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Abstract
Event schemas are structured knowledge sources defining typical real-world scenarios (e.g., going to an airport). We present a
framework for efficient human-in-the-loop construction of a schema library, based on a novel script induction system and a
well-crafted interface that allows non-experts to “program” complex event structures. Associated with this work we release a
schema library: a machine readable resource of 232 detailed event schemas, each of which describe a distinct typical scenario
in terms of its relevant sub-event structure (what happens in the scenario), participants (who plays a role in the scenario),
fine-grained typing of each participant, and the implied relational constraints between them. We make our schema library and the
SchemaBlocks interface available online.12
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1. Introduction
What is implied by the invocation of a real-world sce-
nario such as, say, a criminal trial? From one’s knowl-
edge of the world, one makes a myriad of inferences:
the scenario typically starts with the defendant being
accused and brought to court, it likely contains events
such as the presentation of evidence by a prosecutor,
and it ends with the judge announcing the final verdict.
This type of scenario-level knowledge is recognized as
being vital for text understanding (Schank and Abel-
son, 1977; Minsky, 1974; Bower et al., 1979; Abbott et
al., 1985): scripts can help with coreference resolution,
disambiguating word meaning, and making inferences
(Lehnert et al., 1983). However, explicitly annotating
this knowledge in a way useful to language process-
ing systems has proven to be a difficult task. At one
end, one may try to hand-engineer this knowledge in
a richly detailed format (DeJong, 1983; Mooney and
DeJong, 1985; Mueller, 1999). While this facilitates
precise inferences, it requires an onerous annotation
effort carried out by experts, and hence tends to be
difficult to scale. On the other end, one may employ
data-driven methods to automatically induce this knowl-
edge (Chambers and Jurafsky, 2009; Balasubramanian
et al., 2013; Rudinger et al., 2015), at the price of noise
and a severe loss of detail. Wanzare et al. (2016) take a
semi-automatic approach, taking advantage of both au-
tomatic and annotator-driven components. The authors
use an initial human annotation to obtain high quality
event sequence descriptions for a target scenario, be-
fore using semi-supervised clustering to aggregate these
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1Schema library:
https://nlp.jhu.edu/schemas/schemas.zip

2Interface: https://nlp.jhu.edu/demos/sb

Figure 1: An example event schema from our library,
induced from a skeleton mined by Causal Association
Rule Mining (Section 3) and fully fleshed out by an
annotator using our SchemaBlocks interface (Section 4).

annotations (Wanzare et al., 2017; Regneri et al., 2010).
In this paper, we also adopt a semi-automatic approach
in order to facilitate the creation of a new annotated
resource of structured, machine readable event schemas.
As depicted in Figure 1, each event schema characterizes
a real-world scenario, describing the events the scenario
typically involves, the participants of these events, their
role and typing information, and the implied relations
between these participants. Our workflow follows two
main steps. First, we automatically induce what we term
as skeleton schemas: argumentless event sequences that
form the outline of an event schema. Second, using
our SchemaBlocks interface, we have human annota-
tors “flesh out” the manually selected skeleton schemas

https://nlp.jhu.edu/schemas/schemas.zip
https://nlp.jhu.edu/demos/sb
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by adding argument, role, typing, and relational infor-
mation, in addition to a name and description of the
scenario the schema describes.
The main contributions of this paper are:3

1. a new semi-automatic script induction system,
which combines two recent advances in automatic
script induction (Belyy and Van Durme, 2020; We-
ber et al., 2020) with a novel SchemaBlocks anno-
tation interface, to elicit common sense knowledge
from crowdworkers,

2. a resource of 232 schemas, 150 of which are semi-
automatically induced, with the rest created manu-
ally from textual descriptions, and

3. two novel evaluation metrics for schemas: corpus
coverage, an automatic metric which computes
coverage of schemas on a text corpus, and schema
intrusion, a human-based metric which quantifies
the coherence of each schema, similarly to the
word intrusion task (Chang et al., 2009).

2. The Anatomy of a Schema
Conceptualizations of what constitutes a schema dif-
fer across the literature. A schema in our resource is
constructed from three basic elements:

1. events,

2. its participants, which are the entities that partici-
pate in these events, and

3. the relations between these participants.

The atomic types of events, entities, and relations are
defined by the DARPA KAIROS Phase 1 (v3.0) ontol-
ogy.4 It consists of 67 event types, 24 coarse-grained
entity types, and 46 relation types. The KAIROS on-
tology was selected because this work was carried out
in the context of a larger effort, where collaborators
used schemas for information extraction. While that
choice influenced the content of the schemas produced
here, our methods are ontology-agnostic, and our inter-
face’s building blocks (see Section 4.1) could easily be
adjusted to elicit schemas from humans with any type
of ontology, including more general and more flexible
ontologies such as FrameNet (Baker et al., 1998).

Events In this work, the backbone for the meaning of
a schema is the temporally ordered chain of events that
it describes. The individual events that make up this
chain are drawn from a taxonomy of event types (e.g.,
an Acquit event, a Transportation event). In addition,
each event type has specific participants (e.g., the Defen-
dant or Transporter), to be linked to entities. While we

3Resources tied to this paper are grouped here:
https://nlp.jhu.edu/schemas

4The ontology can be downloaded here:
https://nlp.jhu.edu/schemas/ont.xlsx

use the term “chain” to describe the sequence of events
defined in a schema, the schemas presented here need
not always be ordered as a linear chain. In our schemas,
subsequences of events may be marked either as occur-
ring in a linear temporal order, in an arbitrary temporal
order, or as forming mutually exclusive branches.

Participants Participants fill the roles specified by
each event in the schema. The same participant can (and
usually will) be used to fill different roles across differ-
ent events, indicating a co-referring relationship. All par-
ticipants may also take on types: either coarse grained
types defined in the KAIROS ontology (including types
such as person, organization, commercial item, etc), or
fine grained types defined as references to Wikidata: for
instance, on Figure 1, Q156839 refers to a Wikidata
entity for “cook”, which substantially narrows down
a more generic type person. Our annotated schemas
utilize both KAIROS and Wikidata types.

Relations Relations between participating entities are
the last ingredient of the schemas defined here. These
relations are also drawn from the KAIROS ontology. As
of now, all relations are defined between two entities,
each of which participate in at least one event defined
in the schema: e.g. ClaimResponsibility(Cook, Meal)
in the “CookMeal” schema on Figure 1.

3. Induction of Skeleton Schemas
Our system first automatically induces what we term as
skeleton schemas: argumentless event sequences form-
ing an outline of a potential event schema. A selected
group of these skeleton schemas is then passed to an-
notators to manually flesh out the full event schemas.
By starting the schema creation with an automatic, data-
driven step, we allow the data to “speak for itself” with
regards to what kinds of topics and scenarios we might
want to target given a specified domain. The fact that
the base of the schemas has some connection to our tar-
geted domain gives at least some assurance that the final
schemas will be applicable towards making common-
sense inferences when used in real-world applications.
The automatic system for skeleton schema induction
combines two recent advances in schema induction:

1. an Association Rule Mining (ARM) based algo-
rithm presented in Belyy and Van Durme (2020),
which efficiently finds all event subsequences with
sufficient support in the data, and

2. a script compatibility scoring model presented in
Weber et al. (2020), which finds high quality subse-
quences output by the ARM method, and combines
them to form full skeleton schemas.

We give a brief overview of each of these approaches
and how they are used in our system below.

3.1. Mining Associations for Script Induction
Belyy and Van Durme (2020) show how prior classic
work in automatic script induction (primarily the line of

https://nlp.jhu.edu/schemas
https://nlp.jhu.edu/schemas/ont.xlsx
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work following Chambers and Jurafsky (2008)) can be
better recast as a problem of Association Rule Mining.
ARM works with a dataset where each datapoint is a set
of items. In the script induction setting, an item is an
event, and a datapoint is the set of events appearing in a
document and sharing some co-referring argument. The
ARM approach consists of two distinct stages:

1. Frequent Itemset Mining. This step searches for
subsequences of events which have enough support
in the dataset. What is considered “enough” is
defined by a user-set hyperparameter. To do this
efficiently, Belyy and Van Durme (2020) make use
of the FP-growth algorithm (Han et al., 2000).

2. Rule Mining. This step uses the frequent itemsets
mined from the previous step in order to define
rules in a form similar to Horn clauses.

In our system, we make use of only step 1 of the pro-
cess defined above, mining event subsequences which
have enough support in our targeted domain data. We
mine event subsequences from the NYTimes portion of
Gigaword (Graff et al., 2003). The output of this step is
a large set of potentially interesting event subsequences.

3.2. Building Schemas with a Causal Scorer
The step presented in the previous section leaves us with
a fairly large inventory of event subsequences, not all
of which may be useful or relevant for the creation of
schemas. There are, hence, two problems at hand:

1. how to filter out lower quality subsequences, and

2. how to create skeleton schemas from the filtered
inventory of event subsequences.

Both problems are handled via the causal inference
based scoring approach of Weber et al. (2020). This
approach defines a scoring function, cscore(·, ·) which,
taking in two events e1 and e2, outputs a score propor-
tional to the aptness of e2 following e1 in a script. As
an example, “trip” and “fall” should take on high scores,
while “trip” and “eat” should not. The approach builds
upon reasonable assumptions on the data generation
process to overcome conceptual weaknesses in prior
approaches, and was shown to output scores more in
line with human judgments of script knowledge. We
refer readers to the paper for details.
In order to create our skeleton schemas, we first use
the trained scoring module from Weber et al. (2020),
which was trained on the Toronto Book corpus (Zhu et
al., 2015; Kiros et al., 2015), to score all subsequences
obtained via the process described in Section 3.1. Since
the causal scoring module is only defined pairwise, we
take the following average as the assigned score for a
subsequence S = (e1, ..., eN ) of length N :

score(S) =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

cscore(ei, ej)

We take the top T of these subsequences. To ensure
that a diverse set of events are selected in the subse-
quences, we remove those in which all event types in
the sequence have been used at least 50 times by higher
scoring subsequences.
The score function above is biased towards shorter sub-
sequences: picking the highest scoring pair of events
in a subsequence creates a higher-scoring subsequence.
To mitigate this, our final step involves joining together
subsequences to create larger chains. For each of these
T subsequences, we find the highest scoring event that
may be appended to the subsequence. We then find other
subsequences that start with this event, and append the
highest scoring one to the existing subsequence.
The top C of these larger subsequences are then given
to a curator (one of the authors), who manually selects
chains to be passed to human annotators as skeleton
schemas. This is done as an expedient to ensure both
the diversity and quality of the resulting schema anno-
tations. We pick C = 1,000 as the upper feasible limit
for a manual curator. To make sure there are enough
potential merges, we set T = 100C. Finally, our anno-
tation budget was enough to turn the top 150 of these C
chains into schemas (see Section 4.3).

4. Annotation with SchemaBlocks
After skeleton schemas are induced, we want to include
rich commonsense information (i.e. event participants,
their types and relations) in addition to the event se-
quence. As the existing induction tools struggle to in-
duce these fully automatically, we involve a human in
this process. We describe the newly proposed schema
annotation interface, SchemaBlocks, and show how it
can be used to

1. create schemas from scratch (Section 4.2), and

2. flesh out skeleton schemas (Section 4.3).

We also share our annotation guide and some relevant
statistics on the annotation process.

4.1. SchemaBlocks Annotation Interface
SchemaBlocks is a Web-based tool5 that provides a way
to display and modify the contents of a schema by repre-
senting its units – events and arguments, entity relations
and types – as blocks, that can be stacked and nested.
An example schema is shown in Figure 2. In addition
to capturing schema events, participants, and their re-
lations, the interface also allows for the representation
of entity coreference, event ordering, and the mutual
exclusivity of events.
To get started, an annotator needs to become famil-
iar with the ontology, which defines the vocabulary of
blocks used to build schemas. In the interface, this is
displayed as the dashboard, organized hierarchically for

5Source code of SchemaBlocks:
https://github.com/AVBelyy/SchemaBlocks

https://github.com/AVBelyy/SchemaBlocks
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(1)

(2)

(3)

(4)

Figure 2: An excerpt from one of the released schemas,
featuring: (1) mutually exclusive events, (2) entity types,
(3) entity relations, and (4) a slot filled with more than
one entity (State1 and State2), reflecting that an event
may include multiple participants under the same role.
Participants left in light pink by the user are defined as
part of the event type in KAIROS, but not instantiated
(reified) in the event schema.

convenience. Figure 3 shows all levels of the ontology
hierarchy for the “Medical” event category. The block
interface is flexible and could be adapted to a similar
event ontology, such as FrameNet (Baker et al., 1998),
ACE (Doddington et al., 2004) and ERE (Song et al.,
2015). For larger event ontologies, it may be helpful to
implement search functionalities into the interface to fa-
cilitate quicker access to a specific event in the ontology.
The core annotation process with SchemaBlocks would,
however, remain the same. Such features may be worth-
while additions in future versions of SchemaBlocks.
SchemaBlocks’ interface is primarily based on the
Google Blockly library.6 On top of the UI primitives
provided by Blockly, we implement ontology-to-blocks
and blocks-to-JSON converters. This allows to trans-
form a structured ontology description into the set of
Blockly blocks, which the user can manipulate to cre-
ate a schema, and when they are done, transform their
block-based schemas into a machine-readable format.
During schema creation, we also continuously run type
checking and type inference over schema entities, so
that if a user breaks ontological type constraints, they
will be notified and the relevant entity blocks will be
highlighted until the error is fixed.
Our choice of block-based representation is inspired by

6https://github.com/google/blockly

Figure 3: SchemaBlocks dashboard displaying high-
level event and relation types from the KAIROS ontol-
ogy. The “Medical” event category is further expanded
to show subtypes. “Variables” and “Order” blocks allow
to assign multiple entities to a single participant of an
event, and to specify the ordering of events, respectively.

Scratch (Resnick et al., 2009), a prominent tool that
engages children to learn the basics of computer pro-
gramming. By enabling users to program schemas us-
ing ontology-specific blocks — as opposed to general-
purpose text formats such as JSON or XML — we were
able to engage annotators with non-programming back-
grounds and annotate schemas at a faster rate. The
annotators in our study (undergraduate students with
non-CS majors) found the interface easy-to-use and left
overall positive feedback. To familiarize annotators with
the interface, we provided them with a guide prior to
running the annotation: https://nlp.jhu.edu/
schemas/guide.pdf.

4.2. Annotating Schemas from Scratch
In the first annotation round, annotators were pro-
vided with 82 textual descriptions of schemas from
the KAIROS Schema Learning Corpus (LDC2020E25).
This corpus contains textual definitions for 82 complex
events (CEs), which we aim to transform into event
schemas. Each complex event is given a title, a 2-3
sentence description, specifications of the scope of the
complex event (i.e., when and where the complex event
should be considered initiated or finished), and the se-
ries of steps that defines the complex event. Each step
is defined with a title specifying the event type of the
step, a short one sentence description, and expected
high-level event types that may happen as subevents.7

The annotators are then tasked with translating these
textual descriptions of schemas into a machine readable
form via our SchemaBlocks interface. Relations and

7All of this in natural language; no event ontology is used.

https://github.com/google/blockly
https://nlp.jhu.edu/schemas/guide.pdf
https://nlp.jhu.edu/schemas/guide.pdf
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entity types are not specified in the textual descriptions,
so annotators are instructed to annotate for relations that
must be true throughout all steps of the schemas, as well
as provide coarse- and fine-grained types. Annotators
reported an average time of 30 minutes to annotate a CE
into a schema, with 82 schemas being the product of
this annotation task. The number of events in each of 82
schemas ranges from 2 to 10, with 6 being the median.

4.3. Fleshing out Skeleton Schemas
In the second annotation round, annotators were asked
to “flesh out” the skeleton schemas from Section 3,
into fully-fledged schemas. Given a skeleton schema,
we import it into SchemaBlocks as a partially filled
out schema, where only events are specified. We then
present these partially filled out schemas to annotators
and task them with determining:

• What scenario the partially filled out schema is
describing. This includes naming the schema, as
well as writing a brief textual description on what
it is about.

• Who the participants of the given events are, what
types (coarse- and fine-grained) they take on, and
which roles are filled with co-referring participants.

• What relations hold between the above defined
entities. The criteria for annotating relations here
is the same as before.

Given that this annotation is designed to be similar to
the one presented in Section 4.2, all annotators who
participated in the first annotation effort required little
extra training to complete this annotation (only a single
one-hour training session). Again, annotators reported
around a 30-minute average to annotate a schema. The
end result of this fleshing out process is an additional
150 schemas. The number of events in this additional
set ranges from 3 to 6, with 4 being the median.

5. Schema Library Evaluation
In this section, we evaluate our schema library8, looking
at schemas’ internal coherence as well as usefulness of
schemas for downstream tasks. Namely, we evaluate
the coherence of the event sequence in a schema by
measuring the accuracy on the schema intrusion task
(Section 5.2). Then, we compute how many documents
in a given corpus are “covered” by the schema library as
a whole, using the corpus coverage metric (Section 5.3).
Finally, we report the results on several ranking tasks,
using event schemas as structured queries to rank multi-
modal documents, and vice versa (Section 5.4).
We evaluate both the library of schemas created from
scratch (Section 4.2, “82 schemas”), as well as the li-
brary created from schema skeletons (Section 4.3, “150

8At the time of writing, there were no other publicly avail-
able schema libraries using the KAIROS ontology, which
limited the cross-library comparisons we could run.

schemas”). The two methods used to obtain each library
are not meant to be compared directly, because they are
two different ways of eliciting schemas from humans.
Each method relies on a different starting point for
schemas: respectively, textual descriptions of schemas,
and event chains induced from a corpus. Choosing
which one to use depends on the resources available.

5.1. Evaluation Datasets
Gigaword We pick a random subset of 100K docu-
ments from the NYTimes portion of the Fifth Edition
of the English Gigaword corpus (Graff et al., 2003),
spanning the New York Times news articles from years
1994–2010. We use this corpus for corpus-based evalu-
ation in the schema intrusion task (Section 5.2), as well
as to compute corpus coverage (Section 5.3).

CC-News We pick a subset of 300K news articles
from English, Russian, and Chinese CC-News (Nagel,
2016). To do that, we perform language ID over the orig-
inal CC-news collection, using the cld3 library along
with the “meta lang” field from a particular news source.
We then take a random subset of 100K documents for
each language to evaluate corpus coverage (Section 5.3)
in a cross-lingual scenario.

KAIROS SLC As part of the KAIROS Schema
Learning Corpus (SLC), the Linguistic Data Consor-
tium (LDC) has annotated 924 multilingual multimodal
documents (covering images, audio, video, and text in
English and Spanish) with KAIROS event types, la-
beling each document with one of 82 complex events
mentioned earlier in Section 4.2.9 The CE label indi-
cates the complex event (from LDC2020E25) that best
applies to a document. Each CE label is covered by 11
documents on average, one label per document. Out of
924 documents, 921 have partial event-only annotations
and 36 have complete annotations (with identified and
provenance linked entities and relations). Given the
sparsity of complete annotations, we use the event-only
annotated documents in order to compute ranking-based
metrics (Section 5.4).

5.2. Schema Intrusion Task
To measure to what extent our schemas form meaning-
ful units, and how much the content of one schema
overlaps with that of another, we introduce the schema
intrusion task. Schema intrusion is similar in spirit to
word intrusion for topic models (Chang et al., 2009).
At a high level, for each schema S from our library, we
pick a step from a different schema S′ and add it to
S. We present S to a human evaluator with the task of
picking the intruder. The more coherent and exhaustive
each schema is, the more the intruder should stick out
as being out of place, untypical, or at least irrelevant.

9At the time of writing, these annotations have been split
into three collections: LDC2020E24, LDC2020E31, and
LDC2020E35. While rarely freely released, historically, such
collections are eventually made available under a license to
anyone, under some timeline established within a program.
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Figure 4: Example schema intrusion sample. (a) A step from the “Download Computer Virus” schema (right)
is added to the “Cook Meal” schema (left). The step “Virus infects computer” (solid orange) is sampled, with
“Computer” replaced with “Sink” (dashed yellow) and “Virus” replaced with “CookingTools” (solid yellow). This
yields the intruder “Cooking Tools infect Sink” (dashed orange). (b) The schema with the intruder is presented to
the human annotators.

Simply inserting a step from schema S′ into schema S
gives rise to artefacts, making it easy to spot the intruder
without reasoning about the coherence of schema S.
Consider Figure 4(a): inserting a step from “Download
Computer Virus” into “Cook Meal” would introduce the
participant “Computer” or “Virus”, which gives the step
away as the intruder, regardless of schema coherence.
Thus, we need a way of renaming participants of the
step we pick from “Cook Meal” before inserting it into
“Download Computer Virus”. To avoid any bias from
the ordering of the steps, we shuffle the steps before
showing them to the annotator.

Building instances of the intrusion task to present to
annotators is a sampling procedure. In the following,
we detail two ways to define the samples and their
unnormalized weights: a library-based method and
a corpus-based method. To sample an intruder for
schema S with the library-based method, we need to
sample a step e from a schema T , as well as a mapping
M = {x→ y} of the participants of e to participants
of S. The mapping M is used to rename participants
from e with names that come from S, camouflaging
e’s participants to look like participants from S, and

mitigating the artifacts mentioned above. A sample is a
tuple (T, e,M) with weight w. Let type(x) be the set of
types associated with participant x under the KAIROS
ontology. For instance, in Figure 4(a), “Virus” is asso-
ciated with the types {abs, com}. We use the Jaccard
index J(A,B) = |A∩B|

|A∪B| to measure overlap in types be-
tween participants, with J(∅,∅) = 0. We compute w
as the geometric mean of type overlap between partic-
ipants: w = [

∏
x,y∈M

J(type(x), type(y))]
1

|M| . The use

of the geometric mean is meant to exclude type incom-
patibilities, any of which would set the weight to 0. In
addition, we reject any sample which, after renaming
e’s participants, would create a step already in S.

The corpus-based method finds candidate steps e by
relying on documents. We first match schemas in the
library with documents, in a process called schema in-
ference. We describe a document using the events and
participants from an ontology. We frame schemas as
predicates over tuples of events, relying on that same
ontology, and using Horn clauses to capture the rela-
tionships between schemas, events and their partici-
pants. Using the formalism and tools of Probabilistic
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Soft Logic (Bach et al., 2017), schema inference is re-
cast as a convex optimization problem, and solved. This
procedure is further detailed in Appendix A.1. Here,
a sample is (d, T, e,M) where d is a document such
that both S and T match d. As part of matching with
d, some of the participants in S and T will be matched
with entities present in d. Let ent(x, d) be the (possibly
empty) set of entities associated with participant x in
document d. For each tuple (d, T, e,M), similarly to
the weight based on type mentioned above, we com-
pute w = [

∏
x,y∈M

J(ent(x, d), ent(y, d))]
1

|M| . For this

corpus-based method, we used the Gigaword corpus
mentioned in Section 5.1, only keeping documents that
contain between 2 and 10 events, to be comparable to
the number of events in our schemas.

The mapping M = {x→ y} is used heuristically to
modify the description of e, by replacing occurrences of
string x by string y. We manually ensured that intruders
would not be given away by artifacts that come up dur-
ing this procedure, as follows. First, we normalized the
form of the step descriptions in all schemas, standard-
izing verb inflection and syntax. Second, we reviewed
each intruder instance and corrected any grammatical
inconsistencies introduced by heuristically renaming
participants. Finally, human evaluators for the task were
only presented with the textual description of steps. As
a result, any difference between schema curators in the
use of the KAIROS ontology, the presence or absence
of explanatory comments or any other SchemaBlocks
feature, cannot have any influence on the human annota-
tor’s ability to spot the intruder. Figure 4(b) shows one
instance of the task, as presented to the annotators.

Each intrusion task, consisting of one schema (as shown
in Figure 4(b)), is completed by three separate an-
notators on the Mechanical Turk platform (see Ap-
pendix A.2). Results of this evaluation are shown in
Table 1. The total accuracy for the task (“Total”), which
considers each annotator separately, is far above the
accuracy of randomly picking the intruder (“Random”).
This shows that our schemas form units meaningful for
humans. In addition, more than 85% of times, at least
one out of the three annotators was able to spot the in-
truder (“1 Ann.”), far above the corresponding accuracy
of random picks (“Random 1”). Finally, even when
we require all three annotators to agree on the intruder
(“3 Ann.”), the accuracy is still far above that of picking
at random (“Random 3”). The differences in accuracy
between “n Ann.” and the corresponding “Random n”
are significant (p-value � 0.01), as measured by the
two-sided McNemar’s test.

Contrasting both methods to sample the intruder, it
seems both are roughly equally hard to spot. One would
expect the corpus intruders to be more difficult to detect,
since their sampling is informed by documents. While
this is true for the 150 schemas, it is not for the 82
schemas. This can be explained by the fact that some
schemas match many documents, while some match

Library Corpus

82 150 232 82 150 232

Total 62.0 67.3 65.4 73.2 61.7 65.8
1 Ann. 84.1 86.7 85.8 93.0 83.3 86.6
2 Ann. 64.6 71.3 69.0 79.3 62.0 68.1
3 Ann. 36.6 44.0 41.4 48.0 40.0 43.0

Random 16.0 21.2 19.3 16.0 21.2 19.3
Random 1 40.2 50.8 47.1 40.2 50.8 47.1
Random 2 7.3 11.7 10.1 7.3 11.7 10.1
Random 3 0.5 1.0 0.8 0.5 1.0 0.8

Table 1: Human accuracy on the schema intrusion task,
as %. “82”, “150” and “232” refer to the size of the
schema library used. “1 Ann.” (resp. “2 Ann.”) consid-
ers the intruder found if at least 1 (resp. 2) annotator(s)
found the intruder. “3 Ann.” counts an intruder as found
only if it was found by all 3 annotators. “Total” con-
siders each vote separately. “Random” is the expected
accuracy of picking the intruder at random. “Random n”
is the expected accuracy of picking three intruders at
random with replacement, and having at least n of those
be the correct answer.

fewer documents. Similarly, some schema steps match
more documents than others as certain events come up
more often than others in the corpus. This likely induces
a skew in the types of events that intruders typically
cover, which in the case of the 82 schemas, introduces
regularities that make the intruders stick out.

5.3. Corpus Coverage
Event schemas are meant to provide missing pieces of
knowledge (e.g., events and their participants) that are
otherwise not stated explicitly in text, aiding document-
level tasks such as coreference, summarization, and
inference (Chambers and Jurafsky, 2010; Balasubrama-
nian et al., 2013). When dealing with a large schema
library L, one needs to first narrow down all schemas
s ∈ L to only those that apply to a given document d,
depending on the task. We quantify this with a similar-
ity function sim(d, s) and a task-specific threshold t:
namely, we say that s applies to d when sim(d, s) ≥ t
for some task-specific t. Given t, we compute coverage
at t (Cov@t) as a fraction of documents d ∈ D such
that at least one schema s ∈ L applies to d:

Cov@t =
|{d ∈ D | ∃s ∈ L : sim(d, s) ≥ t}|

|D|
.

We compute Cov@t for the 82 schema subset,
and for the full 232 schemas’ library. We use
sim(d, s) = |E(d) ∩ E(s)|/|E(d)|, where E(s) and
E(d) define all events mentioned in a schema s and
extracted from a document d, respectively.10 The events

10For our experiments, we treat both E(s) and E(d)
as multisets of events. E.g., if a document d such that
E(d) = {LIFE.INFECT, LIFE.INFECT, MEDICAL.VACCINATE}
is matched with a schema s such that
E(s) = {LIFE.INFECT, LIFE.DIE}, then sim(d, s) = 2/3.
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Schema ranking Document ranking Corpus coverage

Nevents Avg Rank↓ MRR↑ R@10↑ R@30↑ nDCG↑ Cov@0.5↑ Cov@0.7↑ Cov@0.9↑

[1; 5) 26.4 35.4 .112 .072 .244 .199 .387 .293 .246 .162 .960 .895 .852 .576 .797 .491
[5; 10) 23.8 32.1 .147 .088 .340 .193 .472 .347 .276 .170 .937 .833 .785 .502 .614 .334
[10;∞) 20.8 30.6 .194 .105 .410 .229 .545 .411 .269 .247 .925 .759 .759 .417 .533 .242

[1;∞) 21.1 30.2 .191 .109 .404 .239 .442 .351 .272 .240 .925 .745 .761 .400 .542 .223

Table 2: Summary of the ranking-based evaluation over 82 schemas and documents from KAIROS SLC. Numbers
in regular font use gold events from the corpus, numbers in italics use events extracted with the LOME IE system.

82 schemas 232 schemas

Nevents 0.5 0.7 0.9 0.5 0.7 0.9

[1; 5) .887 .531 .425 .975 .637 .509
[5; 10) .791 .391 .233 .892 .496 .278
[10;∞) .695 .313 .164 .807 .379 .195

[1;∞) .684 .303 .154 .798 .367 .183

Table 3: Corpus coverage Cov@t (t ∈ {0.5, 0.7, 0.9})
on the Gigaword corpus, using events extracted with
the LOME IE system.

82 schemas 232 schemas

Nevents 0.5 0.7 0.9 0.5 0.7 0.9

[1; 5) .874 .588 .529 .980 .719 .643
[5; 10) .784 .450 .303 .915 .558 .368
[10;∞) .708 .376 .224 .850 .472 .272

[1;∞) .720 .392 .246 .860 .490 .299

Table 4: Corpus coverage Cov@t (t ∈ {0.5, 0.7, 0.9})
on the English subset of the CC-News corpus, using
events extracted with the LOME IE system.

are automatically extracted using the pretrained mul-
tilingual FrameNet parser from the LOME IE system
(Xia et al., 2021), which extracts FrameNet events and
their arguments. To account for varying document
lengths, we stratify the results by the number of ex-
tracted events Nevents in each document. We map the
extracted FrameNet events to the KAIROS ontology
using a rule-based mapping.11

As a result, we observe (Tables 3 and 4) that the ini-
tial 82 schemas cover a meaningful part of Gigaword
and CC-News: at least 15-25%, and up to 98.3% of
documents, depending on corpus D and threshold t. Ex-
tending the library L by the additional 150 schemas
improves corpus coverage by around 20%, thus sug-
gesting these 150 schemas improve the diversity of the
scenarios covered by the initial 82 schemas.
Comparing across multiple languages in CC-News (Ta-
bles 4 to 6), we notice the coverage on Chinese and Rus-
sian news articles does not drop and even improves, de-
spite that schemas were originally mined using English-

11The mapping rules can be accessed at this link:
https://nlp.jhu.edu/schemas/k2f.js

82 schemas 232 schemas

Nevents 0.5 0.7 0.9 0.5 0.7 0.9

[1; 5) .886 .612 .561 .983 .734 .670
[5; 10) .778 .465 .335 .921 .586 .408
[10;∞) .688 .387 .250 .839 .492 .306

[1;∞) .713 .414 .287 .858 .523 .349

Table 5: Corpus coverage Cov@t (t ∈ {0.5, 0.7, 0.9})
on the Russian subset of the CC-News corpus, using
events extracted with the LOME IE system.

82 schemas 232 schemas

Nevents 0.5 0.7 0.9 0.5 0.7 0.9

[1; 5) .875 .589 .528 .981 .718 .639
[5; 10) .776 .460 .314 .924 .582 .387
[10;∞) .699 .408 .251 .877 .531 .314

[1;∞) .713 .422 .271 .885 .545 .337

Table 6: Corpus coverage Cov@t (t ∈ {0.5, 0.7, 0.9})
on the Chinese subset of the CC-News corpus, using
events extracted with the LOME IE system.

language resources. This suggests that the proposed
schemas are robust and useful for cross-lingual scenar-
ios, owing to its language-independent ontology and the
advances in cross-lingual event extraction tools.
The difference between 82 and 232 schemas’ coverage
is significant (p-value� 0.01) for all compared varia-
tions of Nevents and t, as measured by the two-sided
Wilcoxon signed-rank test.

5.4. Ranking Evaluation
How sufficient is the event-only representation E(d) of
a document d to rank schemas s ∈ L and predict the
true complex event (CE), using sim(d, s) as a ranking
function? To answer this question, we conduct a rank-
ing evaluation using KAIROS SLC, where each d has
precisely one CE label. For each document d, we rank
schemas according to sim(d, s) and report the aver-
age rank (lower is better), mean reciprocal rank (MRR,
higher is better), and recall@10 (R@10, higher is better)
of the gold CE label. Similarly we ask, how well can we
rank schema-salient documents d ∈ D given event-only
description E(s) of a schema s? For each schema s,
we rank documents according to sim(d, s) and report

https://nlp.jhu.edu/schemas/k2f.js
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recall@30 (higher is better) and normalized discounted
cumulative gain (nDCG, higher is better) of the gold an-
notated documents. We also compute corpus coverage,
which does not require ground-truth CE labels.
As a result (Table 2), we find that the event-only repre-
sentation does provide useful signal for ranking docu-
ments and schemas, compared to e.g. a fully random or-
dering (where R@10 for schema ranking = 10

82 ≈ 0.122
and R@30 for document ranking = 30

921 ≈ 0.033). In-
cluding additional signal, like participants’ types and
relations, could potentially improve the ranking. How-
ever, this information is costly to annotate for, and was
not provided for most of the documents in KAIROS
SLC. Thus, improving annotation pipelines for complex
events could not only boost schema induction, as argued
throughout our paper, but also enable rapid data collec-
tion for schema-based information extraction, which in
turn leads to more precise schema-supported inferences
in downstream document-level tasks.

6. Conclusions
In this paper, we propose a novel semi-automatic script
induction system and induce a dataset of 232 schemas.
The automatic portion of our system is rooted in a new
method, extending an ARM-based approach, which
finds interesting subsequences, with a causal scoring
metric for filtering out and fusing together these interest-
ing subsequences. The interactive portion of our system
is made possible through a new tool, SchemaBlocks, a
block-based interface developed to make annotation of
schema structures intuitive and easy.
We release both the SchemaBlocks interface and the
induced 232 schemas to the community, which we be-
lieve will be useful broadly and will facilitate further
efforts in what is traditionally an interminable pain for
all looking to build robust AI systems: the annotation
of robust commonsense knowledge structures.
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A. Schema Intrusion Task Details
A.1. Schema Inference
Here, we describe how we match schemas with docu-
ments in the schema intrusion task. There are 3 main
parts to the Schema Inference system:

1. representations for events and participants,

2. representations for schemas, and

3. the inference mechanism based on Probabilistic
Soft Logic (PSL) (Bach et al., 2017).

Throughout the following, we will use the example de-
picted in Figure 2.

Events and participants Each document is turned
into a knowledge graph using a FrameNet parser, as
described in Section 5. Knowledge graphs are then
flattened to unary or binary relations, following neo-
Davidsonian semantics. For instance,

{ "@id": "K0C03N60D.7.2",
"@type": "kairos:Primitives/Events/

Movement.Transportation.Unspecified",
"confidence": 0.9,
"participants": [
{ "@id": "K0C03N60D.7.2.P1.1",

"role": "kairos:Primitives/Events/
Movement.Transportation.Unspecified/
Slots/Destination",

"values": [{ "confidence": 1.0,
"entity": "e2323a3", }]},

{ "@id": "K0C03N60D.7.2.P3.1",
"role": "kairos:Primitives/Events/

Movement.Transportation.Unspecified/
Slots/PassengerArtifact",

"values": [{ "confidence": 0.8,
"entity": "e2323a1", }]}

],
}

is turned into

Movement.Transportation.Unspecified(K0C03N60D.7.2) .9

Destination(K0C03N60D.7.2, e2323a3) 1.

PassengerArtifact(K0C03N60D.7.2, e2323a1) .8

We omit common prefixes for readability. We collect
those predicates in dedicated files, together with confi-
dence values, which constitute PSL’s observation files.

Schemas We frame each step in a schema as a pred-
icate, whose arguments are an event and a number of
participants. We frame a schema as a predicate, whose
arguments are a set of events, where each is an argument
to one of its steps. Using Horn clauses, we define the
schema as a conjunction of its steps.
Concretely, the example from Figure 2 turns into:

Territorial_Dispute(Claim_event, Attack_event,
Diplomatic_event)

<- Claim(Claim_event, State1, State2, Territory)
& Attack(Attack_event, State1,

State2, Territory)
& Diplomatic_Resolution(Diplomatic_event,

State1, State2, Territory)

Territorial_Dispute(Claim_event, Attack_event,
Resolution_event)

<- Claim(Claim_event, State1, State2, Territory)
& Attack(Attack_event, State1,

State2, Territory)
& Legal_Resolution(Resolution_event, State1,

State2, InternationalCourt, Territory)

Claim(Contact_event, State1, State2, Territory)
<- Contact.Contact.Unspecified(Contact_event)
& Participant(Contact_event, State1)
& Participant(Contact_event, State2)
& Topic(Contact_event, Territory)

Attack(Attack_event, State1, State2, Territory)
<- Conflict.Attack.Unspecified(Attack_event)
& Attacker(Attack_event, State1)
& Target(Attack_event, State2)
& Place(Attack_event, Territory)

Diplomatic_Resolution(Contact_event, State1,
State2, Territory)

<- Contact.Contact.Unspecified(Contact_event)
& Participant(Contact_event, State1)
& Participant(Contact_event, State2)
& Topic(Contact_event, Territory)

Legal_Resolution(Contact_event, State1, State2,
InternationalCourt, Territory)

<- Contact.Contact.Unspecified(Contact_event)
& Participant(Contact_event, State1)
& Participant(Contact_event, State2)
& Participant(Contact_event, InternationalCourt)
& Topic(Contact_event, Territory)

We include negative priors for each step and schema
predicate. We give each rule a weight: 100 for step def-
initions, 10 for schema definitions, and 1 for negative
priors. The negative priors and the weights jointly en-
sure that with a rule of the form A & B -> C where
A and B are ground expressions, C will be assigned the
probability assigned to A & B. Primitive events from
the ontology and typing predicates are set to closed
predicates. Other predicates are set to open.

PSL Inference PSL is a formalism and a tool to as-
sign probabilities to ground expressions. To perform
schema inference, we enumerate all the possible ground-
ings for schemas and steps, i.e. all possible combina-
tions of predicates and arguments. The set of possible
arguments is taken as the set of entities and events from
the knowledge graph. The set of possible predicates is
that of all possible events and slots from the KAIROS on-
tology. PSL associates a continuous variable to each of
those targets, and uses the observation files and the rule
file to produce a convex optimization problem involv-
ing those variables. Solving this optimization problem
results in values for the variables, which we interpret as
the probability, for individual events, steps and schemas,
that they have happened. To be able to partially match
a schema, we need to be able to ground any subset of
its events and participants. We do this by introducing
“UNK” events and entities, which can fill any event and
participant role, and co-refer with any entity.
We post-process PSL’s results to obtain instantiated
schemas, using the confidence values provided by PSL.
Any event whose value is an “UNK” event, we consider
as unmatched, and interpret this as an event that was
not found in the documents, but that is predicted by
the schema to have happened. We re-scale the confi-
dence of a schema by the proportion of matched events
it contains.
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To simplify the matching process, we filter the schema
library using an Apache Lucene index. Schemas and
knowledge graphs are represented as bags-of-events.
We build a Lucene index for the schema library, and
given a knowledge graph, query it for relevant schemas.

A.2. Human Evaluation
We use Mechanical Turk to collect responses for the
schema intrusion task. Each Mechanical Turk assign-
ment consists of a single intrusion task (i.e. a single
schema with an intruder, see Figure 4(b)). Each task
is completed by three separate annotators who are paid
$0.20 per assignment. Instructions shown to the annota-
tors can be seen on Figures 5 and 6.

Figure 5: Instructions for the schema intrusion task shown to the Amazon Mechanical Turk workers.

Figure 6: Examples of schemas along with intruder events shown to the Amazon Mechanical Turk workers.
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