
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 4842–4850
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

4842

Unifying Morphology Resources with OntoLex-Morph. A Case Study in
German

Christian Chiarcos, Christian Fäth, Maxim Ionov
Applied Computational Linguistics (ACoLi)

Goethe University Frankfurt, Germany
{chiarcos|faeth|ionov}@cs.uni-frankfurt.de

Abstract
The OntoLex vocabulary has become a widely used community standard for machine-readable lexical resources on the web.
The primary motivation to use OntoLex in favor of tool- or application-specific formalisms is to facilitate interoperability
and information integration across different resources. One of its extension that is currently being developed is a module for
representing morphology, OntoLex-Morph. In this paper, we show how OntoLex-Morph can be used for the encoding and
integration of different types of morphological resources on a unified basis. With German as the example, we demonstrate
it for (a) a full-form dictionary with inflection information (Unimorph), (b) a dictionary of base forms and their derivations
(UDer), (c) a dictionary of compounds (from GermaNet), and (d) lexicon and inflection rules of a finite-state parser/generator
(SMOR/Morphisto). These data are converted to OntoLex-Morph, their linguistic information is consolidated and correspond-
ing lexical entries are linked with each other.
The main contribution of this paper is the discussion of the current state of OntoLex-Morph and its validation on different
types of real-world resources for a single language. In the longer term, the successful application of OntoLex-Morph to such
diverse data, along with the adjustments to the vocabulary observed in the process, will be a means to establish interoperability
among morphological resources as well as between them and classical lexical data such as dictionaries, WordNets, or thesauri.

Keywords: morphology, OntoLex, Linguistic Linked Open Data

1. Background
OntoLex1 is a widely used community standard for
publishing lexical resources as RDF data, as well as to
link them with knowledge graphs, ontologies or other
lexical data sets. With the publication of language re-
sources on the web and using resolvable URIs to iden-
tify concepts, entities and relations, information from
different sources can be more easily integrated and
interlinked with each other, hence the term ‘Linked
Data’ (Berners-Lee, 2009), and in the language re-
source community, the application of OntoLex to an in-
creasing amount of lexical data has been a key element
in the recent development of Linguistic Linked Open
Data technology (Cimiano et al., 2020), e.g., in the Eu-
ropean projects ELEXIS and Pret-a-LLOD (Krek et al.,
2019).
The OntoLex core module provides fundamental data
structures for lexical resources, most notably lexical
entries, lexical forms and lexical senses, and beyond
that, the data structures of the OntoLex core module al-
ready provides vocabulary to represent morphological
information, but limited to complementing lexical en-
tries with a morphosyntactic categories such as part of
speech, and individual forms with different agreement
features such as gender, case, number, etc.
In addition to that, the decomp: module of On-
toLex is relevant to certain aspects of morphology,
however, it is primarily concerned with multi-word
expressions. Although this approach can be used to

1https://www.w3.org/2016/05/ontolex/

represent morphological composition, it is not fully
clear how linking morphemes or inflected forms in
compounding should be represented in this context:
Decomposition is defined here as an operation be-
tween lexical entries, and a linking morpheme can
be a lexical entry in its own right (this is the func-
tion of ontolex:Affix, a subclass of lexical en-
tries in the core module). So, ontolex:Affix
and decomp:Component can represent sub-word
units and can be put into relation to the lexical en-
tries in which they are contained via properties like
decomp:correspondsTo or decomp:subterm,
but problems arise when confronted with a compound
like German Gästehaus ‘guest house’. This expression
involves the plural form Gäste of German Gast ‘guest’
rather than its canonical form, and using the OntoLex-
Lemon vocabulary with the inventory of modules pub-
lished until 2019, it is unclear how to express the mor-
phological constraints involved in this compound.

So, while the core and decomp modules of OntoLex-
lemon already contain various classes and properties
that can be used to describe morphological data, they
are also severely limited. Neither derivational morphol-
ogy nor morphological information beyond the speci-
fication of grammatical features was expressible with
this model, and lexicalizations of the same concept
with different parts of speech required independent lex-
ical entries, without being able to represent the system-
atic relations on the level of form and meaning that hold
between them.

However, it was foreseen in OntoLex that more

https://www.w3.org/2016/05/ontolex/

4843

detailed morphological information would be pro-
vided at a later point in time. In particular,
the OntoLex core model includes the object prop-
erty ontolex:morphologicalPattern, which,
however, remained underspecified until a future mod-
ule for morphology would have been created.
OntoLex-Morph is the current prototype for this mod-
ule, and the primary publication on the topic is Klimek
et al. (2019). However, it is still under development, so
certain aspects of the modelling may change. Indeed,
the primary goal of our paper is to validate – and, if
necessary, revise – the current OntoLex-Morph draft by
converting open source resources representative for all
major types of NLP-relevant morphological resources
for a particular language to OntoLex-Morph. As a sam-
ple language, we focus on German, as a typical in-
flectional language which previously has also been ad-
dressed by Declerck and Racioppa (2019).
We deem such a validation necessary, as Klimek et al.
(2019) motivated OntoLex-Morph from requirements
and applications in digital lexicography and chose their
use cases accordingly. Although a designated focus of
the module has always been to address the needs of lan-
guage technology as well as lexicography, technologi-
cal requirements have not been broadly discussed in the
literature so far. In particular, as described by Klimek
et al. (2019), primarily the representation of the de-
composition of ontolex:LexicalEntry and ontolex:Form
resources and their relation with the morph:Morph el-
ement had been modelled (these are the primary re-
quirements for modelling lexical resources), whereas
the originally foreseen vocabulary elements for genera-
tive morphology (i.e., applications in language technol-
ogy) were still under development and have not been
addressed in detail.
However, these topics have been internally discussed
under the auspices of Bettina Klimek and Maxim Ionov
and their application has also been documented in
a small number of papers. As such, Declerck and
Racioppa (2019) described the conversion of a pro-
prietary multilingual resource to OntoLex-Morph, but
limited to inflectional morphology and their descrip-
tion. Other lexical resources in language technology,
however, provide specific information on derivation,
compounding and morphological generation, and here,
we explore to what extent the current OntoLex-Morph
vocabulary can be applied to represent these in an ade-
quate fashion, as well.
For studying the linguistic coverage of the current draft
of the OntoLex-Morph vocabulary, we focus on the
conversion of heterogeneous open source resources that
have been developed independently, and, in parts, in in-
ternational community efforts that aim to provide com-
patible resources for a large number of languages. So,
while we focus on a single language in our presenta-
tion, the converters can produce resources for a multi-
tude of languages.
We describe the conversion of morphological resources

for German, also to demonstrate the key benefit of
OntoLex-Lemon and RDF technology in general. That
is, resources can be easily integrated by means of
declarative links between them, So, as a final step, we
also produce an automated linking between the individ-
ual converted resources where they refer to the same
lexical element.

2. OntoLex-Morph
In this paper, we operate with vocabulary version
4.5.2 from November 2021, however, some of its
conclusions will lead to minor adjustments of this
data model.2 Figure 1 illustrates this version of the
OntoLex-Morph vocabulary, but note that it continu-
ously evolved since then, so that the most recent ver-
sion contains minor modifications. The current status
can be confirmed against the OntoLex wiki.3

The morph:Morph class represents the fundamental
data structure of the module and provides a number of
subclasses for different types of morphemes. However,
morph:Morph does not represent a linguistic mor-
pheme, but it can also stand for a morpheme variant (al-
lomorph). Whether a particular morph:Morph repre-
sents a morpheme (including its allomorphic variants)
or merely an allomorphic variant of a small set of re-
lated forms associated with the same underlying (but
not explicitly modelled) morpheme is a decision left to
the provider of the data, and indeed, not all morpho-
logical resources provide robust criteria to distinguish
morphemes and morphs.
A more controversially discussed modelling decision
is that morph:Morph is understood as a type of lex-
ical entry. This definiton follows the idea that compu-
tational morphologies usually adopt morphemes as in-
dividual entities with a number of grammatical and se-
mantic properties, comparable to headwords in a print
dictionary. Accordingly, a morph:Morph can have
one or multiple forms, a (potentially empty) set of
associated senses and it can be a structural unit in a
lime:Lexicon. This is consistent with and appeals
to the needs of language technology, it does, however,
contradict the implicit expectation that lexical entries
are, indeed typical head words of print dictionaries,
as usually, inflectional morphemes receive a different
treatment in lexicography.
Another important data structure for describing mor-
phological relations between lexical entries are word
formation relations. These are relations that link
(the lexical entry that represents) a derived word with
(the lexical entry representing) its morphological base,

2 Note to reviewers: For the final paper, we plan to incor-
porate these changes into the then-current model and describe
it as is. However, agreement on these changes is achieved by
a community-wide consensus and has not been achieved at
the time of writing.

3 See https://www.w3.org/community/
ontolex/wiki/Morphology and links on the site.

https://www.w3.org/community/ontolex/wiki/Morphology
https://www.w3.org/community/ontolex/wiki/Morphology

4844

Figure 1: Draft of the OntoLex-Morph module, version 4.5.2, Nov. 2021. Courtesy of Bettina Klimek.

resp., (the lexical entry that represents) a compound
with (the lexical entries representing) its head.
Word formation relations are to be distinguished from
word formation rules that can be used to generate a
lexical entry from one or multiple underlying mor-
phemes. These rules can be represented by their ex-
emplary application (morph:example) or a direct
replacement operation (morph:replacement), for-
malized as string operations with regular expressions
comparable to capturing groups in Perl (or, for ex-
ample, SPARQL). Declerck and Racioppa (2019) de-
scribe morph:replacement as an object property
with source and target objects, but we follow
the November 2021 diagram in assuming that this is
a datatype property with a string literal that represents
a Perl-style replacement operation, i.e., s/(source ex-
pression)/(target expression)/. Since the November
2021 diagram, a novel property has been introduced
that also allows to link a word formation rule (and thus,
indirectly, a word formation relation) with any (morphs
representing) derivational or linking morphemes in-
volved in the process.
Another type of rules with similar characteristics are in-
flection rules. The use of morph:replacement is
analoguous to word formation rules, and like (more re-
cent versions of) word formation rule, inflection rules
can be associated with morph:Morphs. A specific
feature of inflection is, however, that inflection rules
are organized into paradigms (associated with lexical
entries) and inflection types (associated with lexical

forms). Inflection types have been introduced for ag-
glutinating languages and they can be used to model a
series of ‘slots’ there individual inflection morphemes
for different functions, e.g., case, number, gender, can
be inserted. For an inflecting language like German,
normally, there will be one inflection type for one in-
flection rule.
The original scope of the module involves two main
parts: 1) enabling the representation of elements that
are involved in the decomposition of lexical entries and
word-forms (description), and 2) enabling the represen-
tation of building patterns that are involved in the for-
mation of lexical entries and word-forms (generation).
So far, the application to generative morphology has
not been demonstrated, and below, we show that these
data structures can indeed be used for the purpose, but
also, that some revisions of the original intuitions and
definitions are necessary.
Although we argue that OntoLex-Morph is an ade-
quate vocabulary for generative morphology, it is to
be noted that its scope clearly limits it to morpho-
logical phenomena and processes. In particular, mor-
phophonological processes (e.g., assimilation, etc.) are
beyond the scope of the model. For this reason,
OntoLex-Morph allows to describe and generate the
‘deep’ morphological structure — the first level in
terms of two-level morphologies, but not necessarily its
surface forms, the second level (Koskenniemi, 1983).
Heuristically, it is possible to overcome this limitation,
but it is important to note that this is not a technologi-

4845

cal limitation, but a conscious decision about the scope
of the model. It is possible that future OntoLex mod-
ules will also address phonological and orthographical
transformations or formalisms for transliteration, and
then, morphophonological rules could be one of their
domains of application. At the moment, however, no
such vocabulary does exist and it is not planned to be a
part of OntoLex-Morph.
This also means that the primary use of OntoLex-
Morph with respect to generative morphology will
probably be to exchange rules and morphological
grammars in an implementation-independent form, but
neither morphological generation on the fly nor their
implementation with native RDF technology (e.g., the
application of replacement rules in SPARQL Updates).

In the following sections, we now describe selected re-
sources for inflectional morphology, derivational mor-
phology and compounding in German, as well as the
partial conversion of an FST grammar to OntoLex-
Morph, and their subsequent application for creating
morphological generators in any host language with
support for Perl-style regular expressions.

3. Inflection: Unimorph
Following the success of the Universal Dependencies
as a growing community project, a similar effort for
the development of cross-linguistic features for inflec-
tional morphology has been initiated: Universal Mor-
phology.4

UniMorph provides data for more than 100 languages
as tables with three rows: lemma, (inflected) form and
(morphosyntactic) features as illustrated for the geni-
tive singular of German Zufall ‘chance’ below:

Zufall Zufalls N;GEN;SG

Previously, Chiarcos et al. (2018) suggested a Linked
Data representation of the original Unimorph data in
OntoLex. Using the OntoLex-Morph inventory, we ex-
tend this representation slightly: We extract morpho-
logical patterns from individual entries by comparing
canonical form and generated from, if one form con-
tains the other as a full string, we consider the string
difference as an independent morph and provide an in-
flection type for it.
The replacement itself is represented as
a regular expression as a property of the
morph:InflectionRule object that is associated
with a morph:InflectionType. Furthermore,
inflection types are grouped into paradigms. As
Unimorph does not provide us with explicit paradigm
information, we assume that every part of speech con-
situtes a separate paradigm. However, other datasets
may provide more fine-grained differentiations
between paradigms.

4https://unimorph.github.io/

In this way, the conversion from Unimorph to
OntoLex-Morph already involves an interpretative ele-
ment that goes beyond the original resource. Of course,
the patterns extracted in this way will be heuristic and
limited in coverage, but they already provide a baseline
functionality for morphological generation and analy-
sis, as they can subsequently be used to generate hy-
potheses for inflected forms or to count the frequency
of morphs and allomorphs in a UniMorph dataset or in
a corpus annotated against UniMorph.
We use TARQL (Cyganiak, 2015) to perform the con-
version, so that the entire transformation can be de-
scribed as a single SPARQL update, and directly ap-
plied to the original TSV data. In this SPARQL up-
date, we normalize canonical form and inflected form
(lower case) and then perform a string comparison to
(heuristically) determine the morph element. If the in-
flected form equals the canonical form, we predict a
morph:ZeroMorph, if it starts with the canonical
form, we predict a morph:Suffix, if it ends with the
canonical form, we predict a morph:Prefix, and if
it otherwise contains the canonical form, we predict a
morph:Circumfix.
These regularities are also stored as Perl-
style replacement operations in the property
morph:replacement of the corresponding
morph:InflectionRule:

entry:Zufall_N a ontolex:LexicalEntry ;
ontolex:canonicalForm form:Zufall_N ;
ontolex:otherForm form:Zufalls_N ;
morph:paradigm paradigm:N .

form:Zufalls_N a ontolex:Form ;
ontolex:writtenRep "Zufalls" ;
unimorph:feats "N;GEN;SG" ;
morph:consistsOf <morph#s_N.GEN.SG> ;
morph:inflectionType type:N.GEN.SG .

type:N.GEN.SG a morph:InflectionType ;
morph:inflectionRule rule:s_N.GEN.SG ;
morph:paradigm paradigm:N .

rule:s_N.GEN.SG a morph:InflectionRule ;
morph:inflects <morph#s_N.GEN.SG> ;
morph:replacement "s/$/s/".

<morph#s_N.GEN.SG> a morph:Morph ;
ontolex:lexicalForm "-s" ;
morph:grammaticalMeaning feats:N.GEN.SG .

With this kind of data aggregated into a graph, it now
becomes possible to explore, for example, the fre-
quency of a particular replacement for a particular fea-
ture combination, or to search over the graph and apply
contextual filters to identify additional regularities, e.g.,
for cases where the heuristic prefix/suffix identification
failed. In this way, the conversion by itself already pro-
vides a potential added value for the qualitative and ex-
plorative analysis of morphology.

https://unimorph.github.io/

4846

The main contribution for the UniMorph modelling in
OntoLex-Morph, is that we illustrate the successful ap-
plication of OntoLex-Morph to the encoding of mor-
phological rules as they can be heuristically extrapo-
lated from a fullform dictionary such as provided by
Unimorph.

4. Composition: GermaNet Compounds
In German, composition is a highly productive pro-
cess. It can involve additional morphemes that have
diachronic roots in nominal inflection but that have lost
the original grammatical meaning and instead serve a
morphological linker element. This presents an addi-
tional challenge to represent composition datasets in a
machine-readable form. One of the available resources
for morphological composition in German is a com-
plement to GermaNet (Hamp and Feldweg, 1997), a
German WordNet, in a format comparable to the Uni-
Morph format:

Zufallszahl Zufall Zahl

The first column contains the compound, the second
column contains one or multiple space-separated mod-
ifiers and the last column contains the head of the
compound. Note that the example Zufallszahl ‘ran-
dom number’ (from Zufall ‘chance’ and Zahl ‘num-
ber’) features the linking morpheme -s- but that this is
not made explicit, and instead, only the lemmas of the
compounds is provided.
As for Unimorph, the conversion is done by means of
TARQL, i.e., with a single SPARQL query that trans-
forms line by line into RDF. We represent compound-
ing primarily by means of the established decomp mod-
ule of OntoLex, in a way that heads and modifiers
are defined as decomp:subterms of the compound
(we do not include the linking morpheme as subterm).
However, note that decomp cannot express the order of
compounds, and in particular, it cannot replicate the in-
formation about the morphological head (that defines
the morphological characteristics of the compound) as
annotated in the GermaNet split compounds. The rep-
resentation of morpheme order is also an unresolved
matter within OntoLex-Morph, but, here, it is primar-
ily used as a means to identify the morphological head
of a compound (for German nouns, this is the last word
in the compound) which is annotated explicitly in this
resource.
To capture this aspect, we use
morph:CompoundRelation, a subclass of
ontolex:LexicalSemanticRelation, and
we define the (lexical entry of the) morphological head
as the source and the resulting compound as the target
of the compounding process. The linking morph(eme)
(extrapolated using a string diff) is attached to the
compound relation by morph:contains. Note
that OntoLex-Morph does not provide any vocabulary
to express head information, we thus recommend
the restriction of compound relations to exactly this
function:

entry:Zufallszahl a ontolex:LexicalEntry ;
ontolex:canonicalForm form:Zufallszahl .

form:Zufallszahl a ontolex:Form ;
ontolex:writtenRep "Zufallszahl" .

entry:Zahl a ontolex:LexicalEntry ;
ontolex:canonicalForm form:Zahl .

form:Zahl a ontolex:Form ;
ontolex:writtenRep "Zahl" .

[a morph:CompoundRelation]
vartrans:source entry:Zahl ;
vartrans:target entry:Zufallszahl ;
morph:contains <morph#s> .

entry:Zufallszahl
decomp:subterm entry:Zahl ;
decomp:subterm entry:Zufall .

rule:s a morph:CompoundRule ;
morph:generates entry:Zufallszahl .

entry:Zufall a ontolex:LexicalEntry ;
ontolex:canonicalForm form:Zufall .

form:Zufall a ontolex:Form ;
ontolex:writtenRep "Zufall" .

<morph#s>a morph:Morph , ontolex:Affix ;
ontolex:lexicalForm form:_s_ .

form:_s_ ontolex:writtenRep "s" .

5. Derivation: UDer
Similar to scope and approach of UniMorph, the Uni-
versal Derivations (Kyjánek et al., 2020, UDer) expose
a considerable number of multilingual resources that
feature derivational information. Again, these are har-
monized into a simple, but highly restricted format:

Zufall_Nm zufällig_A dNA05

The conversion to OntoLex-Morph is done by means of
TARQL in a way, similar to the UniMorph transforma-
tion described above. For source and target word (base
and derived form), we split off their morphological in-
formation:

entry:Zufall_Nm a ontolex:LexicalEntry ;
uder:POS "Nm" ;
ontolex:canonicalForm form:Zufall_Nm .

form:Zufall_Nm a ontolex:Form ;
ontolex:writtenRep "Zufall" .

entry:zufällig_A a ontolex:LexicalEntry ;
uder:POS "A" ;
ontolex:canonicalForm form:zufällig_A .

form:zufällig_A a ontolex:Form ;
ontolex:writtenRep "zufällig" ;

4847

morph:consistsOf <morph#dVA03%3E> .

rule:dNA05%3E a morph:DerivationRule ;
morph:generates entry:zufällig_A ;
morph:replacement [] .

[a morph:DerivationRelation]
vartrans:source entry:Zufall_Nm ;
vartrans:target entry:zufällig_A ;
morph:contains <morph#dVA03%3E> .

Note that the (normalized) string of the base form zu-
fall is not contained in the (normalized) string of the
derived form zufällig, as, here, umlaut is involved. So,
instead of a concrete replacement operation, we pro-
duce a blank node ([]) to indicate that there is a re-
placement, but we cannot ascertain its identity or val-
ues. Accordingly, we also do not link a concrete morph
(for this example). The same strategy is applied for
morphs in derivation and inflection.
On this data, we observed a gap in the OntoLex vo-
cabulary, i.e., that we express restrictions that an affix
imposes on the bases it can be applied to. As an ex-
ample, the German suffix -heit can be used to produce
abstract (feminine) nouns from adjectives, but it cannot
be applied to nouns (unless these are homophone with
an adjective). In UDer, this information is encoded in
the second character of the rule identifier.
Another gap in OntoLex-Morph is the order of mor-
phemes: As derivation relations in OntoLex-Morph
are binary, ordering information can be implicitly cap-
tured by the type of affix involved. For this reason
we deviate from the original OntoLex-Morph vocab-
ulary and make use of the classes morph:Suffix,
morph:Prefix and morph:Circumfix in place
of the morph:Affix class that is currently defined in
OntoLex-Morph.

6. Rules: SMOR/Morphisto
Morphisto (Piskorski and others, 2009) is a morpho-
logical analyzer and generator for the German SMOR
morphology (Schmid et al., 2004) shipped with SFST
system (Schmid, 2005) which contains a large-scale
morphological lexicon for German. This lexicon dif-
fers from the resources described before in that it does
not provide a full-form inventory for a certain class of
morphological phenomena, but, instead, is a part of a
fully generative system (resp., analyzer) that defines
string replacement operations (rules) along with under-
lying forms, from which different surface realizations
can be generated (resp., that can be used to parse dif-
ferent realizations). So, Morphisto provides rules and
morphs in an explicit form, whereas they had been ex-
trapolated above from string replacements operations.
Finite state transducers are a well-established and ef-
ficient technique for morphological analyzers and it
makes little sense to replicate their functionality in RDF
or with RDF technology. However, there is potential

in linking their information with other morphological
resources. On the one hand, this can facilitate the ap-
plication of the original rule set to new vocabulary. On
the other hand, different FST systems (SFST, XFST,
or FOMA) are not compatible with each other, and an
OntoLex-Morph representation that captures core as-
pects of the formalism is capable to provide a certain
level of interoperability between them.
Finite state transducers are an extension of fi-
nite automata that define states, transitions between
states and string transformations that are associ-
ated with state transitions. For inflectional mor-
phology, this behavior can be replicated by using
the morph:InflectionType class to represent
states, by modelling state transitions by morph:next
properties that connect different inflection types, and
by means of the morph:InflectionRule class,
resp., its morph:replacement property to capture
the relation between input and output strings.
Although the terminology does not directly carry
over to finite state transducers, we can re-use the
morph:next transition between inflection types as
a means to describe the transition between states, and
accordingly, model states in an FST as ‘inflection
types’. From a linguistic perspective, this is a lit-
tle bit of a stretch, because an FST state can, in-
deed, represent information about slots and their or-
der, but is by no means restricted to that. Instead,
FST states and their transitions can also be used just
to group different rules together, or to implement
morphophonological processes. Although we adopt
morph:InflectionType for FST states and tran-
sitions that implement inflectional grammar, it would
be less confusing to linguists or lexicographers using
the vocabulary to use the morph:InflectionRule
for this purpose, instead. This is, in fact, one of the
suggestions for a revision of OntoLex-Morph that we
formulate in the conclusion of our paper.
The main lexical component of the Morphisto gram-
mar is a lexicon of morphemes and base forms (in the
file ‘lexicon’). Along with it, we also consult the in-
flection rules (in the file ‘flexion.fst‘). However, as-
pects of Morphisto beyond lexicon and inflection have
not been addressed, so far, as we focus on a proof-of-
principle implementation for generative rules for the
example of inflection. Other rules we do not cover
include derivation and composition, and, more impor-
tantly, morphophonological rules that provide contex-
tualized linearizations of a particular morpheme in dif-
ferent contexts.
For illustration, consider the inflection of the German
adjective zufällig ‘random’ that we found to derived
from the noun Zufall ‘chance’ but for which UniMorph
does not provide inflection information.
The Morphisto/SMOR ‘lexicon’ file provides a tabular
format, but with a somewhat irregular structure, as dif-
ferent types of entries (prefixes, base stems, etc.) have
different kinds columns:

4848

A base stem entry consists of the following columns:

1. ENTRY TYPE: BaseStems

2. FORM, i.e., the base form

3. POS (ADJ (adjective), ADV (adverb), etc.)

4. RULE TYPE: base

5. METADATA (e.g., ‘fremd ‘foreign’)

6. PARADIGM: e.g., NFem0s.

The PARADIGM column represents a tag that corre-
sponds to the start state in the SFST from which possi-
ble inflections can be generated (i.e., successor states of
$FLEXION$). So, the tag <Name-Neut s> corre-
sponds to the FST state $Name-Neut s$ that can be
reached from the state $FLEXION$ by replacing the
empty string <> with the tag <Name-Neut s>. It
is not specified in the replacement, but we assume that
such replacements always occur at the end of a string
that represents either the base form or the immediate
representation that was generated from the base form
in a number of earlier replacement operations.
For zufällig, the corresponding lexical entry is

<Base_Stems>zufällig<ADJ><base><nativ><Adj+>

The paradigm Adj+ corresponds to the state $Adj+$
in the FST grammar, and for the example of a feminine
nominative singular form, this provides the following
state transitions and replacements:

$Adj+$ = {<>}:{<FB>} $AdjPos$
$AdjPos$ = {<+ADJ><Pos>}:{<>} $AdjFlexSuff$
$AdjFlexSuff$ = {<Fem><Nom><Sg>}:{e} $Adj#$
$Adj#$ = <>:<Low#>

For rendering this information in terms of
OntoLex-Morph, we introduce the inflection types
(states) :type%23AdjPos (for $AdjPos$),
:type%23AdjFlexSuff (for $AdjFlexSuff$)
and :type%23Adj%2B (for $Adj+$) and we pro-
vide an interpretation of the replacement operations in
replacement patterns akin to Perl, i.e., taking the form
s/$input symbol$/$output symbol$/;. A special
character in the replacement patterns is <> which we
map to the empty string. If an empty string serves as
input to a replacement operation, we assume that this
refers to an attachment of information to the end. For
an input expression, <> is thus not mapped to the
empty string, but to the regular expression $ (in Perl,
this matches the end of the input).
As a result, we arrive at the following replacements
(slightly simplified for better readability):

type:Adj+ a morph:InflectionType;
morph:inflectionRule [
morph:replacement "s/$/<FB>/;"];

morph:next type:AdjPos.

type:AdjPos a morph:InflectionType;

morph:inflectionRule [
morph:replacement "s/<+ADJ><Pos>//;"];

morph:next :AdjFlexSuff.

:AdjFlexSuff a morph:InflectionType;
morph:inflectionRule [
morph:replacement "s/<Fem><Nom><Sg>/e/;"];

morph:next :Adj.

:Adj a morph:InflectionType;
morph:inflectionRule [
morph:replacement "s/$/<Low#>/;"].

In order to facilitate such generation, we need to
provide pairs of morphosyntactic properties and tags.
We use the OLiA system ontology for this purpose
(Chiarcos and Sukhareva, 2015), which provides the
properties olias:hasTagStartingWith,
olias:hasTagEndingWith. Originally,
these properties (along with olias:hasTag,
olias:hasTagContaining and
olias:hasTagMatching) have been used for
the precise, partial or regular-expression-based match-
ing from tags in annotated corpus or dictionary to
concepts in an ontology of linguistic annotation
categories. Here, we use them in a different func-
tion: with olias:hasTagEndingWith and
olias:hasTagStartingWith, we now define
one or multiple tags as used in the replacement rules
and express that they are to be inserted before or after
the base.
We create an ontological model of the
Morphisto/SMOR annotations that defines
UnitOfAnnotation objects that carry olias:
tag properties along with morphosyntactic features
in accordance with the LexInfo vocabulary.5 Given
a lexical entry (which may also carry LexInfo in-
formation such as lexinfo:partOfSpeech),
and a paradigm (i.e., the inflection type/state as-
signed) as PARADIGM in the SMOR lexicon file),
we then obtain all feasible combinations of units
of annotations and the lexical entry (i.e., those
that overlap in lexinfo properties). If a lexical
entry is defined as lexinfo:partOfSpeech
lexinfo:adjective, the corresponding units
of annotation are limited to those that agree in the
lexinfo:partOfSpeech. For a feminine nomina-
tive singular adjective in positive degree, one possible
unit of annotation is

:ADJ_Pos_Fem_Nom_Sg olias:hasTagEndingWith
"<+ADJ><Pos><Fem><Nom><Sg>";

lexinfo:case lexinfo:nominative;
lexinfo:partOfSpeech lexinfo:adjective;
lexinfo:gender lexinfo:feminine;
lexinfo:degree lexinfo:positive;
lexinfo:number lexinfo:singular.

As this is compatible with any lexical en-
try that specifies lexinfo:partOfSpeech

5https://lexinfo.net/

https://lexinfo.net/

4849

lexinfo:adjective (and which does not dis-
agree in any of the other features), this is a valid unit
of annotation for the lexical entry.
As for the modelling of lexical entries, we create a lex-
ical entry for every row in the lexicon:

entry:16594 a ontolex:LexicalEntry ;
lexinfo:partOfSpeech lexinfo:adjective ;
morph:baseForm base:16594_zufällig ;
morph:paradigm paradigm:Adj+ .

base:16594_zufällig a ontolex:Form ;
ontolex:writtenRep "zufällig" .

paradigm:Adj+ a morph:Paradigm ;
morph:isParadigmOf type:Adj+ .

7. Generation with Chains of Regular
Expressions

Our OntoLex-Morph model allows us to triv-
ially extract an (morph:next-ordered) sequence of
morph:replacement patterns that can be retrieved
using SPARQL and used in any programming lan-
guage. As an illustration, we use SPARQL to generate
Sed scripts for morphological generation.
For generation, we thus retrieve all base
forms, concatenate them with the olias: tag
and apply the transformations defined by the
paradigm (inflection type) associated with the
lexical entry. For the baseform zufällig in
a lexical entry marked as adjective, the string
zufällig<+ADJ><Pos><Fem><Nom><Sg>
and the lexinfo properties of :ADJ Pos Fem Nom Sg
is thus the basis for generating a particular lexical
form.
A limitation of the approach is that we only cover the
first level of the two-level SMOR grammar, so that a
number of placeholder symbols for allomorphic vari-
ants remain. As a heuristic, we just remove all these
symbols from the resulting string and use the result as
basis for validation.
As our conversion of Morphisto lexicon and SMOR
grammar, as well as the generation performed on this
basis is incomplete, we evaluate the generated hypo-
thetical form by parsing them with the Ubuntu 20.4
package ‘fst‘, and the Morphisto/SMOR grammar. Out
of 25 859 different written representations of the gen-
erated hypothetical forms (excluding those identical
to base forms), our generator achieved a precision of
78.5% against SMOR/Morphisto,6 i.e., 20 308 of 5 551
written representations of hypothetical forms (exclud-
ing those that identical to the base form) could be suc-
cessfully parsed. As for the remaining 21.5%, these
can be attributed to the insufficient support for mor-
phophonological rules in OntoLex-Morph as well as in-
valid combinations of alternative base forms and inflec-

6 We do not calculate recall, as our conversion only en-
compasses the inflection component of of SMOR, and neither
the derivation nor compounding rules that it also provides.

tion rules that are filtered out in SMOR in subsequent
processing steps.
It is to be noted, however, that this vanilla morpho-
logical generation from OntoLex-Morph still remains
a baseline functionality, and even though it has advan-
tages in portability and sustainability, it lacks optimiza-
tions of FST, e.g., in disambiguation strategies and fil-
tering conditions.

8. Conclusion
We have described the conversion of four morpho-
logical lexicons from NLP applications to OntoLex-
Morph, we illustrated how we can use infer string
replacement rules from UniMorph, UniDer and Ger-
maNet compound data using SPARQL, how these can
be modelled, how explicit rules (finite state transitions)
from FST grammars can be modelled analoguously,
and how these rules modelled with OntoLex-Morph
can be applied to bootstrap a vanilla system for mor-
phological generation for any programming language
with support for regular expressions.
Although this generation is incomplete, it shows the
potential of this aspect of the module, as now, essential
parts of the Morphisto morphology, for example, can
be re-used independently from its original technical en-
viroment, and even though an RDF representation may
be less compact than tabular data formats used other-
wise, this establishes a completely new dimension of
interopoerability for this data.
At the same time, we found two gaps in the vocabulary:
the lack of means to specify the order in derivation (or,
alternatively, subclasses that encode order, e.g., suffix
and prefix instead of affix) and the lack of links be-
tween word formation relations (or rules) and morphs
(which is already added to a more recent version of the
draft). Other than that, no major obstacles were ob-
served.
Another modelling decision we applied may have an
even more profound impact on the model: We demon-
strated how sequences of inflection types can be used
to emulate transitions in finite state automata. This is
quite different from the original motivation of inflec-
tion type, and we would suggest a number of smaller
revisions here: Instead of creating next transitions be-
tween inflection types, it would be beneficial to have
transitions between rules, so that these could repre-
sent finite states. In that case, the terminology would
more easily apply to both lexicographic-linguistic and
computational uses of this concept. Then, rules and
paradigm, as well as rules and lexical forms could be
directly connected with each other. With inflection
type detached from paradigm and form, it could be re-
introduced as a means for classifying rules rather than
as an entity that serves to connect rules with forms and
paradigm.
All our code and data is available under open source li-
censes from our GitHub repository.7 In addition to the

7https://github.com/acoli-repo/

https://github.com/acoli-repo/acoli-morph

4850

transformations described above, we also performed a
linking of the resulting data set for German, but con-
version and linking are applicable to a large number of
other languages also covered by Unimorph, Universal
Derivations or SFST grammars.

9. Bibliographical References
Berners-Lee, T. (2009). Tim Berners-Lee on the next

Web. http://www.ted.com/talks/tim_
berners_lee_on_the_next_web.html
(July 31, 2012), February.

Chiarcos, C. and Sukhareva, M. (2015). OLiA –
ontologies of linguistic annotation. Semantic Web,
6(4):379–386.

Chiarcos, C., Donandt, K., Ionov, M., Rind-Pawlowski,
M., Sargsian, H., Schreur, J. W., Abromeit, F., and
Fäth, C. (2018). Universal morphologies for the
caucasus region. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018).

Cimiano, P., Chiarcos, C., McCrae, J. P., and Gracia,
J. (2020). Linguistic linked open data cloud. In Lin-
guistic Linked Data, pages 29–41. Springer.

Cyganiak, R. (2015). Tarql (SPARQL for tables):
Turn CSV into RDF using SPARQL syntax. Tech-
nical report, Technical Report, 2015. Available at:
http://tarql.github.io.

Declerck, T. and Racioppa, S. (2019). Porting multi-
lingual morphological resources to OntoLex-Lemon.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2019), pages 233–238.

Hamp, B. and Feldweg, H. (1997). GermaNet – a
lexical-semantic net for German. In Automatic in-
formation extraction and building of lexical seman-
tic resources for NLP applications.

Klimek, B., McCrae, J. P., Bosque-Gil, J., Ionov, M.,
Tauber, J. K., and Chiarcos, C. (2019). Challenges
for the representation of morphology in ontology
lexicons. Proceedings of eLex.

Koskenniemi, K. (1983). Two-Level Morphology:
A General Computational Model for Word-Form
Recognition and Production. Number 11 in Publica-
tions. University of Helsinki. Department of General
Linguistics, Finland.

Krek, S., Declerck, T., McCrae, J., and Wissik, T.
(2019). Towards a global lexicographic infrastruc-
ture. In Proceedings of the Language Technology 4
All Conference.

Kyjánek, L., Zabokrtskỳ, Z., Sevcı́ková, M., and Vidra,
J. (2020). Universal derivations 1.0, a growing
collection of harmonised word-formation resources.
Prague Bull. Math. Linguistics, 115:5–30.

Piskorski, J. et al. (2009). Morphisto – an open source
morphological analyzer for German. In Finite-
state Methods and Natural Language Processing:

acoli-morph

Postproceedings of the 7th International Workshop
FSMNLP, page 224.

Schmid, H., Fitschen, A., and Heid, U. (2004).
SMOR: A German computational morphology cov-
ering derivation, composition and inflection. In
LREC, pages 1–263. Citeseer.

Schmid, H. (2005). A programming language for Fi-
nite State Transducers. In FSMNLP, volume 4002,
pages 308–309. Citeseer.

https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
https://github.com/acoli-repo/acoli-morph
http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph
https://github.com/acoli-repo/acoli-morph

	Background
	OntoLex-Morph
	Inflection: Unimorph
	Composition: GermaNet Compounds
	Derivation: UDer
	Rules: SMOR/Morphisto
	Generation with Chains of Regular Expressions
	Conclusion
	Bibliographical References

