a non-
greedy search-and-replace mechanism, which consists
in checking the length of each word with the longest
code in the cipher. Different approaches to matching
are applied depending on the length of the given word:
1) if it is shorter than or equal to the longest word, it is
checked whether the word can be matched with a code
and if so, the word is replaced with the value attached to
that code; 2) if the word cannot be matched with a code
or if its length is longer than the longest word, then the
algorithm iterates over the word, character by charac-
ter, and try to match these characters with a code: if the
approach is successful, the current character is merged
with the succeeding character, and the algorithm tries to
match the longer sequence with a code until its length is
equal to the longest word’s length. If there is no match
when the word reaches the longest word’s length, the
sequence is replaced by a question mark. The third step
is to identify the language of the decrypted text that was
generated in the previous steps. This is done based on
word-based language models from the HistCorp web-
page,1 where the plaintext words are compared to the
words in the language model for each language. The
model outputs a ranked list of these languages show-
ing the percentage of words in the plaintext file that are
found in the model for each language.
Next we turn to the description of our work.

3. Method
In this section, we will describe our approach to detect
cleartext and identify its language. We start by describ-
ing the data, both the ciphers used and the historical
corpora for the creation of the language models.

1https://cl.lingfil.uu.se/histcorp/langmodels.html

https://cl.lingfil.uu.se/histcorp/langmodels.html
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3.1. Ciphers and Transcriptions
To detect cleartext in ciphers, we need transcribed
manuscripts with ciphertext and cleartext sequences
marked along with their language ID. The DECODE
database2 contains a collection of almost 3000 cipher-
texts and keys from Early Modern times in Europe
(Megyesi et al., 2019). Over 400 ciphers are available
with their transcriptions. All transcribed manuscripts
follow the same guideline for consistency (Megyesi,
2020). An example of an original cipher with cleartext
followed by ciphertext is exemplified in Figure 2 and
its corresponding transcription is shown in Figure 3.
First, the transcription begins with comment lines
(starting with ”#”) which provide information about the
file. Then, the content of the cipher is transcribed, sym-
bol by symbol and row by row. Digits are transcribed
as numerals in ASCII (1 is transcribed as “1”, 2 as “2”,
0 as “0”), along with the Latin alphabet including capi-
talized letters (a is transcribed as “a”, capital B as “B”),
and punctuation marks (“.”,“!”,). For other symbols,
we use the Unicode names. Each symbol is transcribed
separately, and we add a space between each symbol.
In case of spacing in the original, multiple spaces are
introduced as these might mark word boundaries in
the underlying plaintext. Uncertain symbols are tran-
scribed with added question mark “?” immediately fol-
lowing the uncertain element. To be able to distinguish
between ciphertext and cleartext, cleartext sequences
are marked in brackets as:

< CLEARTEXT LANG Symbol sequence >.

If the manuscript contains several lines of cleartext,
each new line is represented by a new CLEARTEXT
tag. LANG denotes the language the cleartext is writ-
ten in, marked by a language ID as defined by ISO 639-
12 two-letter codes for languages (e.g. ES for Spanish).
If there is some doubt about the cleartext language, the
language ID is defined as unidentified (UN).

Figure 2: Excerpt of a cipher with ciphertext and clear-
text. Record 198 in the DECODE database (ASV,
2016a).

The transcriptions were preprocessed to make compu-
tation easier. We removed all question marks represent-
ing uncertainty (e.g. 8? is returned as 8) and kept the

2https://de-crypt.org/decode

Figure 3: Excerpt of a cipher transcription with ci-
phertext and cleartext. Record 198 in the DECODE
database (ASV, 2016a).

first alternative in case of multiple interpretations (e.g.
6/8? is returned as 6). We then converted all Unicode
names into symbols (by using the lookup function in
the unicodedata module). We removed all spaces
between the codes as well as the cleartext and plain-
text tags. Finally, we corrected remaining errors caused
by the manual transcritpion, such as missing brackets
and wrong unicode names. The result is a collection of
texts which looked exactly as their original historical
manuscripts without any annotation.
The dataset used in our study consists of 214 docu-
ments in 8 different languages. Transcriptions of two
longer enciphered manuscripts are also present: the
Borg (Aldarrab et al., 2017) and the Copiale(Cop, 2011
2020) ciphers, dated back to the 18th and the 17th cen-
turies, respectively. To test if the models overgenerate
we also included some texts without any cleartext.
As we can see in Table 1, the language with the most
documents is Hungarian, followed by French, Italian,
Spanish, Latin. In the sample, we can also find docu-
ments with multiple languages such as a combination
of Latin and French, where the cleartext was written
in Latin and the ciphertext was decoded into French.
Some languages occur in one document only, such as
Dutch and Portuguese. We could not create a balanced
sample, we took simply what we could get.
In the manuscripts, we find a large variation of symbols
used to encode the text. In Table 2, we show the distri-
bution of symbols across the training and test sets. The
most frequent symbol set used in the ciphers are dig-
its, representing around 78% of our data. The second
most used symbol set is a combination of digits and
Latin letters (around 15% of the dataset), followed by
a combination of digits, Latin letters and graphic signs
(around 6% of the dataset). The least used symbol set
is the combination of graphic signs and Latin letters
representing around 1% of the dataset.
The dataset was partitioned into 60% for training and
40% for test, with no development set. The motivation
behind this choice is that we were not planning to use
machine learning, so the training set does not necessar-
ily need to have a lot more data compared to the test set
and the same applies for the absence of a development
set. The transcriptions of the long ciphers, the Borg

https://de-crypt.org/decode
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Language Num of doc
for training set

Num of doc
for test set

Hungarian 32 22
French 29 20
Italian 29 20
Spanish 25 17
Latin 5 3
Latin/French 4 2
Portuguese 0 1
Dutch 0 1
Unknown 0 1
No cleartext 1 2

Table 1: Language distribution in the dataset.

and the Copiale, both with non-standard symbols, were
divided into 50% for training and 50% for testing.

3.2. Language Models
Inspired by the work of (Pettersson and Megyesi,
2019), we decided to include 16 European languages,
all with freely available historical corpora through the
HistCorp platform (Pettersson and Megyesi, 2018).
The included languages are: Czech, Dutch, English,
French, German, Greek, Hungarian, Icelandic, Italian,
Latin, Polish, Portuguese, Russian, Slovene, Spanish
and Swedish. Historical corpora with diplomatic edi-
tions are available for all, along with pre-trained lan-
guage models which are perfectly suitable and adapt-
able for our purposes; both for cleartext detection and
language identification.
The language models are built using the IRSTLM open
source toolkit (Federico et al., 2008). Every language
has word-based models, including up to 3-grams, and
character-based models, including up to 5-grams. The
models are text files with the token in the first column
and their absolute frequency in the second column. In
order to use these models for both language identifica-
tion and cleartext detection, we created two dictionar-
ies: one collecting all items in the word-based language
models and one collecting all items in the character-
based language models (see Table 3 for size of each
language model).
The motivation behind using historical language mod-
els rather than larger modern models is related to the
nature of the texts analyzed. Because historical ciphers
contain historical language with different spelling and
vocabulary used at the time, language models built on
historical texts seemed to be appropriate for our pur-
poses.
In order to use the language models, we build two dic-
tionaries: one collecting word-based language mod-
els and one collecting character-based language mod-
els. The motivation behind choosing a dictionary as
our data structure is because of the relative speed with
which items can be retrieved. Being a hash table, when
we search for an item we look directly at the “slot” that
holds the name of the item we are looking for and re-

trieve its value. This search is equal to O(1), mean-
ing that the size of the dictionary has no effect on the
search, since it is constant (Miller and Ranum, 2006).
For the word-based dictionary, unigrams and bigrams
were used (3-grams turned out to be computationally
too heavy to be useful for our task). For the character-
based dictionary, 3-grams, 4-grams and 5-grams were
used. The motivation for not using unigrams and bi-
grams in the character-based setting, is that these short
segments are more likely to be part of several different
language models. For example, ia can be a common
suffix in both Spanish and Italian, but for longer n-
grams we can get more unique combinations for certain
languages. The dictionaries have words or characters
as keys and a list of tuples in the form (language,
frequency) ranked by the second item with the first
one being the one with the highest relative frequency as
values.

3.3. Cleartext Detection
To distinguish cleartext sequences from ciphertexts, we
were inspired by the the work of (Chanda et al., 2016),
as explained in Section 2.1. In particular, we were in-
terested to see how the approach of analyzing modern
social media (Twitter) data on word level could be ap-
plied to and how well it could perform on historical
texts.
We decided to experiment with various types of
models. For our baseline model we chose unigrams
only on a word-based level. In addition to the baseline,
we tried six different n-gram combinations:

1) For the first model (Word 1gram Threshold on
FRequency, W1 TFR), we considered only unigrams,
but not the least frequent ones. We set a threshold
of 1 on the absolute frequency of all unigrams when
creating the word-based dictionary from the language
models. The motivation for this is to see how removing
the least frequent words could affect the results of
cleartext detection.

2) For the second model (Word 1gram Threshold on
Letters, W1 TL), we also considered unigrams, but
only those which presented letters. In order to achieve
this goal, we set a threshold where unigrams which
presented digits were not considered (e.g. ‘23gf’
or ‘65.’). The motivation behind this is that words
containing numbers seem to be less likely to be text
than code and therefore should possibly be ignored.

3) For the third model (Word 1gram Threshold on
Letters + Word 2gram, W1 TL + W2), we considered
a combination of bigrams and unigrams with the same
threshold as in the second model (1L). The model will
first check if the bigram is present in the dictionary
and if not, it will split the bigram into unigrams and
check if each of these is present in the dictionary. The
motivation behind this combination is the fact that
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Set Digits Graphic Signs +
Latin letters

Digits +
Latin letters

Digits +
Latin letters +
Graphic Signs

Training 96 2 20 7
Test 70 2 8 9

Table 2: Symbol set distribution in the dataset.

Language Words Chars
Czech 4,364,685 25,359,937
Dutch 14,549,599 87,206,041
English 90,983,314 451,860,888
French 366,437 1,964,634
German 256,039,161 1,748,530,003
Greek 11,179,688 135,546,052
Hungarian 2,169,442 13,567,260
Icelandic 983,517 5,478,104
Italian 7,635,969 48,277,101
Latin 95,181,455 663,451,162
Polish 3,203,330 16,980,174
Portuguese 3,178,447 17,342,279
Russian 25,822 283,024
Slovene 18,081,602 92,197,951
Spanish 7,381,647 41,052,708
Swedish 17,606,410 104,409,451

Table 3: Size of language models.

some words can be difficult to identify when taken
individually, but when we consider their neighbouring
word the process could be easier. For example, in the
case of dates, such as August 1697, it could be easier
to identify 1697 as part of a date if it is considered to-
gether with August than if it would be considered alone.

4) For the fourth model (Word 1gram Threshold on
Letters + Word 2grams + CHaracters 2-, 3-, 4-grams,
W1 TL + W2 + CH345), we considered a combination
of bigrams and unigrams from the third model and
added 3-grams, 4-grams and 5-grams on a character
level. The model will first check if the bigram is
present in the dictionary and if not, it will split the
bigram into unigrams and check if each of these is
present in the dictionary. If the unigram is not in
the dictionary, the model will check the combination
of characters in the character-based dictionary. The
motivation behind adding characters to the model is
the fact that in the past, words could be spelled in
different ways and using character-based language
models could help us capture these words, even if the
word as a whole is not recognised in a dictionary.

5) For the fifth model (Word 1gram Threshold on
Letters + Word 2grams + CHaracters 2-, 3-, 4-grams
Threshold on Letters, W1 TL + W2 + CH345 TL), we
considered a combination of bigrams, unigrams and
characters as in the fourth model, but we also added

the same threshold that we have on the unigrams to the
characters, that is n-grams which presented digits were
not considered (e.g. ‘23gf’ or ‘65.’ are not considered).

6) For the sixth model (Word 1gram Threshold on Let-
ters + Word 2grams Threshold on Letters + CHaracters
2-, 3-, 4-grams Threshold on Letters, W1 TL + W2 TL
+ CH345 TL), we considered the same combination of
bigrams, unigrams and characters as in the fifth model,
but we also added a threshold to the bigrams, where
bigrams which presented only digits were ignored
(e.g. ‘23 45’ is not considered, but ‘23 Agoust’ is).
The motivation behind having such a threshold for the
bigrams is to increase our chances to capture text. Our
intuition is that a combination of two numbers is more
likely to be code than a combination of a number and a
word and should therefore be ignored.

Figure 4: Example of how the algorithm works with
models using unigrams.

Our algorithm analyzes each file in our data set line by
line, as they are transcribed. For the baseline model and
models 1 and 2, it splits each line into unigrams and we
forward each unigram to a function that assigns a ‘text’
tag if the word is found in the word-based dictionary or
a ‘code’ tag in the event that the n-gram is not found.
For model 3 to model 6, we split each line in bigrams
and we search for these n-grams in a slightly different
manner: we first search for the bigram in the word-
based dictionary, and if the bigram is not found we
split it into its unigrams and search for each of them in
the word-based dictionary again. If the unigram is not
found, we search for the combination of characters:
if the unigram is shorter than or equal to five, we
search for the entire unigram in the character-based



6

dictionary. And because the dictionary contains only
3-grams, 4-grams and 5-grams, combinations that are
shorter than three will be automatically identified as
‘code’. If the unigram is longer than five we first
search for the first five characters, and if those are
not found we search for the last five. If no match is
found the tag ‘code’ is given to the unigram. The
motivation behind checking the first and last five
characters is to try and check certain parts of the word
with the character-based language models. The first
five characters could be checked as the stem of a word,
and the last five as common inflectional suffixes.

As a result, every n-gram in the line receives a tag and
we then give this line to another function to perform
cleartext detection. This is done by checking if the n-
grams which have the ‘text’ tag are preceded or fol-
lowed by the ‘code’ tag or another ‘text’ tag: if the
n-gram is preceded by a n-gram with the tag ‘code’,
the current n-gram is the beginning of the cleartext
and we attach the opening cleartext tag to that word
(‘<CLEARTEXT’). If it is followed by a n-gram with
the tag ‘code’ or if we reach the end of the line, the
current n-gram is the end of the cleartext and we at-
tach the closing cleartext tag to that word (‘>’). As
the next step, we identify the language of the cleartext
sequences.

3.4. Language Identification
In order to perform language identification, we choose
the best performing model for cleartext detection and
change the tag assignment function slightly: instead
of just giving a generic ‘text’ tag, the function would
look for the word in the dictionaries and if it is found it
will retrieve the language with the highest relative fre-
quency and assign it to the n-gram. Next, the tagged
line is given to another function to decide the language
for the whole line, by counting the occurrences for each
language in the line. Because bigrams are more rele-
vant than unigrams, we multiply each bigram score by
1 and each unigram score by 0.5. Finally, we output a
ranked list of languages with the one with the highest
frequency being the first.

4. Results and Discussion
Before we present and discuss the results, we describe
the evaluation to measure model performance.

4.1. Evaluation
In order to evaluate our models, we decided to use dif-
ferent measurements. The first measure is to calculate
the total line match, where we check for each text out-
put by our models how many of its lines are totally
matched with the respective gold standard text. This
measure gives us an idea about how well the model
is performing overall, without considering specifically
the language identification and cleartext detection part.
It also gives us an idea of how well the model performs
automatic annotation in general.

The second measure is for the calculation of partial line
match, where we check if some parts of the cleartext
were detected in the line. This measure gives us an
idea about how well the model is performing cleart-
ext detection, although partially. Partial performance
can be relevant for annotation tasks to detect cleartext
quicker.
The third measure is to calculate the standard measures
of accuracy, precision, recall and F1-score. These mea-
sures give us an idea of how well the model performs
cleartext detection and if the models overgeneralize or
undergeneralize the detection.
The fourth measure calculates the accuracy in the
language identification task, by comparing the tags in
each text output by our model with the tags in the gold
standard. This measure gives us an idea of how well
our models perform in the language identification task.

In order to evaluate language identification accuracy,
we iterate through the gold standard file line by line and
retrieve the same line in the output file. We first count
all the language tags in the gold standard file and then
we retrieve all the lines where a language was identified
in both the gold standard and our model output files:
if the tag in the gold standard text is the same as the
one in the output text, we add 1 to the count of the
matched tags. We then divide the matched tags by the
total number of language tags and multiply by 100 to
get the percentage.

4.2. Results of Cleartext Detection
The results from the six models measured on the test
set along with the baseline is presented in Table 4. All
models with the exception of model 1 outperformed the
baseline. Model 4 is the next worst, generating a low
partial match, and low precision, but compensate for
high a recall. The best performing model is model 6
with F1-Score of 92.46% and the next best is model 5
with F1 score of 91.47%. The results confirm our ini-
tial hypothesis that combining character-based bigrams
and unigrams can help improving the performance of
cleartext detection. It also confirms our hypothesis that
having a certain threshold is necessary to avoid over-
generalization, since recall and precision gets better
with the introduction of these thresholds.

4.3. The Impact of Symbols
Since ciphers might consists of symbols that co-occur
with the plaintext alphabet, we measure model per-
formance on ciphers with various symbol sets. Fig-
ure 5 illustrated the model performance measures as
F1 on documents with various symbol sets: digits (D),
graphic signs (G), letters (L), and various combinations
that occur in the test set.
The easiest documents with cleartext to identify turn
out to be the ciphers that use graphic signs only. This
is not surprising since the cleartexts in the Latin alpha-
bet are clearly distinguishable from the ciphertext with
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Model Total line Partial line Accuracy Precision Recall F1
baseline 44.34 80.83 72.12 74.29 84.11 78.90
model 1: W1 TFR 42.72 80.76 71.52 74.32 82.90 78.38
model 2: W1 TL 56.05 93.76 89.75 92.92 82.63 87.47
model 3: W1 TL+W2 51.74 88.99 88.42 90.20 83.33 86.63
model 4: W1 TL+W2+CH345 41.75 67.88 77.36 70.74 93.00 80.36
model 5: W1 TL+W2+CH345 TL 63.16 89.09 93.64 90.48 92.49 91.47
model 6: W1 TL+W2 TL+CH345 TL 67.98 93.85 94.77 92.64 92.28 92.46

Table 4: Results (%) for each model on the test set.

graphic symbols and therefore easy to model, as indi-
cated by the high F1 scores of over 90% for almost all
models.

0
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100

baseline model 1 model 2 model 3 model 4 model 5 model 6

Model performance (F1) on symbol sets

D D+L D+G+L G

Figure 5: Model performance (F1) on symbol sets: D-
digits, G-graphic signs, L-Letters.

The best performing model in general is model 6, scor-
ing 96.03% for ciphertexts using digits, 88.87% for ci-
phertexts using a combination of digits and letters and
82.17% for ciphertexts using a combination of digits,
letters and graphic signs. This model was able to de-
tect the cleartext in the document which presented Un-
known cleartext and able to see that no cleartext was
present in the document which had none. It is clear
that the more combination of symbol sets are used for
encryption, the more difficult the identification of clear-
text and ciphertext sequences become.
In general, model 6 achieves highest performance for
all symbol sets with the exception of graphic signs only.
Ciphertexts using a symbol set made of digits were the
ones which performed best with model 6. This could be
due to the fact that it is easier to detect text in a cipher-
text where only numerals are used for code and only
letters are used for text. Ciphertexts using a symbol set
made of digits and letters and ciphertexts using a sym-
bol set made of digits, letters and graphic signs benefit
from model 6 as well, but because it is more difficult
to decide if letters are text or code the model performs
slightly worse than expected, but reaching a high score
nevertheless.

4.4. Results of Language Identification
As the last part of the evaluation, we measure the ac-
curacy of language identification on the line level to

account for code-switching in cleartexts with differ-
ent languages in different lines. The best performing
model — model 6 — achieves 44.68% accuracy for the
identification of the correct cleartext language.
The models perform differently depending on the lan-
guages of the cleartext, as shown in Table 5. The lan-
guage with the highest accuracy obtained is Dutch with
a score of 88.89% followed by Portuguese with a score
of 85.29%, although these appear in one document only
as part of the test set. If we look at the languages with
most data, we can see that Spanish is the best perform-
ing language reaching a score of 64.69%.
Because these scores were lower than expected albeit
less surprising given that it is hard to automatically
guess a language based on such a small context as a
few words even for humans, we decided to run the same
task on the document level taking into account all clear-
text sequences in the document. The reason why we
chose this approach is the fact that most ciphertexts in
our dataset contain one cleartext language only. There-
fore, we chose the most frequent language tag for all
cleartext segments in that document and assigned it to
the given file. The accuracy for language identifica-
tion on a document level for the best performing model
(model 6) was 70.40%.
Given the results we can conclude that language iden-
tification on a document level seems to reach better
scores than on a line level. The language with the
highest score in language identification accuracy on the
document level is Dutch and Portuguese with a score of
100.0%, see Table 5. If we look at the languages with
most data, French is the best performing language dur-
ing testing reaching a score of 100.0%.
When it comes to languages we need to keep in mind
certain factors: although Dutch and Portuguese have
the best performing results, it is worth mentioning that
we had available only one ciphertext for each language.
The same goes for Latin and a combination of Latin
and French where we had 8 and 6 ciphertexts available,
respectively. If we consider the languages that had a
bigger amount of data, Spanish is the best performing
language. This could be due to the fact that the lan-
guage model was fairly big, counting around 2.4 mil-
lion n-grams, and there were fewer annotation doubts
in the transcriptions, making it easier to detect words.
It can be argued that Latin has a bigger language model,
counting 20.3 million n-grams, and therefore more n-
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Language Number of
texts Accuracy-Line Accuracy-Document

Hungarian 22 16.24 18.18
French 20 57.32 100.0
Italian 20 49.38 75.0
Spanish 17 64.69 94.12
Latin 3 18.45 33.33
Latin/French 2 55.38 50.0
Dutch 1 88.89 100.0
Portuguese 1 85.29 100.0

Table 5: Results (%) for LI for each language on the line and document levels on the test set.

grams useful for the detection of cleartext. Although
this is true, we need to remember that Latin texts pre-
sented more annotation doubts compared to other lan-
guages, making it more difficult to detect words. At
the same time, we can find Latin words in other lan-
guage models as well, since Latin was widely used
also in texts mainly written in another language. Hun-
garian presented similar characteristics as Latin, with
more annotation doubts in its transcriptions than other
languages, but at the same time it also had a smaller
language model, counting 1.6 million n-grams. French
and Italian follow Spanish and this can be due to the
size of data and low amount of annotation doubts.

5. Conclusion
In this paper, we addressed the problem of detecting
cleartext in a ciphertext and identifying its language. In
order to perform this task we used the language mod-
els available on the HistCorp platform, and created two
dictionaries: one containing unigrams and bigrams on
a word level and one containing 3-grams, 4-grams and
5-grams on a character level. We then built our baseline
model using unigrams only and compared it against 6
models which used unigrams only, or a combination of
unigrams and bigrams, or a combination of unigrams
and bigrams on word-level and 3-grams, 4-grams and
5-grams on character-level. We experimented with dif-
ferent thresholds for all order n-grams both on a word
level and on a character level. Our intuition was that
by combining unigrams, bigrams and characters while
having a threshold on each of them, the model would
perform better. Our idea was that the threshold could
filter out items which could have been misunderstood
as cleartext when they were code, or vice versa. In or-
der to perform the cleartext detection task we checked
the text line by line. If the n-grams analyzed were
present in the dictionaries and depending on the model,
we gave a ‘text’ tag or a ‘code’ tag for each text se-
quence. In order to evaluate the models, we used dif-
ferent measurements such as total line match, partial
line match, accuracy, precision, recall and F1 to have a
complete overview and understanding of how the mod-
els were performing.
Our results confirmed our hypothesis with the model
using a combination of unigrams, bigrams on a word

level and 3-grams, 4-grams and 5-grams on a charac-
ter level, reaching the highest F1-score of 92.06%. A
threshold was used on all n-grams: unigrams on a word
level and all n-grams on a character level had a thresh-
old on items that presented at least one digit, whereas
bigrams on a word level had a threshold on items that
presented only digits.
For the language identification task, the results for each
language were quite diverse, probably due to the differ-
ences in the size of the language models. We noticed
that on a line level Spanish reached good results among
the languages which had a more balanced ratio of train-
ing and test set (64.69%).
Future research should consider using a combination of
the best performing model in this paper with 3-grams
on a word level and see if a threshold could further im-
prove the performance of the model. We believe that in-
cluding higher order n-grams can help the model to de-
tect more difficult combinations of words such as 27th
August 1679, where with a lower order n-gram 27 and
1679 could be detected as code.
It would be of interest that future research investigates
how to deal with doubts in the transcriptions in a deeper
way. A suggestion could be to take the words that the
annotators were unsure about and try to find the most
similar one in the language models. This approach
could improve both cleartext detection and language
identification since it will reduce the chances of these
words being tagged as code.
Future research might also apply machine learning al-
gorithms to this task, but only in the event that more
data would be available. Regarding the language iden-
tification task, a research suggestion could be to create
equally sized language models for all languages, so that
words have a lower chance to be assigned to the wrong
language because of lower relative frequencies due to
lack of data.
All in all, we find the results promising, especially the
cleartext identification task while language identifica-
tion of a couple of words remains challenging.
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tronic Press.

Miller, B. N. and Ranum, D. L. (2006). Problem
Solving with Algorithms and Data Structures Using
Python. Franklin, Beedle and Associates.

Pettersson, E. and Megyesi, B. (2018). The HistCorp
Collection of Historical Corpora and Resources. In
Proceedings of the Digital Humanities in the Nordic
Countries 3rd Conference, Helsinki, Finland, March.

Pettersson, E. and Megyesi, B. (2019). Matching keys
and encrypted manuscripts. In The 22nd Nordic

Conference on Computational Linguistics (NoDaL-
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