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Abstract
MOTIF (MultimOdal ConTextualized Images For Language Learners) is a multimodal dataset that consists of 1125 com-
prehension texts retrieved from Wikipedia Simple Corpus. Allowing multimodal processing or enriching the context with
multimodal information has proven imperative for many learning tasks, specifically for second language (L2) learning. In this
respect, several traditional NLP approaches can assist L2 readers in text comprehension processes, such as simplifying text or
giving dictionary descriptions for complex words. As nicely stated in the well-known proverb, sometimes “a picture is worth
a thousand words” and an image can successfully complement the verbal message by enriching the representation, like in
Pictionary books. This multimodal support can also assist on-the-fly text reading experience by providing a multimodal tool
that chooses and displays the most relevant images for the complex words, given the text context. This study mainly focuses
on one of the key components to achieving this goal; collecting a multimodal dataset enriched with complex word annotation
and validated image match.

Keywords: Context-dependent image retrieval, L2 reading material, Complex word identification

1. Introduction
Whether in human cognitive processes or computa-
tional systems, multimodal information is crucial for
adequate concept formation, accordingly for language
acquisition. Babies learn their native language by com-
bining words with visual cues, e.g., the sound of the
word “cat”, an image of a cat, and a cat sound are all
essential for the concept of “cat”. Over the past two
decades, literature has provided convincing evidence
on the facilitating role of cross-modal information in
language acquisition (Ecalle et al., 2009; Dalton and
Grisham, 2011; Hahn et al., 2014; Gerbier et al., 2018;
Xie et al., 2019; Albahiri and Alhaj, 2020).
Although words are powerful symbolic representa-
tions, explaining the message (communicative intent)
verbally yields unwieldy over specified sentences. Suc-
cessful communication in daily communication set-
tings usually involves linguistic information accompa-
nied by other modalities like visual representations,
gestures, or audio. The advantage of multimodal in-
formation holds for second language (L2) acquisition.
Modern language learning applications or dictionaries
like Babbel1 or Duolingo2 benefit from multimodality
by using audio, visual illustrations, and video to en-
hance the L2 learning experience.
There are several approaches to assist non-native
speakers in their reading activities. Through Lexical
Simplification (LS), complex words can be replaced
with simpler alternatives while preserving the mean-
ing and syntactic function. It has been shown that LS
leads to better text comprehension, improving text re-
call, especially for L2 learners at lower proficiency lev-

1https://www.babbel.com/
2https://www.duolingo.com/

els (Rets and Rogaten, 2021).
Instead of automatically simplifying the text, another
approach would be to provide additional information
about the complex word/phrase. This actively involves
the reader by inviting her to process the supplemen-
tary/complementary information. Such a system can
provide readers with dictionary definitions of the com-
plex words in a more straightforward form. As we
also address in this study, a more holistic approach
can utilize multimodal information, e.g., an image, that
depicts the information represented in the language
modality. This would not only improve the understand-
ing of the text but also facilitate the acquisition of new
(complex) words by providing multimodal cues.

2. Application Scenario
Our ultimate goal is to provide language learners with a
multimodal tool that chooses and displays the most rel-
evant images for the complex words, given the context,
to support their reading comprehension. To prevent
any misunderstanding, a contextualized image should
be chosen carefully to be in line with the information
given in the rest of the sentence as much as possible. To
achieve this, three central components should be ad-
dressed; (i) a multimodal dataset enriched with com-
plex word annotation and contextualized images, (ii)
complex word identification, and (iii) context-sensitive
image retrieval. In this paper, although we touch upon
the last two items, we mainly focus on the dataset
of comprehension texts for language learners enriched
with images for the complex words. The texts provided
in this dataset target English language learners below
B1 proficiency level according to the Common Euro-
pean Framework of Reference for Languages (Council
of Europe, 2001).

https://www.babbel.com/
https://www.duolingo.com/
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The following example illustrates what the model is ex-
pected to do. The text piece below3 provides general
information about stingray characteristics. Our focus is
on their ability to camouflage in a sandy bottom, with
the word “camouflage” as a complex word for our L2
readers.

Stingrays use a wide range of feeding strate-
gies. ... Stingrays exhibit a wide range of
colors and patterns on their dorsal surface to
help them camouflage with the sandy bottom.
Some stingrays can even change color over
the course of several days to adjust to new
habitats. Since their mouths are on the side of
their bodies, they catch their prey, then crush
and eat with their powerful jaws.

Let’s assume that in our image pool, we have six im-
ages that a stingray is detected, as illustrated in Fig-
ure 1. While all the images are relevant at the surface
level, they depict different concepts related to the ani-
mal ”stingray,” such as their different body parts or skin
patterns (Figure 1a-d). Understanding the concept of
the message is very crucial for providing a contextual-
ized image that is more in line with what is explained in
the sentence or the paragraph. For example, Figure 1e,
which displays a harmless type of stingray, will be un-
fitting to explain the possible dangerous attacks. To
improve the acquisition of the complex word “camou-
flage”, the system should be able to process the context
and narrow it down the image selection to the image in
Figure 1f. Providing any other image in such context
may disrupt the reading fluency due to the conflict that
it presents, or it may even yield misunderstandings of
the text.
This study provides a semi-automatized dataset cre-
ation. First of all, existing established frameworks
are used to detect complex words in the text. Sec-
ond, state-of-the-art multimodal transformers are uti-
lized to find a set of contextualized images for those
words. Further, the match between the sentence, com-
plex word, and image triple has been validated first by
employing a crowdsourced platform and then by ex-
pert analyses as described in the upcoming sections.
These semi-automatic detection methods incredibly re-
duce the costly and time-consuming manual annotation
work.
This dataset has many other potential application ar-
eas in Language Education, Natural Language Process-
ing, and Computer Vision, e.g., image-text alignment,
sense-disambiguation. For example, when it is sup-
ported with psychological techniques such as eye track-
ing, the use of this corpus provides rich materials for
researchers to investigate the mechanism and principles
of multimodal learning in human beings and to develop
computational models for them. It can also be used in

3retrieved from https://en.wikipedia.org/
wiki/Stingray

(a) Drawing of a stingray
anatomy

(b) Stingray belly side

(c) Spotted stingray (d) Colorful spotted stingray

(e) A woman plays with
stingrays

(f) Stingray lying on a sandy
bottom

Figure 1: Supplementary image samples with simple
descriptive captions for the word “Stingray”. The im-
ages (without) caption are taken from https://en.
wikipedia.org/wiki/Stingray

building a more vivid learning context for children and
L2 learners in some educational apps or courses.

3. Related Work
3.1. Complex Word Identification
Detecting the complex words (CWI) in the texts is the
first step towards providing L2 readers with assistance.
CWI has received much attention in the past decade
owing to SemEval 2016, 2018, and 2021 Shared Tasks
that attract the attention of many NLP researchers to
this domain (Paetzold and Specia, 2016a; Yimam et al.,
2018; Shardlow et al., 2021). Complex words in texts
can be identified by a wide variety of methods ranging
from more traditional dictionary-based approaches to
state-of-the-art deep learning techniques. Traditional
approaches, which usually require domain knowledge
and expert annotation, are still among the most com-
mon methods despite their costs. Using NLP ap-
proaches to detect complex words in a text helps mini-
mize the manual work and mitigate the cost. Although
there are end-to-end machine learning approaches for
automatic complex word identification (CWI) (Paet-
zold and Specia, 2016b; Yimam et al., 2018; Finnimore
et al., 2019; Gooding and Kochmar, 2019) their suc-
cess is still limited given the limited amount of data
that have been trained on.

https://en.wikipedia.org/wiki/Stingray
https://en.wikipedia.org/wiki/Stingray
https://en.wikipedia.org/wiki/Stingray
https://en.wikipedia.org/wiki/Stingray
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Although pre-trained language models can be used out-
of-the-box on CWI tasks, fine-tuning on similar data
is still very crucial to achieve better results on a spe-
cific task. Our multimodal dataset and semi-automatic
data collection tools aim to close this gap. There-
fore, our complex word identification will be more in
line with the official proficiency standards or frame-
works, such as the CEFR framework (Common Euro-
pean Framework of Reference for Languages) (Coun-
cil of Europe, 2001). According to this framework, the
proficiency levels range from A1 to C2. A1-level read-
ers should understand very simple sentences and famil-
iar words, while C1-level readers should comprehend
a wide range of demanding, longer texts and recognize
implicit meaning. Based on this coarse-grain classifi-
cation, the L2 texts can be categorized into levels based
on their vocabulary, such as (Uchida et al., 2018; Good-
ing and Kochmar, 2018). The details of the approaches
will be elaborated on in the upcoming section.

3.2. Text-Image Retrieval
In the literature, text-image retrieval research has two
directions; (i) text to image, i.e. image retrieval based
on a textual query (ii) image to text, i.e. text retrieval
based on an image query. However, in this work, we
focus on textual queries and images as targets where
the goal is to find the best matching images accord-
ing to a sentence and a focus word within this sen-
tence. Having an additional focus word in the query
is an extension to common text-image retrieval and is
described with more detail in Section 5. Nonetheless,
in this work, we heavily rely on standard approaches
described in the following text. Current state-of-the-
art approaches for text-image retrieval are trained on
multi-modal data comprising text-image pairs to com-
pute the similarity between a text and an image. To
find the best matching image, the models compute the
similarity between the query and all images in the pool
of images to be searched. Then the image with the
maximum similarity to the query is selected as the best
matching image. Current models are based on Trans-
former (Vaswani et al., 2017) architectures, and their
inputs are textual tokens of a sentence and visual to-
kens of an image or, to be precise, their dense vec-
tor embeddings. Textual tokens embeddings are usu-
ally computed using pretrained transformer language
models like BERT (Devlin et al., 2019). Visual token
embeddings are either regions-of-interest embeddings
computed by pretrained object detection and classifi-
cation models like Faster-R-CNN (Ren et al., 2016) or
image-patch embeddings computed by a Vision Trans-
former (Dosovitskiy et al., 2021).
Despite having the same inputs, state-of-the-art models
can be subdivided into two groups depending on how
and when these two different modality representations
are fused: early-fusion and late-fusion models. Early-
fusion models like UNITER (Chen et al., 2020) or OS-
CAR (Li et al., 2020) forward the textual and visual

tokens through the same Transfomer-Encoder stacks,
where a global text-image similarity score is computed
via cross-modal self-attention. Despite their remark-
able performance, early-fusion models are not appli-
cable in real-time critical applications with large im-
age pools because computing the similarity between
a query and all images requires tremendous computa-
tional power. This is different for late-fusion models
like TERAN (Messina et al., 2021) or VilBERT (Lu et
al., 2019), trained to compute joint representations of
texts and images in a common vector space, typically
by optimizing contrastive loss functions. To compute
the representations, the models forward the input to-
kens through two separated transformer-stacks – one
for the textual and the other for the visual input. Then
to compute a global similarity score, the outputs of the
two transformer-stacks are fused in a cross-modal man-
ner, individual on the model’s implementation. This
approach has the significant advantage that the image
representations of all images in the pool to be searched
can be precomputed so that only the query represen-
tation and the fusion of both have to be computed at
inference time. In real-time critical applications with
a large pool of images, this saves enormous amounts
of time and computational power. While former late-
fusion models generally perform worse than early-
fusion models, the recent late-fusion model CLIP (Rad-
ford et al., 2021) achieves state-of-the-art performance.
However, CLIP was trained on over 400M text-image
pairs, which is significantly more training data than in
all other mentioned models. Further, training CLIP re-
quires massive GPU clusters due to the enormous batch
sizes necessary during training. Fortunately, CLIP eas-
ily fits on a single consumer GPU during inference
time. However, to collect the dataset presented by this
paper, we cannot use a traditional text-image retrieval
approach as is since we extend the query by a contex-
tualized focus word (aka complex word given the lan-
guage proficiency level), which is part of the query sen-
tence. When retrieving the best matching images, we
additionally highlight the region in the image where the
focus word is best represented according to the model
– see Figure 4 for an example. This requirement orig-
inates from the language learner scenario, where we
want to provide visual cues for complex words, which
are the focus words in our dataset. More details of the
context-depended image retrieval are described in Sec-
tion 5.

4. Dataset Collection
A schematic overview of the data collection pipeline is
depicted in Figure 2. More details on single steps are
described in the respective sections.
First, the sentences from the Simple Wiki Dataset (c.f.
Section 4.1) are tokenized using the NLTK tool4. Then,
we conduct lemmatization in the pre-processing step to
convert the inflected forms of each word. After that,

4https://www.nltk.org/

https://www.nltk.org/
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Figure 2: Schematic overview of the dataset collection
pipeline.

each token is tagged with respect to its complexity (c.f.
Section 4.3) and depictability (c.f. Section 4.4). If a
token is both complex and depictable, it is marked as
a focus word. The sentences containing less than three
focus words are discarded to ensure a level of complex-
ity. The result is a set of samples, where each sample
consists of a context sentence and a focus word (a word
that will be supported by a contextualized image). Next
step is the context-dependent image retrieval. In this
stage, the top-5 matching images from MS COCO (Lin
et al., 2014) are retrieved, and the focus word region
is highlighted in the image with a boundary box (c.f.
Section 5).
Since the final dataset should only contain the best im-
age that perfectly matches the context and focus word,
additional filtering stages are employed. First image
filtering stage has been conducted automatically by us-
ing a state-of-the-art multimodal transformer model. A
pretrained and publicly available CLIP model (Radford
et al., 2021) is used to compute the cosine similarity of
each context sentence and the retrieved top-5 images.
Samples are discarded, where not all images have a
similarity score of at least 0.225. This was inspired
by the LAION-400M dataset (Schuhmann et al., 2021)
with slightly looser similarity requirements. To further
increase the quality of the text image pairs and to make
sure that the highlighted image region matches the fo-
cus word, we conducted crowdsourcing experiments on
Amazon MTurk5 where human workers are asked to
rate how well the respective images match the corre-
sponding focus and context (c.f. Section 6).
After that, in the manual next filtering stage, the authors
hand-selected the best matching image from every sam-
ple and dropped samples where none of the images
represented the context and focus word well enough.

5https://www.mturk.com

With this filtering step, we ensure that only the high-
est quality samples are included in the final dataset.
Since it might be useful in various use case scenarios
and downstream research to have linguistic statistics
like the number of tokens, POS tags, or named entities
in a sample, we collect those using a spaCy6 powered
pipeline and released with the rest of the dataset.

4.1. L2 Learner Reading Material
It is essential to gather appropriate texts for L2 learn-
ers that target L2 word acquisition. In order to in-
clude proper texts in this dataset, we define several
criteria that the text should meet. Firstly, the topic
of a text should be open domain (not created based
on pre-defined templates), such as the paragraph about
stingrays extracted from Wikipedia (Section 2). Unlike
widely used multimodal datasets, whose text pieces are
merely daily contents, our text pieces cover a wider va-
riety of topics, such as art, culture, geography, nature,
science, technology, etc. Furthermore, the text struc-
ture should also display complexity. Specifically, the
average tokens per paragraph (the text length) should
be more than the average tokens in typically used cap-
tions. Meanwhile, the comprehension level for a given
text should be aligned with the respective reading level
for L2 learners. The last criterion is to have named enti-
ties in the text. Constrained by their annotation method,
which first provides an image then asks annotators to
write sentences, caption-based datasets exclude name
entities. However, named entities commonly appear in
reading materials, such as biography, geography, etc.,
and thus they are an essential part of reading mate-
rials. For this reason, unlike the existing multimodal
datasets, our L2 text should involve name entities. Mo-
tivated by these criteria, we have pre-processed text
from five different sources, which is elaborated in the
Future Direction section. But, in this paper, we choose
the Wikipedia Simple Corpus as the textual part for the
following procedures considering both its scale and re-
lated characters that match our hypotheses mentioned
above.
Wikipedia Simple Corpus is the dataset collected from
Simple English Wikipedia 7. There, editors use simple
English words and grammar but contain the same en-
tries and content resulting 201.531 articles, which are
suitable for children and L2 learners as compared to
Normal English Wikipedia 8. We have utilized the sen-
tences from the raw Wikipedia Simple Corpus (Ben-
zahra and Yvon, 2019), which is a single file contain-
ing 505.974 paragraphs where several consistent para-
graphs belong to an identical article. After processing
the raw data, 59.769 unique articles are kept in this
phase. For each article, the average number of para-
graphs is eight, while for each paragraph, the average
number of tokens is eighteen. Besides, we compute the

6https://spacy.io/
7https://simple.wikipedia.org/
8https://www.wikipedia.org/

https://www.mturk.com
https://spacy.io/
https://simple.wikipedia.org/
https://www.wikipedia.org/
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average score for the Flesch–Kincaid readability tests
(Flesch, 2007) to assess the readability grade level of
this corpus. In the Flesch reading ease test, higher
scores indicate material that is easier to read; lower
numbers mark passages that are more difficult to read.
The average Flesch–Kincaid readability for Wikipedia
Simple Corpus is 64.2, which means the reading mate-
rials are suitable for 13-15 US school students in grades
8-9.

4.2. Supplementary Images
The source of the images (Lin et al., 2014) used for
this dataset is retrieved from the 2017 version of MS
COCO, a popular dataset for various computer vision
tasks on natural, non-iconic images. It comprises about
123K carefully selected, annotated, and captioned im-
ages from Flickr9. We chose this dataset because the
images show a wide range of different objects and
scenes and are further under the Creative Commons Li-
cense, which allows non-commercial use and distribu-
tion.

4.3. Complex Word Tagger
CWI is developed as a fundamental prerequisite for lex-
ical simplification (LS). However, as described in sec-
tion 3.1, providing a simplified version is a different
task than providing additional information to enhance
the acquisition of the complex word. Therefore, the
annotated data in the existing datasets created for LS
commonly tend to be rare words or long phrases. Due
to this inconsistency, in our current study, we prefer to
use an established CEFR framework designed for lan-
guage proficiency to annotate the complex words in our
datasets instead of deep learning approaches.
The CEFR framework describes the skills learners
should develop at each of the six proficiency levels of
the scale. But, it doesn’t provide a word list directly
with corresponding levels. To overcome this limita-
tion, we obtain a word list with related CEFR level la-
bels by dealing with a word frequencies list released
by EFLLex (Dürlich and François, 2018) in the lexi-
cal learning domain. In the EFLLex, word frequencies
are collected from materials designed for English (as
L2) learners, which contain 15, 282 words. In this fre-
quency list, same words with different part-of-speech
tags are listed separately. For simplification, we com-
bine the frequencies of a word with different POS tags.
Then, this list has 9, 396 unique words with frequen-
cies from A1 to C2. To transform the word’s frequency
to the corresponding CEFR level, we adopt the strat-
egy that the level containing the most significant fre-
quency is set as the proficiency level for a particular
word. B1 level, which entails that the learned language
can be used freely in daily study, and work scenarios,
is chosen as a threshold. Thus, we label a word as a
complex word if its CEFR label is above B1 level. As
a result, 1690 words are labeled as easy words, while

9https://flickr.com

7706 words are marked as complex, in proportion to
82% of the words in the list.

4.4. Depictability Tagger
Unlike previous work in constructing multimodal
datasets, we also take the depictability of words into
account. The word dog is more depictable than the
word beautiful. Learners can comprehend complex
words better with visual clues if visually depictable
words exist in the context. Besides, we seek to con-
duct a context-dependent text-image retrieval task in
this study. Our model can obtain the most relevant
images paired for given sentences only if visually de-
picted elements exist in sentences. To this end, after
tagging the complex words, tokens are labeled concern-
ing their depictability by the depictable word tagger (a
binary classification; yes or no).
(Brysbaert et al., 2014), in their psycho-linguistically
motivated research, ask native speakers to label 40K
words using the Amazon Mechanical Turk platform. In
their work, a 5-point rating scale is used to rate a word
as abstract or concrete, where 1 means abstract most,
whereas 5 means concrete most. The concreteness pa-
rameter corresponds to the concept of depictability in
our research. Finally, 2.3M ratings were collected, and
they released the average rating score for each token.
Using this rating list for 40K English lemmas10, we
compute the depictability score for each token with the
min-max normalization equation below.

dscore =
rtoken − rmin

rmax − rmin

where rtoken is the average rating point under the 5-
point rating scale for a given token, and rmin and rmax

are minimum and maximum rating points in the list re-
spectively. More specifically, Figure 3 shows the de-
pictability score distribution for words after the normal-
ization.

Figure 3: A bar chart of depictable score distribution
for 40K English lemmas. We group tokens conditioned
on the depictable scores into ten ranges, from [0.0, 0.1]
to [0.9, 1.0]. This figure shows that around 10.84% of
tokens whose depictable scores are over 0.9.

Object and attribute labels of MS COCO dataset ob-
tained from the Faster R-CNN model (Ren et al., 2015)

10http://crr.ugent.be/archives/1330

https://flickr.com
http://crr.ugent.be/archives/1330
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Figure 4: An example of a context-dependent image
retrieval query with the best matching image where the
focus word region is highlighted. The query comprises
a context sentence (referred to as “Caption” in this fig-
ure) and a focus word with the context sentence. Best
viewed digitally with zoom and color.

are another source to label a word as depictable, be-
cause these labels are mostly noun words whose objects
are appeared in images. There are 1625 tokens in the
object label list of the MS COCO dataset. In the end,
for each word in the sentences, we apply the equation
below to get respective depictable labels.

labeldepictable =

{
1 if dscore ⩾ 0.9 or ∈ lobject

0 if dscore < 0.9 or is OOV

where dscore is the depictability score for a given to-
ken, lobject is the list of object labels, OOV is a token
out of these two lists, and 0.9 is the threshold score to
decide a word as depictable or not.
By utilizing both complex and depictable word taggers,
a word in the textual modality is set as a focus word if
its hard label and depictable labels are both positive. At
the same time, in the visual modality, a focus word is
the object label detected by an object detection model.

5. Context-dependent Image Retrieval
As an extension to the common text-image retrieval
task introduced in Section 3.2, where the best matching
images for a textual query consisting of a sentence or a
word must be found, we introduce context-dependent
text-image retrieval in previous work (Schneider,
2021). The difference is that the query is a pair that
comprises a sentence, referred to as context, and a fo-
cus word contained in the sentence. Further, the goal is
to retrieve the best matching images regarding the con-
text with particular attention to the focus word within
the context and find the image region where the focus
word is represented best (c.f. Figure 4).
To accomplish this goal, we use a pretrained TERAN
model for standard text-image retrieval and apply a re-
ranking stage to attend to the focus word specially and

to find the region where the focus word is represented
best. TERAN is a late-fusion model that computes the
global similarity between an image and a textual query
– in our case called context – by aggregating a fine-
grained word-region-alignment (WRA) matrix A. The
cells of A, are the cosine-similarities of the visual re-
gions of the image I and textual tokens of the context
sentence C are defined as

Ai,j =
vT
i tj

|vi||tj |

where vi ∈ I and tj ∈ C.
The global similarity, i.e., the “context-score” scontext,
of an image and a context sentence is defined as

s
(c)
I =

∑
j∈|C|

max
i∈|I|

Aij

To specially attend to the focus word, we first compute
a “focus-score” sfocus based on the WRA matrix.

sfocus =
1

N ∗ (fe − fs + 1)

N∑
i=0

fe∑
j=fs

Aij

where N is the number of regions per image; fs and fe
are the starting and ending indices of the focus in the
context, respectively; and A is the WRA matrix of an
image I and the context C.
After that, we first normalize and then combine the
global similarity (interpreted as the “context-score”)
with the “focus-score” with a weighted average to
obtain the image score scombined for the context-
dependent text-image retrieval.

scombined = α · s′context + (1− α) · s′focus

where α ∈ [0, 1] is the weight for the weighted average;
s′context and s′focus are the normalized “context-score”
and the “focus-score”, respectively. For the dataset pre-
sented in this paper, we set α = 0.9.
The image with the highest score is the best match-
ing image according to the context and focus word.
To highlight the region where the focus word is rep-
resented best, we select the region with the maximum
“focus-score”.

6. Crowd Source Experiments
Since the context-dependent image retrieval stage does
not always retrieve images representing the context and
the focus flawlessly, a crowdsourcing experiment was
conducted to filter out these samples with the aim of in-
creasing the dataset quality. In this experiment held on
Amazon MTurk, workers were given the task to rate
how well the context and the focus word are repre-
sented in the corresponding image and highlighted im-
age region, respectively, on a 5-star scale. Because the
default questionnaires available on MTurk do not ef-
ficiently support this task, a tool including a custom
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web application was developed. Using the “External
Question” of MTurk, access to the web application was
provided within the MTurk Marketplace environment.
The data for the study comprised 3125 samples, each
consisting of a context sentence, a focus word, five im-
ages, and two 5-star scales for the context and focus
word, respectively, for each of the images. Like in an
image slideshow, the workers can switch between the
images so that only one image and the corresponding
5-star scales are shown at a time. An example of the
application UI as it is presented to the workers is shown
in Figure 5.

Figure 5: An example of the crowdsourcing experi-
ment UI for MTurk workers. Best viewed digitally with
zoom and color.

Using our tool, the samples were published on the
MTurk marketplace as HITs. To ensure high-quality
results, which are not biased by the opinion of single
users, we require three assignments of three different
workers per HIT. Further, to accept a HIT, a worker
needs at least 1000 approved assignments and an ap-
proval rate of 90%. Considering ethical fairness, we set
the reward per assignment to 0.2C. With this, an esti-
mated duration of one minute per assignment results in
an hourly salary of 12C.
After receiving all assignments for all HITs, the results
were filtered as described in the following. First, a
score for each image j of the top-5 images per sam-
ple i is computed based on the focus rating fw and the
context rating cw of the three workers

scoreji =

3∑
w=1

max(fw − 4.0 + cw − 4.0, 1.0)

Then, images are dropped if their score is below or
equal to a threshold T = 2.0 In other words, an image
j of a sample i is kept if at least two workers rated with
at least 4.0 stars that the focus and the context is rep-
resented well in the respective image. After that, only
samples with at least one well-rated image are kept for
the manual selection stage.
The authors further filtered down the selected sentence-
focus word-image triplets in the last manual stage to

Figure 6: Number of tokens in MOTIF with different
POS Tags. NOUN, PRON, VERB, SYM, NUM, ADP,
and ADJ mean noun, pronoun, verb, symbol, numeral,
adposition, and adjective words respectively.

ensure the quality of the dataset (manual expert anno-
tation). In this stage we discarded 531 samples.

7. Dataset Structure and Statistics
The original Wikipedia Simple Corpus contains 506K
sentences. To improve the accuracy of the following
retrieval task, we set the threshold of the focus word
numbers in each sentence as three. After the complex
word tagger and depictable word tagger mentioned in
Section 4, 31K samples with at least three focus words
are kept to be used to conduct the context-dependent
image retrieval task discussed in Section 5. At last, af-
ter crowdsourcing experiments and manual expert an-
notation steps, we got 1125 text samples paired with
the best matching images for the complex words.
Each sample in the final dataset is contains:

• a sentence referred to as context

• a word within the context referred to as focus word
that is both complex and depictable

• an image that globally represents the context and
represents the focus word in a highlighted bound-
ing box

• linguistic statistics about the context such as the
number of tokens and their respective POS tags

To sum up, there are 1125 samples, where we have 695
unique context sentences and 277 unique focus words.
The average tokens per paragraph are 28, while the
minimum and maximum tokens per paragraph are 8
and 94, respectively. Meanwhile, we compute the aver-
age ratio of tokens associated with name entities vs. all
tokens as 3.84%. Besides, the average Flesch–Kincaid
readability score is 72.39, interpreted as students’ abil-
ity in 7th Grade in US school. Last, numbers of tokens
with different POS tags, as shown in Figure 6. Two vi-
sual samples of the final MOTIF dataset are shown in
Figure 7. The dataset is available on an open-access
repository via the link.

https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data.html
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(a) (b)

Figure 7: Visual examples included in the MOTIF dataset. Best viewed digitally with zoom and color.

8. Future Directions
There are various ways to extend the dataset in future
work. We plan to use additional text-only L2 learner
reading material and forward it through the dataset col-
lection pipeline (c.f. Figure 2) to increase the number
of samples in the final dataset. Possible resources for
this are, e.g., Wikipedia Normal (Benzahra and Yvon,
2019), InScript (Modi et al., 2017), Weebit (Chen and
Meurers, 2016), or OneStopEnglish (Vajjala and Lučić,
2018). These datasets vary in size, topics, and length of
the sentences but are all specially designed to be under-
stood by 6th to 12th-grade students from US schools.
Further, several components in the dataset collection
pipeline can be enhanced to improve the efficiency
of the dataset collection and the quality of the final
dataset. To begin with, since CEFR word-complexity
classification is conducted at the single token level,
the use of a simple tokenizer was sufficient. How-
ever, this, unfortunately, rips apart multi-word expres-
sions (MWEs) like compound nouns. The complex
word tagger can be improved by adapting state-of-the-
art complex word identification (CWI) approaches and
resources (Kochmar et al., 2020) which pay special at-
tention to multi-word expressions (MWE). Moreover,
this dataset can be used to fine-tune SOTA CWI mod-
els to improve automatic complex word detection.
Further, the employed object and attribute vocabulary,
which comprises about 1600 different terms, can be
significantly extended by the vocabulary of the Visual
Genome dataset, which contains about 75K unique ob-
ject types and about 40K attribute types. By improving
the pipeline as described, the quality of the output of
the context-dependent image-retrieval stage will auto-
matically increase. However, the stage itself can be fur-
ther improved by various methods briefly summarized
in the following.
The currently employed context-dependent image-
retrieval model is a TERAN model, where the visual
inputs are region-of-interest (ROI) feature vectors com-
puted by a pre-trained Faster-R-CNN model. The ad-
vantage of this approach is that we can compute the

focus score (c.f. Equation 5) of a focus word and an im-
age (region) from the WRA matrix, which holds fine-
grained cosine similarities between words and image
regions. However, the bounding box of the image re-
gion often does not perfectly fit the underlying object
representing the focus word.
To resolve these issues, we plan to leverage a pre-
trained CLIP model in the context-dependent image-
retrieval stage. We will utilize class activation mapping
techniques introduced (Zhou et al., 2016; Selvaraju et
al., 2017) to compute the focus score and more accurate
bounding boxes.

9. Conclusion
In this study, we present a semi-automatized pipeline
to create a high-quality multimodal dataset containing
text pieces for L2 speakers, annotated complex words,
and contextualized images that ease the comprehension
of the complex word given the context. Our pipeline
starts with selecting L2 text, conducting text analysis
(number of named entities, readability scores etc). It
further detects complex words using well-established
CEFR levels and employs SOTA NLP approaches for
finding contextualized images. However, these au-
tomated processes are followed by a careful valida-
tion method using the Amazon MTURK crowdsourc-
ing platform and expert analysis. The resulting dataset
consists of 1125 text samples annotated with complex
words and context-dependent images for these words.
This multimodal support approach and the dataset are
not only for the L2 domain, but they can also be used
in developing assistive systems for people with low lit-
eracy and reading difficulties. Further, these enriched
annotations can be instrumental in fine-tuning or test-
ing automatic CWI and contextualized image-retrieval
models.
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