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Abstract

The evaluation campaign of the 19th Interna-
tional Conference on Spoken Language Trans-
lation featured eight shared tasks: (i) Simul-
taneous speech translation, (ii) Offline speech
translation, (iii) Speech to speech transla-
tion, (iv) Low-resource speech translation,
(v) Multilingual speech translation, (vi) Di-
alect speech translation, (vii) Formality con-
trol for speech translation, (viii) Isometric
speech translation. A total of 27 teams partic-
ipated in at least one of the shared tasks. This
paper details, for each shared task, the pur-
pose of the task, the data that were released,
the evaluation metrics that were applied, the
submissions that were received and the results
that were achieved.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier annual
scientific conference for all aspects of spoken lan-
guage translation. IWSLT is organized by the Spe-

cial Interest Group on Spoken Language Trans-
lation, which is supported by ACL, ISCA and
ELRA. Like in all previous editions (Akiba et al.,
2004; Eck and Hori, 2005; Paul, 2006; Fordyce,
2007; Paul, 2008, 2009; Paul et al., 2010; Federico
et al., 2011, 2012; Cettolo et al., 2013, 2014, 2015,
2016, 2017; Niehues et al., 2018, 2019; Ansari
et al., 2020; Anastasopoulos et al., 2021), this
year’s conference was preceded by an evaluation
campaign featuring shared tasks addressing scien-
tific challenges in spoken language translation.

This paper reports on the 2022 IWSLT Evalua-
tion Campaign, which offered eight shared tasks:

• Simultaneous speech translation, addressing
low latency speech translation either streamed
by a speech recognition (ASR) system or di-
rectly from the audio source. The translation
directions for both conditions are: English to
German, English to Japanese, and English to
Mandarin Chinese.

• Offline speech translation, proposing speech
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Team Organization
AISP-SJTU Aispeech and Shanghai Jiao Tong University, China (Zhu et al., 2022)
ALEXA AI Amazon Alexa AI, USA (Shanbhogue et al., 2022)
ALEXA AI Amazon Alexa AI, USA (Zhang et al., 2022a)
APPTEK AppTek, Germany (Wilken and Matusov, 2022)
CMU Carnegie Mellon University, USA (Yan et al., 2022)
CUNI-KIT Charles University, Czech Republic, and KIT, Germany (Polák et al., 2022)
FBK Fondazione Bruno Kessler, Italy (Gaido et al., 2022)
GMU George Mason University, USA
HW-TSC Huawei Translation Services Center, China (Li et al.; Wang et al.; Guo et al.; Li et al.)
JHU Johns Hopkins University, USA (Yang et al., 2022)
KIT Karlsruhe Institute of Technology, Germany (Pham et al., 2022; Polák et al., 2022)
MLLP-VRAIN Universitat Politècnica de València, Spain (Iranzo-Sánchez et al., 2022)
NA Neural.AI, China
NAIST Nara Institute of Science and Technology, Japan (Fukuda et al., 2022)
NIUTRANS NiuTrans, China (Zhang et al., 2022c)
NUV Navrachana University, India (Bhatnagar et al., 2022)
NEMO NVIDIA NeMo, USA(Hrinchuk et al., 2022)
ON-TRAC ON-TRAC Consortium, France (Boito et al., 2022b)
UOS University of Sheffield, UK (Vincent et al., 2022)
TALTECH Tallinn University of Technology, Estonia
UMD University of Maryland, USA (Rippeth et al., 2022)
UPC Universitat Politècnica de Catalunya, Spain (Tsiamas et al., 2022a)
USTC-NELSLIP University of Science and Technology of China (Zhang et al., 2022b)
XIAOMI Xiaomi AI Lab, China (Guo et al., 2022a)
YI Yi, China (Zhang and Ao, 2022)

Table 1: List of Participants

translation of talks from English to German,
English to Japanese, and English to Mandarin
Chinese, using either cascade architectures or
end-to-end models able to directly translate
source speech into target text;

• Speech to speech translation, investigating for
the first time automatic translation of human
speech in English into synthetic speech in Ger-
man, either with cascaded or direct neural mod-
els.

• Low-resource speech translation, focusing on
resource-scarce settings for translating input
speech in Tamasheq into French text, and input
speech in Tunisian Arabic into English text.

• Multilingual speech translation, analyzing
the performance of multi-lingual versus bilin-
gual translation models for the Offline speech
translation tasks (discussed in the Offline task
section);

• Dialect speech translation, addressing speech
translation from Tunisian into English under
three training data conditions: (i) only with lim-
ited dialect-specific training data (provided by
the organizers); (ii) with also larger amount of
related-language data (Modern Standard Ara-
bic); (iii) with any kind of publicly available
data.

• Formality control for SLT, addressing the for-
mality level (formal vs. informal) in spoken
language translation from English into Ger-
man, Spanish, Hindi, Japanese, Italian and Rus-
sian. The task focuses in particular on zero-shot
learning in multilingual models, given that for
the last two directions no formality-annotated
training data is provided.

• Isometric SLT, addressing the generation of
translations similar in length to the source, from
English into French, German and Spanish.
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The shared tasks attracted 27 participants (see Ta-
ble 1) from both academic and industrial organi-
zations. The following sections report on each
shared task in detail, in particular: the goal and au-
tomatic metrics adopted for the task, the data used
for training and testing data, the received submis-
sions and the summary of results. Detailed results
for some of the shared tasks are reported in a cor-
responding appendix.

2 Simultaneous Speech Translation

Simultaneous translation is the task of generat-
ing translations incrementally given partial text or
speech input only. Such capability enables mul-
tilingual live communication and access to multi-
lingual multimedia content in real time. The goal
of this challenge, organized for the third consecu-
tive year, is to examine systems that translate text
or audio in a source language into text in a target
language from the perspective of both translation
quality and latency.

2.1 Challenge
Participants were given two parallel tracks to enter
and encouraged to enter all tracks:

• text-to-text: translating the output of a
streaming ASR system in real time from En-
glish to German, English to Japanese, and
English to Mandarin Chinese.

• speech-to-text: translating speech into text in
real time from English to German, English to
Japanese, and English to Mandarin Chinese.

For the speech-to-text track, participants were en-
couraged to submit systems either based on cas-
caded or end-to-end approaches. Participants were
required to upload their system as a Docker im-
age so that it could be evaluated by the organiz-
ers in a controlled environment. We also pro-
vided example implementations and baseline sys-
tems for English-German speech-to-text transla-
tion, English-Japanese speech-to-text translation
and English-Japanese text-to-text translation.

2.2 Data and Metrics
The training and development data conditions
were identical as in the Offline Speech Translation
track. More details are available in §3.2.

Systems were evaluated with respect to quality
and latency. Quality was evaluated with the stan-
dard BLEU metric (Papineni et al., 2002) and, as

a first trial this year, also manually. Latency was
evaluated with metrics developed for simultaneous
machine translation, including average proportion
(AP), average lagging (AL) and differentiable av-
erage lagging (DAL, Cherry and Foster 2019), and
later extended to the task of simultaneous speech
translation (Ma et al., 2020b).

The evaluation was run with the SIMULEVAL
toolkit (Ma et al., 2020a). For the latency measure-
ment of all systems, we contrasted computation-
aware and non computation-aware latency met-
rics. Computation-aware latency was also com-
puted for text-to-text systems by taking into ac-
count the timestamps obtained from the ASR
transcript generated by a streaming ASR model.
The latency was calculated at the word level for
English-German systems and at the character level
for English-Japanese and English-Mandarin sys-
tems. BLEU was computed via sacrebleu (Post,
2018) (as integrated into SIMULEVAL) with de-
fault options for English-German, with the ”zh”
option for English-Mandarin and with the MeCab
tokenizer for English-Japanese.

The systems were ranked by the translation
quality (measured by BLEU) in different latency
regimes, low, medium and high. Each regime
was determined by a maximum latency threshold
measured by AL on the Must-C tst-COMMON
set. The thresholds were set to 1000, 2000 and
4000 for English-German, 2500, 4000 and 5000
for English-Japanese and 2000, 3000 and 4000 for
English-Japanese, and were calibrated by the base-
line system. Participants were asked to submit
at least one system per latency regime and were
encouraged to submit multiple systems for each
regime in order to provide more data points for
latency-quality trade-off analyses. The organizers
confirmed the latency regime by rerunning the sys-
tems on the tst-COMMON set.

The systems were run on the test set segmented
in three ways: the first segmentation, called gold,
leverages the transcript to force align and segment
the audio; the second and third segmentations,
called Segmentation 1 and Segmentation 2, use a
voice activity detection tool to segment the input
audio without relying on the transcript.

2.3 Novelties for the Third Edition

Text-to-text track moving closer to the speech-
to-text track This year, we used the output of
a streaming ASR system as input instead of the
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gold transcript. As a result, both text-to-text and
speech-to-text systems can be ranked together for
a given language pair.

Language pairs We added Mandarin Chinese as
a target language, resulting in three pairs: English-
German, English-Japanese and English-Mandarin.

Human Evaluation and Human Interpretation
Benchmark We added an experimental manual
evaluation for the English-to-German speech-to-
text track as well as a human interpretation bench-
mark (Section 2.6.1). Independently, English-to-
Japanese speech-to-text track outputs were also
manually scored, using the MQM setup, see Sec-
tion 2.6.2.

Segmentation We reverted to the setting of the
first edition where we only used segmented input
in order to reduce the number of conditions and
also because we noticed that existing latency met-
rics were not well adapted to long unsegmented in-
put. However, recent improvements to the latency
metrics (Iranzo-Sánchez et al., 2021) could allow
to work with unsegmented input in the future.

2.4 Submissions
The simultaneous task received submissions from
7 teams, the highest number to date. 5 teams
entered the English-German speech-to-text track,
3 teams entered the English-Mandarin speech-
to-text track and 3 teams entered the English-
Japanese speech-to-text track. For text-to-text,
there were 3 teams for English-Mandarin, 1 team
for English-German and 1 team for English-
Japanese. Given that the majority of submissions
were on the speech-to-text track, we are consider-
ing consolidating the task into speech-to-text only
in future editions.

XIAOMI (Guo et al., 2022a) entered the text-
to-text track for English-Mandarin. Their model
is transformer-based and leverages R-Drop and a
deep architecture. Data augmentation methods in-
clude tagged backtranslation, knowledge distilla-
tion and iterative backtranslation. Simultaneous
models use the multi-path wait-k algorithm. Fi-
nally, two error correction models are introduced
in order to make the systems more robust to ASR
errors.

MLLP-VRAIN (Iranzo-Sánchez et al., 2022)
entered the speech-to-text track for English-
German. They adopt a cascaded approach, with

a chunking-based DNN-HMM ASR model, fol-
lowed by a multi-path wait-k transformer-based
MT model. Speculative beam search is employed
at inference time.

HW-TSC (Wang et al., 2022) entered all tracks,
i.e. speech-to-text and text-to-text for English-
German, English-Japanese and English-Mandarin.
Moreover, the authors contrasted cascaded and
end-to-end methods for the speech-to-text track.

CUNI-KIT (Polák et al., 2022) entered the
speech-to-text track for English-German, English-
Japanese and English-Mandarin. They propose a
method for converting an offline model to a simul-
taneous model without adding modifications to the
original model. The offline model is an end-to-end
multilingual speech-to-text model that leverages a
pretrained wav2vec 2.0 encoder and a pretrained
mBART decoder. The input is broken down into
chunks and decoding is run for each new chunk.
Once a stable hypothesis is identified, that hypoth-
esis is displayed. Various stable hypothesis detec-
tion methods are investigated.

AISP-SJTU (Zhu et al., 2022) entered the
speech-to-text and text-to-text tracks for English-
Mandarin. Their model is based on an ASR + MT
cascade. They propose dynamic-CAAT, an im-
provement over CAAT (Liu et al., 2021) that uses
multiple right context window sizes during train-
ing. The proposed method is compared to wait-k
and multi-path wait-k. Data augmentation meth-
ods include knowledge distillation, tagged back-
translation and marking data with lowercased and
non punctuated input with a special token.

FBK (Gaido et al., 2022) entered the speech-to-
text track for English-German with an end-to-end
model. The authors’ main goal is to reduce com-
putation requirements in order to democratize the
task to more academic participants. First, they
show how to avoid ASR encoder pretraining by
using a conformer architecture and a CTC loss on
top of an intermediate layer in the encoder. In
addition, they use the same model for the offline
task as for the simultaneous task. The auxiliary
CTC loss is used to predict word boundaries and
informs a wait-k policy. The latency is also con-
trolled by the speech segment size. Finally, two
data filtering methods based on negative log like-
lihood of an initial model and length ratio are in-
vestigated in order to make training more efficient.
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NAIST (Fukuda et al., 2022) entered the
speech-to-text track for English-German and
English-Japanese. The proposed model applies
decoding each time a new input speech segment
is detected and to constrain the decoder on pre-
viously output predictions. An offline model is
trained first and then finetuned on prefix pairs. The
prefix pairs are extracted by translating prefixes
and checking that the generated target is a prefix
of the translation of the entire input. Prefixes with
length imbalance are filtered out. An input seg-
ment boundary predictor is trained as a classifier
by considering all prefixes and giving a positive
labels to those prefixes that were extracted previ-
ously.

2.5 Results

Results are summarized in Figure 1, Figure 2 and
Figure 3. We also present the text-to-text results
on English-Mandarin1 in Figure 4. More details
are available in the appendix. The results include
both text-to-text systems and speech-to-text sys-
tems. When participants submitted both a text-to-
text system and a speech-to-text system, we retain
the best system. The only participant with only a
text-to-text system is XIAOMI and we can see that
the system is at a disadvantage due to the noise in-
troduced by the provided streaming ASR model.
The ranking are consistent across the medium and
high latency regime. However, for the low latency
regime, we note a degradation from the FBK sys-
tem and we observe that the NAIST system is ro-
bust to lower latency.

2.6 Human Evaluation

We conducted a human evaluation for English-to-
German and English-to-Japanese independently.

2.6.1 English-to-German
For English-to-German, the human evaluation was
inspired by Javorský et al. (2022). This evalua-
tion examined (1) the best system from each la-
tency regime selected by BLEU score, and (2)
transcription of human interpretation by a profes-
sional English-German interpreter (German native
speaker, certified German conference interpreter
and sworn translator and interpreter) in February
2022. The interpreting was carried out remotely
and transcribed by students of German for Inter-

1Only this language pair has more than one text-to-text
systems submitted.

cultural Communication at the Institute of Transla-
tion Studies, Charles University, Faculty of Arts.2

The English-to-German task used two parts of
the test set: (1) the Common part is used as the
blind test set in the automatic evaluation and also
in the Offline speech translation task, and (2) the
Non-Native part comes from IWSLT 2019 Non-
Native Translation Task.

Details of the human evaluation are provided
in Section A.1.1 of the Appendix and results are
shown in Table 18. BLEU scores correlate very
well with the human judgements for both parts of
the test set, as can be seen in Figure 5.

The Common part of the test set is kept confi-
dential for future use. For the Non-Native part, we
release system outputs as well as manual judge-
ments on the corresponding IWSLT page.3

2.6.2 English-to-Japanese
For English-to-Japanese, we used JTF Translation
Quality Evaluation Guidelines (JTF, 2018) based
on Multidimensional Quality Metrics (MQM). We
chose four systems for the evaluation and asked a
professional translator to evaluate the translations
for one talk in the blind test set. We followed the
error weighting by a previous study (Freitag et al.,
2021a) to calculate error scores. Details of the hu-
man evaluation are provided in A.1.2 in Appendix.

The results are shown in Table 16, and we
can find the error scores positively correlate with
BLEU.

2.7 Future Editions
Possible changes to future editions include:

• changing the latency metric in order to sup-
port long unsegmented input.

• extending the task to support speech output.

• removing the text-to-text track in order to
consolidate tracks.

3 Offline Speech Translation

Offline speech translation, defined in various
forms over the years, is one of the speech tasks
with the longest tradition at the IWSLT campaign.
This year,4 it focused on the translation of English
audio data extracted from TED talks5 into text in

2http://utrl.ff.cuni.cz/en
3http://iwslt.org/2022/simultaneous
4http://iwslt.org/2022/offline
5http://www.ted.com
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Figure 1: Latency-quality tradeoff curves for English-German.

Figure 2: Latency-quality tradeoff curves for English-Japanese.

Figure 3: Latency-quality tradeoff curves for English-Mandarin.
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Figure 4: Latency-quality tradeoff curves for English-Mandarin (text-to-text track).

one of the three target languages comprising the
2022 sub-tasks, i.e. German, Japanese, and Man-
darin Chinese.

3.1 Challenge

In recent years, offline speech translation (ST) has
seen a rapid evolution, characterized by the steady
advancement of direct end-to-end models (build-
ing on a single neural network that directly trans-
lates the input audio into target language text)
that were able to significantly reduce the perfor-
mance gap with respect to the traditional cas-
cade approach (integrating ASR and MT compo-
nents in a pipelined architecture). In light of the
IWSLT results of the last two years (Ansari et al.,
2020; Anastasopoulos et al., 2021) and of the find-
ings of recent work attesting that the gap between
the two paradigms has substantially closed (Ben-
tivogli et al., 2021), also this year a key element
of the evaluation was to set up a shared framework
for their comparison. For this reason, and to re-
liably measure progress with respect to the past
rounds, the general evaluation setting was kept un-
changed.

On the architecture side, participation was al-
lowed both with cascade and end-to-end (also
known as direct) systems. In the latter case, valid
submissions had to be obtained by models that:
i) do not exploit intermediate symbolic represen-
tations (e.g., source language transcription or hy-
potheses fusion in the target language), and ii) rely
on parameters that are all jointly trained on the
end-to-end task.

On the test set provision side, also this year

participants could opt for processing either a pre-
computed automatic segmentation of the test set
or a version of the same test data segmented with
their own approach. This option was maintained
not only to ease participation (by removing one
of the obstacles in audio processing) but also to
gain further insights into the importance of prop-
erly segmenting the input speech. As shown by the
results of recent IWSLT campaigns, effective pre-
processing to reduce the mismatch between the
provided training material (often “clean” corpora
split into sentence-like segments) and the supplied
unsegmented test data is in fact a common trait of
top-performing systems.

Concerning the types of submission, also this
year two conditions were offered to participants:
constrained, in which only a pre-defined list of re-
sources is allowed, and unconstrained.

Multiple submissions were allowed, but par-
ticipants had to explicitly indicate their “pri-
mary” (one at most) and “contrastive” runs,
together with the corresponding type of sys-
tem (cascade/end-to-end), training data condition
(constrained/unconstrained), and test set segmen-
tation (own/given).

Novelties of the 2022 offline ST task. Within
this consolidated overall setting, the organization
of this year’s task took into consideration new
emerging challenges, namely: i) the availability
of new data covering more language directions, ii)
the development of new and gigantic pre-trained
models, and iii) the need for more accurate eval-
uations. Accordingly, three main differences with
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Figure 5: Relation between automatic and manual scoring for English-to-German simultaneous translation on the
Common and Non-native part of the test set in the three latency regimes.

respect to previous editions characterize this year’s
edition:

• To measure systems performance in dif-
ferent language settings, two new tar-
get languages have been added, extend-
ing the number of offline ST sub-tasks to
three: English-German (the traditional one),
English-Chinese, and English-Japanese.

• To understand the effect of exploiting popu-
lar pre-trained models in state-of-the-art ST
systems, participants were given the possibil-
ity to exploit some of them in addition to the
allowed training resources for the constrained
condition.

• To shed light on the reliability of system
ranking based on automatic metrics, and to
align our task with other evaluation cam-
paigns (e.g. WMT6), the outputs of all the
submitted primary systems have been manu-
ally evaluated by professional translators. On
this basis, a new ranking based on direct hu-
man assessments was also produced.

3.2 Data and Metrics
Training and development data. Also this year,
participants had the possibility to train their sys-
tems using several resources available for ST, ASR
and MT.

6http://www.statmt.org/wmt22/

To extend the language directions covered by
the offline task, new data was selected from the
English-Chinese and English Japanese sections of
the MuST-C V2 corpus7. For both languages, they
include training, dev, and test (Test Common), in
the same structure of the MuST-C V2 English-
German section (Cattoni et al., 2021) used last
year.

Besides the two new language directions of
MuST-C V2, also this year the allowed training
corpora include:

• MuST-C V1 (Di Gangi et al., 2019);

• CoVoST (Wang et al., 2020a);

• WIT3 (Cettolo et al., 2012) ;

• Speech-Translation TED corpus8;

• How2 (Sanabria et al., 2018)9;

• LibriVoxDeEn (Beilharz and Sun, 2019)10;

• Europarl-ST (Iranzo-Sánchez et al., 2020);

• TED LIUM v2 (Rousseau et al., 2014) and v3
(Hernandez et al., 2018);

7http://ict.fbk.eu/must-c/
8http://i13pc106.ira.uka.de/˜mmueller/

iwslt-corpus.zip
9only English - Portuguese

10only German - English
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• WMT 201911 and 202012;

• OpenSubtitles 2018 (Lison et al., 2018);

• Augmented LibriSpeech (Kocabiyikoglu
et al., 2018)13

• Mozilla Common Voice14 ;

• LibriSpeech ASR corpus (Panayotov et al.,
2015);

• VoxPopuli15 (Wang et al., 2021).

The only addition over last year is the VoxPopuli
dataset.

Similarly to the training data, participants were
also provided with a list of pre-trained models that
can be used in the constrained condition. The list
includes:

• Wav2vec 2.016 (Baevski et al., 2020a);

• Hubert17;

• MBART18 (Liu et al., 2020);

• MBART5019 (Tang et al., 2020);

• M2M10020 (Fan et al., 2021);

• Delta LM21 (Ma et al., 2021);

• T522 (Raffel et al., 2020).

The development data allowed under the con-
strained condition consist of the dev set from
IWSLT 2010, as well as the test sets used for
the 2010, 2013, 2014, 2015, 2018, 2019, and

11http://www.statmt.org/wmt19/
12http://www.statmt.org/wmt20/
13only English - French
14http://voice.mozilla.org/en/datasets –

English version en 1488h 2019-12-10
15https://github.com/facebookresearch/

voxpopuli
16https://github.com/pytorch/fairseq/

blob/main/examples/wav2vec/README.md
17https://github.com/pytorch/fairseq/

tree/main/examples/hubert
18https://github.com/pytorch/fairseq/

blob/main/examples/mbart/README.md
19https://github.com/pytorch/fairseq/

tree/main/examples/multilingual#
mbart50-models

20https://github.com/pytorch/fairseq/
tree/main/examples/m2m_100

21https://github.com/microsoft/unilm/
tree/master/deltalm

22https://github.com/google-research/
text-to-text-transfer-transformer

2020 IWSLT campaigns. Using other train-
ing/development resources was allowed but, in
this case, participants were asked to mark their
submission as unconstrained.

Test data. For each language direction, namely
En-De, En-Zh and En-Ja, a new test set was cre-
ated. The new test sets were built from 17 TED
talks for En-De, 16 for En-Zh and 13 for En-Ja.
None of these talks is included in the current pub-
lic release of MuST-C. Similar to last year, par-
ticipants were presented with the option of pro-
cessing either an unsegmented version (to be split
with their preferred segmentation method) or an
automatically segmented version of the audio data.
For the segmented version, the resulting number of
segments is 2,059 (corresponding to about 3h34m
of translated speech from 17 talks) for En-De,
1,874 (3h17m) for En-Zh and 1,758 (2h38m) for
En-Ja. The details of the three test sets are reported
in Table 2.

Lang Talks Sentences Duration
En-De 17 2,059 3h34m
En-Zh 16 1,874 3h17m
En-Ja 13 1,768 2h38m

Table 2: Statistics of the official test sets for the offline
speech translation task (tst2022).

To measure technology progress with respect to
last year’s round, participants were asked to pro-
cess also the undisclosed 2021 En-De test set that,
in the segmented version, consists of 2,037 seg-
ments (corresponding to about 4.1 hours of trans-
lated speech from 17 talks).

Metrics. The systems’ performance was eval-
uated with respect to their capability to produce
translations similar to the target-language refer-
ences. This similarity is measured using the
BLEU metric, computed with SacreBLEU (Post,
2018) with default settings.

Similar to the 2021 edition, we consider
two different types of target-language references,
namely:

• The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions to
adhere to the TED subtitling guidelines.23

23http://www.ted.com/participate/
translate/subtitling-tips
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This makes them less literal compared to
standard, unconstrained translations;

• Unconstrained translations. These references
were created from scratch24 by adhering to
the usual translation guidelines. They are
hence exact translations (i.e. literal and with
proper punctuation).

Lang Pair Lang Sentences Words

En-De
En 2,059 39,814

De - Orig 2,059 32,361
De - Uncon. 2,059 36,655

En-Zh
En 1,874 36,736

Zh - Orig 1,874 63,876∗
Zh - Uncon. 1,874 64,767∗

En-Ja
En 1,768 30,326

Ja - Orig 1,768 62,778∗
Ja - Uncon. 1,768 74,637∗

Table 3: Statistics of the official test set for the offline
speech translation task (tst2022). * statistics are re-
ported in terms of characters for Chinese and Japanese.

As shown in Table 3, the different approaches
to generate the human translations led to signif-
icantly different references. For En-De, while
the unconstrained translation has a similar length
(counted in words) compared to the correspond-
ing source sentence, the original is ∼15% shorter
in order to fulfil the additional constraints for sub-
titling. For En-Ja and En-Zh, it is difficult to make
a proper comparison with the source data as the
Japanese and Chinese data are counted in char-
acters while the English one is counted in words.
However, it is evident that the unconstrained trans-
lations have more characters than the original ones
following a similar trend seen for En-De.

Besides considering separate scores for the two
types of references, results were also computed by
considering both of them in a multi-reference set-
ting. Similar to last year, the submitted runs were
ranked based on case-sensitive BLEU calculated
on the test set by using automatic re-segmentation
of the hypotheses based on the reference transla-
tions by mwerSegmenter.25

24We would like to thank Meta for providing us with this
new set of references.

25http://www-i6.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz

3.3 Submissions
Overall, 10 different teams submitted at total of 29
primary submissions. For the English-to-German
task 8 teams submitted 10 runs, for English-to-
Chinese 9 teams 11 runs and for the English-to-
Japanese task 6 teams participated with 8 primary
runs. For all the language pairs two teams sub-
mitted a primary cascaded and a primary end-to-
end system. Overall, most teams participated in all
3 language directions, partly with individual sys-
tems and partly with multi-lingual systems.

We encouraged the submission of end-to-end
as well as cascaded systems. Several partici-
pants experimented with both types of architec-
tures and in two instances primary end-to-end and
cascaded systems were submitted. In total, we had
4 cascaded and 6 end-to-end submissions for the
English-to-German tasks, 5 cascaded and 6 end-
to-end for English-to-Chinese and 3 cascaded and
5 end-to-end submissions for English-to-Japanese.

One additional change in this year’s evaluation
campaign was that the use of a list of pre-trained
models. Most of the teams investigated this re-
search direction and integrated pre-trained mod-
els into their final submission. Both, the integra-
tion of pre-trained speech models as well as text
models were successfully investigated. In addi-
tion, several teams focused on audio segmentation
approaches.

• HW-TSC (Li et al., 2022a) submission is
built in the cascaded form, including three
types of ASR models and one type of trans-
lation model. Before performing the speech
translation, the LIUM SpkDiarization tool
(Rouvier et al., 2013), provided to the par-
ticipants, was used to cut off the test set
wav files into segments. For the ASR part,
they use conformer, U2T-transformer and
U2-conformer, and all of them are trained
on a combination of the MUST-C, COVOST,
LibriSpeech, TedLIUM datasets. The sys-
tem is adapted to the TED domain using do-
main tags. For the translation model, they
trained a Transformer-large on the WMT21-
news dataset, and fine-tuned it on the MUST-
C and IWSLT datasets. The output of the dif-
ferent ASR models has been re-ranked and
the best combination selected as primary sub-
mission.

• FBK (Gaido et al., 2022) focused in their
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submission on reducing model training costs
without sacrificing translation quality. They
submitted an end-to-end speech transla-
tion system model using the conformer-
architecture without pre-trained models. The
model is trained on specifically filtered and
resegmented parts of the corpus. The final
submission is an ensemble of several models.

• USTC-NELSLIP (Zhang et al., 2022b) sub-
mitted primary end-to-end and cascaded sys-
tems for all three language directions which
ensemble several individual models. In the
cascaded condition, the ASR models com-
bined transformer and conformer architec-
tures and the MT models are trained on
synthetic data to be robust against ASR er-
rors. The end-to-end models also combine
conformer and transformer encoders and are
partly initialized from ASR systems.

• ALEXA AI (Shanbhogue et al., 2022) submit-
ted an end-to-end speech translation system
that leverages pretrained models and cross
modality transfer learning for all three lan-
guage directions. They used encoders for text
as well as speech and initialized the models
using pretrained speech and text models. The
work mainly focused on improving knowl-
edge transfer. In addition, a special focus was
put on segmentation strategies.

• NIUTRANS (Zhang et al., 2022c) submission
to the English-Chinese track is an end-to-end
speech translation system composed of dif-
ferent pre-trained acoustic models and ma-
chine translation models. The models were
combined by two kinds of adapters and the
final submission is an ensemble of three indi-
vidual speech translation models.

• UPC (Tsiamas et al., 2022a) submission is an
end-to-end speech translation model which
combines pre-trained speech encoder and text
decoder for all the three language directions
of the task. As a speech encoder wav2vec
2.0 and HuBERT are used, both already fine-
tuned on English ASR data. As a text decoder
an mBART50 fine-tuned on multilingual MT
(one-to-many) is used. These two modules
are coupled with a length adaptor block and
in the end-to-end training, additional adapters

are trained. For the final submission several
initial models are combined.

• KIT (Pham et al., 2022) submitted an end-
to-end system using pre-trained audio and
text models to all the three language direc-
tions. The systems were trained on the ini-
tial training data as well as on additional syn-
thetic data. Furthermore, sentence segmen-
tation strategies were investigated. The final
submission is an ensemble of several models.

• YI (Zhang and Ao, 2022)) submitted pri-
mary end-to-end and cascaded systems for
all three language directions using large-scale
pre-trained models. Starting from pre-trained
speech and language models, the authors in-
vestigated a multi-stage pre-training and the
use of a task dependent fine-tuning for ASR,
MT and speech translation. In addition, var-
ious efforts to perform data preparation was
carried out. Finally, an ensemble of several
models was submitted as the primary submis-
sion.

• NEURAL.AI submitted a cascaded speech
translation system to the English-to-Chinese
speech translation task. The ASR system
consists of a conformer encoder and a trans-
former decoder. The MT system is a fined-
tuned deltalm-base.

3.4 Results
This year, the submissions to the IWSLT Offline
translation task were not only evaluated using au-
tomatic metrics, but also a human evaluation was
carried out. All results are shown in detail in the
appendix.

3.4.1 Automatic Evaluation
The results for each of the language pairs are
shown in the tables in section A.5. For English-
to-German we show the results for this year’s test
set (Table 19) as well as for last year’s test set (Ta-
ble 20). This enables us to also show the progress
compared to last year. For the two new language
pairs, English-to-Chinese (Table 21) and English-
to-Japanese (Table 22), we present the numbers of
this year’s test set.

First, all the submissions are distributed in a
range from 4 to 7 BLEU points. The only ex-
ception is Chinese, where one system performed
significantly worse than the others. This large
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BLEU score range is significantly different than
last year’s ranking where all the submissions were
close to each other. The overall 2022 ranking for
the English-German task is quite similar to the
ranking obtained for the test set 2021.

Progress The comparison between this year’s
submissions and last year’s submission on test set
2021 in the English-to-German task allows us to
measure the progress since last year. As shown in
Table 20, 7 out of 9 systems performed better than
the best system last year. This year’s best system
is 4 BLEU points better than last year’s system.
So, we are seeing a clear improvement in transla-
tion quality. One possible reason for the improve-
ment is the additional allowed resources (the Vox-
Populi dataset and the pre-trained models). How-
ever, also teams not using the additional resources
(FBK) outperformed last year’s system.

End-to-end vs. cascade As in previous years,
we received cascaded and end-to-end submissions.
While in the last years, end-to-end systems were
able to close the gap to cascaded systems, we do
not see this trend since last year. In this year, for
all conditions, a cascaded system performed best.
Furthermore, when looking at the participants who
submitted both, a primary end-to-end and a pri-
mary cascaded system, in 6 out of 8 times, the cas-
caded system performed better than the end-to-end
system. Whether this is partly due to the integra-
tion of pre-trained models has to be evaluated in
further experiments.

Pre-trained models It is difficult to measure the
impact of pre-trained models since there is no
participant submitting both, a translation system
with and without pre-trained models. However,
there are some indications of the usefulness of
pre-trained models. First, nearly all participants
submitted systems with pre-trained models. Typ-
ically, these are audio encoders like wav2vec or
Hubert for the encoder and text models like mBart
for the decoder. Secondly, all winning systems
are using this technology. And finally, we see
large gains in translation quality compared to last
year, where this technique was not allowed. Con-
sequently, these models seem to be an interesting
knowledge source. However, it should be noted
that the models are rather large and therefore can
also be a limiting factor for teams to participate in
the evaluation campaign.

Multi-lingual models For the first time, since
several years, this year’s edition of the offline task
included several language directions. Interest-
ingly, this did not lead to a partition of participants
into different language pairs, but most participants
submitted translations for all three language pairs.
While the best performing systems were individ-
ually optimized for each language, we also see
multilingual models submitted to the tasks. Espe-
cially, the integration of pre-trained models, which
are typically multi-lingual, made it easier to build
translation systems for all three conditions. While
the ranking between the languages is not the same,
it is still very similar. This indicates that a good
system in one language direction typically will
also result in good performance in the other di-
rections. While the amount of training resources
is at least comparable, this is interesting since the
languages are rather different.

3.4.2 Human Evaluation
We conducted a human evaluation of primary sub-
missions based on a random selection of 1,350
segments from the test set of each language pair.
Human graders were asked for a direct assessment,
expressed through scores between 0 and 100. To
minimize the impact of errors in the automatic seg-
mentation, graders were also shown system out-
put for the previous and the following sentence
and asked not to let segmentation issues influence
their scores. We used Appraise to compute sys-
tem scores, statistical significance, and rankings.
Details of the human evaluation are provided in
Section A.2.

As for the results (Tables 23, 24, 25), the rank-
ing of systems matches that of the automatic eval-
uation when accounting for statistical significance
for English to German and English to Chinese,
but not for English to Japanese. The scores indi-
cate clear differences between systems (that usu-
ally persist across language pairs), but also signif-
icant overlap in the translation quality of different
systems.

3.4.3 Final remarks
By inspecting this year’s results, we can make
three final observations.

The first is about the relation between the cas-
cade and end-to-end technology. According to the
automatic metrics, and in contrast to last year’s
campaign, cascade systems achieve the best per-
formance in all the language directions. However,
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human evaluation does not validate automatic re-
sults for En-De and En-Jp, where the best cascade
and end-to-end systems are in the same cluster and
not statistically different. This outcome further
confirms the findings of Bentivogli et al. (2021)
for En-De but extends them to one new language
pair out of the two addressed (En-Jp and En-Zh).
For this reason, more investigation about the two
technologies is still needed and will be further car-
ried out in the next editions of this task.

The other observation is about the introduction
of human evaluation in our task. While largely
confirming the rankings obtained with automatic
metrics, it provides the most reliable picture of the
real differences between the systems, showing that
they are not so evident as they were detected by
automatic metrics. Given the importance of hu-
man evaluation to accurately assess state-of-the-
art technologies, we plan to rely on it also in the
next edition of the task.

The last observation is about the noticeable
jump in performance on the progress test set com-
pared to last year’s systems. All the current sys-
tems have been able to outperform the best 2021
system, with gains reaching up to 6 BLEU score
points when using multiple references. While it
is difficult to ascribe this improvement to a single
factor, it is worth to note that the main change in
this year’s task setting is the availability of pre-
trained models. We suggest that these models can
have an important role in the final translation qual-
ity, and we plan to further investigate their useful-
ness in the next edition.

4 Speech to Speech Translation

Speech-to-speech translation is the task of trans-
lating audio input in a language into audio output
in a target language. In the offline setting, systems
are able to take into account an entire input audio
segment in order to translate, similar to a consecu-
tive interpreter. This is in contrast to streaming or
simultaneous settings where systems are only ex-
posed to partial input as in simultaneous interpre-
tation. The goal of this task is to foster the devel-
opment of automatic methods for offline speech-
to-speech translation.

4.1 Challenge

Participants built speech-to-speech translation sys-
tems from English into German using any pos-
sible method, for example with a cascade sys-

tem (speech recognition + machine translation
+ speech synthesis or end-to-end speech-to-text
translation + speech synthesis) or an end-to-end or
direct system.

4.2 Data and Metrics
Data. This task allowed the same training and
testing data from the Offline task on English-
German speech-to-text translation to more directly
compare Offline S2T and S2ST systems. More
details are available in §3.2. We note that while
the evaluation data between the two tasks was
the same, it was not directly parallel, as differ-
ent sentence-level segmentation was used. For this
task, gold sentence segmentation was used. This
means that scores are not directly comparable be-
tween the two tasks, though we do evaluate a di-
rect comparison for a subset of submissions.

In addition to the Offline task data, the follow-
ing training data was allowed to help build Ger-
man TTS and English-German speech-to-speech
models:

• Synthesized MuST-C: Target speech for the
German target text of MuST-C V2 (Cattoni
et al., 2021) which was synthesized for this
task using a VITS model (Kim et al., 2021)
trained on the German portion of CSS10.

• CSS10: A single-speaker German TTS
dataset (Park and Mulc, 2019)

• Pretrained German TTS model: A pre-
trained German VITS (Kim et al., 2021) TTS
model to facilitate cascaded models and dual
submission with the Offline task.

We note that several datasets allowed for the
Offline task including Common Voice (Ardila
et al., 2020) and LibriVoxDeEn (Beilharz and Sun,
2019) also contain multi-speaker German speech
and text data, enabling their use for this task as
well.

Metrics. While we evaluate with both automatic
and human evaluation scores, systems were ranked
according to the human evaluation.

Automatic metrics. To automatically evaluate
translation quality, the speech output was auto-
matically transcribed with an ASR system (Con-
neau et al., 2021),26 and then BLEU (Papineni

26wav2vec2-large-xlsr-53-german
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et al., 2002) was computed between the generated
transcript and the human-produced text reference.
Previous work (Salesky et al., 2021) has shown
evaluating synthesized speech with ASR and chrF
can be more robust than ASR and BLEU, so we
additionally score with chrF (Popović, 2015). All
scores were computed using SacreBLEU (Post,
2018).

Human evaluation. Output speech translations
were evaluated with respect to translation quality
and speech quality.

• Translation quality: Bilingual annotators
were presented with the source audio and the
target audio, and gave scores on the trans-
lation quality between 1 and 5. There were
3 annotators per sample and we retained the
median score.

• Output speech quality: In addition to trans-
lation quality (capturing meaning), the qual-
ity of the speech output was also human-
evaluated along three dimensions: natural-
ness (voice and pronunciation), clarity of
speech (understandability), and sound qual-
ity (noise and other artifacts). These axes are
more fine-grained than the traditional overall
MOS score.

The detailed guidelines for output speech quality
were as follows:

• Naturalness: Recordings that sound human-
like, with natural-sounding pauses, stress,
and intonation, should be given a high score.
Recordings that sound robotic, flat, or other-
wise unnatural should be given a low score.

• Clarity of speech: Recordings with clear
speech and no mumbling and unclear phrases
should be given a high score. Recordings
with a large amount of mumbling and unclear
phrases should be given a low score.

• Sound quality: Recordings with clean au-
dio and no noise and static in the background
should be given a high score. Recordings
with a large amount of noise and static in the
background should be given a low score.

4.3 Submissions
We received submissions from four teams, one of
which was withdrawn due to submission errors.

We also compare two submissions to the Offline
task which were retranslated with the gold seg-
mentation and synthesized using the TTS model
provided by the organizers.

MLLP-VRAIN (Iranzo-Sánchez et al., 2022)
submitted a cascaded system of separate ASR,
MT, and TTS models. They use the same ASR
and MT models developed for the Simultaneous
ST task, with a less restrictive pruning setup to al-
low a wider search space for the ASR model and
without the multi-path wait-k policy used there for
MT. They include a speaker-adaptive module in
their TTS system to produce a high quality voice
that mimics voice characteristics of the source
speaker. Their TTS model is a typical two-stage
approach, combining a Conformer-based model
(Gulati et al., 2020) to produce spectrograms with
a multi-band UnivNet (Jang et al., 2021) model
to then produce speech waveforms. They include
a speaker encoder, a modified ResNet-34 resid-
ual network architecture (He et al., 2016) from
(Chung et al., 2018) more widely used for speaker
recognition tasks and trained on the TED-LIUM
v3 dataset (Hernandez et al., 2018), which is com-
bined with the Conformer output to produce more
faithful voices.

HW-TSC (Guo et al., 2022b) submitted a cas-
caded system of separate ASR, MT, and TTS mod-
els. The ASR model ensembles Conformer (Gulati
et al., 2020) and S2T-Transformer models (Syn-
naeve et al., 2020), and is cleaned with the U2
model. The MT model is pretrained on news
corpora and finetuned to MuST-C and IWSLT
data, with context-aware MT reranking inspired
by Yu et al. (2020). They use the provided pre-
trained VITS TTS model. They use domain tags
for each training data source to improve perfor-
mance. They submitted one primary and three
contrastive systems, which ablate individual com-
ponents. Contrastive1 includes the ASR ensemble
but removes reranking for both ASR and MT. Con-
strastive2 uses the Conformer ASR model only
without reranking. Contrastive3 uses the S2T-
Transformer ASR model only without reranking.

UPC (Tsiamas et al., 2022a) submitted a cas-
caded system, extending their direct speech-to-
text model submitted to the Offline task with the
provided German VITS TTS model for S2ST.
Their final speech-to-text model combined ini-
tialization using HuBERT models, LayerNorm
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and Attention finetuning (LNA), and knowledge
distillation from mBART. For both tasks, they
used SHAS segmentation during training (Tsia-
mas et al., 2022b) for consistent improvements.
Data filtering and augmentation were also key as-
pects of their submission.

A direct S2ST model built upon the VITS synthe-
sis model was submitted but withdrawn due to er-
rors.

4.4 Results

Results as scored by automatic metrics are shown
in Table 26 and human evaluation results are
shown in Table 27 and Table 28 in the Appendix.

Overall results. From the automatic metric per-
spective, MLLP-VRAIN obtains the highest
ASR-BLEU score, followed by HW-TSC and
UPC. Note that there is a disagreement between
BLEU and chrF ranking for MLLP-VRAIN and
HW-TSC. For human evaluation along the speech
quality perspective, MLLP-VRAIN obtains a
higher quality system compared to the other sys-
tems. This is expected as HW-TSC, UPC and
the reference system all use the default provided
TTS system. It is interesting to note that for these
3 systems, all scores are close to each other on
speech quality even though the output content is
different. We thus hypothesize that speech qual-
ity is orthogonal to translation quality. Finally,
for human evaluation along the translation quality
perspective, HW-TSC obtained the highest score,
followed by MLLP-VRAIN and UPC. Note that
this ranking is consistent with the ASR-chrF but
not with ASR-BLEU. Surprisingly, the reference
system obtains the lowest score. We hypothesize
that this may be due to misalignments in the test
set between the source audio and the source tran-
script (rather than between the source transcript
and the target translation since the target transla-
tions were generated by human translator given
the source text transcripts). In addition, we found
variance between raters, which could account for
this. We will go through a review process for those
instances prior to releasing the human judgments.

S2ST Approaches. This year, all systems ex-
cept the withdrawn submission were cascaded sys-
tems, with two systems adopting an ASR + MT +
TTS approach and one system adopting an end-
to-end S2T + TTS approach. This does not allow

us to draw meaningful conclusions on various ap-
proaches to the task and we will encourage more
direct and/or end-to-end submissions in future edi-
tions.

Automatic scoring. To compute automatic met-
rics, we apply several steps, which may affect
quality assessment. The final row of Table 26
shows chrF and BLEU computed on normalized
text translations and references; normalizing sys-
tem output and references reduces scores slightly,
by 0.8 BLEU and 0.3 chrF. The larger potential
for degradation comes from the synthesis (TTS)
and transcription (ASR) roundtrip, which we can
directly evaluate the effects of using the refer-
ence translations and cascaded systems. Synthe-
sizing the gold reference translation and transcrib-
ing with the wav2vec2-large-xlsr-53-german ASR
model gives a BLEU score of 68.46 and chrF of
88.78 – degradation of 31.5 BLEU and 11.2 chrF.
This confirms errors are introduced by imperfect
TTS and ASR models when scoring S2ST systems
in this way, and also shows the greater impact of
slight variations introduced by TTS and ASR on
word-level BLEU than on chrF, which does not
necessarily reflect differences in human evaluation
(see results in Section B.3). When synthesizing
and transcribing machine translation output, there
is also degradation in metric scores compared to
directly evaluating the text output, but it is con-
siderably smaller. For example, the FBK Offline
submission + TTS scores are reduced by 6 BLEU
and 4.6 chrF. We see comparing the FBK, KIT,
and UPC submissions here, which were all also
submitted to the Offline task as speech-to-text sys-
tems and then the translations synthesized with
the same TTS model, that though there are degra-
dations in performance from synthesis, the rela-
tive performance of these models is partly main-
tained. While the submissions from KIT and
FBK both outperform UPC, the relative perfor-
mance between KIT and FBK reverses according
to BLEU – but not according to chrF. This sug-
gests that a finer granularity translation metric may
better reflect translation quality after synthesis.

4.5 Conclusion

This is the first time that speech output is intro-
duced in one of the IWSLT shared tasks. The
speech-to-speech task serves as a pilot for this kind
of task and we plan to run future editions of this
task. Possible future extensions include extending
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the task to the simultaneous setting and running
human evaluations dedicated to additional aspects
of the speech output (e.g. preservation of some
non-lexical aspects of the input).

5 Low-Resource Speech Translation

This shared task focuses on the problem of de-
veloping speech transcription and translation tools
for under-resourced languages. For the vast ma-
jority of the world’s languages there exist little
speech-translation parallel data at the scale needed
to train speech translation models. Instead, in a
real-world situation one might have access to lim-
ited, disparate resources (e.g. word-level transla-
tions, speech recognition, small parallel text data,
monolingual text, raw audio, etc).

Building on last year’s task that focused on
two varieties of Swahili (Anastasopoulos et al.,
2021), the shared task invited participants to build
speech translation systems for translating out of
two predominantly oral languages, Tamasheq and
Tunisian Arabic, and into the linguae francae of
the respective regions (English and French). The
use of any pre-trained machine translation, speech
recognition, speech synthesis, or speech transla-
tion model was allowed, as did unconstrained sub-
missions potentially using data other than the ones
the organizers provided.

5.1 Data and Metrics
Two datasets were shared for this year’s low-
resource speech translation track: the Tamasheq-
French translation corpus (Boito et al., 2022a), and
the Tunisian Arabic-English dataset from the Di-
alect Translation track (unconstrained condition).
In this section we will focus on the Tamasheq cor-
pus, leaving the results for Tunisian Arabic to be
presented in Section 6.

The Tamasheq-French translation corpus27 con-
tains 17 h of speech in the Tamasheq language,
which corresponds to 5,829 utterances translated
to French. Additional audio data was also made
available through the Niger-Mali audio collec-
tion: 224 h in Tamasheq and 417 h in geograph-
ically close languages (French from Niger, Ful-
fulde, Hausa, and Zarma).28 For all this data, the
speech style is radio broadcasting, and the dataset
presents no transcription.

27https://github.com/mzboito/IWSLT2022_
Tamasheq_data

28https://demo-lia.univ-avignon.fr/
studios-tamani-kalangou/

For this track, the main evaluation metric was
lower-cased BLEU4 computed over the produced
French translation.29 We also shared with partic-
ipants results for chrF++. Both are computed on
SacreBLEU (Post, 2018).30

5.2 Submissions
For the Tamasheq language, we received submis-
sions from three teams: ON-TRAC, TALTECH
and GMU. We now detail their speech translations
models.

ON-TRAC: Boito et al. (2022b) submitted pri-
mary and contrastive end-to-end ST systems.
Their primary submission focuses on the leverag-
ing of intermediate representations produced by a
pre-trained wav2vec 2.0 (Baevski et al., 2020b)
base model trained on 234 h of Tamasheq audio.
Their end-to-end ST system comprises: a partial
wav2vec 2.0 module (in which the last 6 encoder
layers were removed), a linear layer for down-
projecting the output of the wav2vec 2.0 encoder,
and a Transformer decoder with 3 heads, 4 lay-
ers and dimensionality of 256. Their contrastive
model does not consider SSL features: it uses
as input 512-dimensional mel filterbank features.
This model leverages approximate transcriptions
in Tamasheq produced by a French phonemic ASR
model. These are used to train an end-to-end ST
conformer model that jointly optimizes ASR, MT
and ST losses. The model is made of 12 conformer
layers of dimensionality 1024, and three trans-
former decoder layers of dimensionality 2048.

TalTech: Their system is an encoder-decoder
ST model with a pretrained XLS-R (Babu et al.,
2021) as encoder, and a mBART-50 (Tang et al.,
2020) as decoder. For the encoder, they used all
the 24 layers of the XLS-R 300M model imple-
mented in fairseq (Ott et al., 2019), fine-tuning
it on the provided unlabeled raw audio files in
Tamasheq (224 h) for 5 epochs. For the decoder,
they used the last 12 decoding layers available in
the mBART-50 pretrained model.31 The cross at-
tention layers in the decoder were pointed to the
XLS-R’s hidden state output to mimic the original
cross attention mechanism for text-to-text transla-
tion.

29
SacreBLEU BLEU4 signature for the low-resource track:

nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
30

SacreBLEU chrF++ signature for the low-resource track:
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.0.0

31https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt
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GMU: Their model uses the fairseq S2T
extension (Wang et al., 2020b), using the trans-
former architecture. They first fine-tune the pre-
trained XLS-R 300M encoder on French and Ara-
bic ASR, using portions of the Multilingual TEDx
dataset, and then train the whole model on the
speech translation task using all provided data.

5.3 Results
All results are presented in Table 4. We ob-
serve that the dataset is very challenging: the
best achieved BLEU is only 5.7 (ON-TRAC). This
challenging setting inspired the teams to lever-
age pre-trained models: all submissions apply pre-
trained initialization for reducing the cold start in
direct ST in low-resource settings.

Detailing these, ON-TRAC submissions in-
cluded the training of a wav2vec 2.0 model on
target data, and the training of a phonetic French
ASR. TalTech used massive multilingual off-the-
shelf pre-trained models, and GMU pre-trained
their speech encoder on French and Arabic. This
illustrates the current trend for ST systems of in-
corporating pre-trained models. It is nonetheless
noticeable that, even with the incorporation of
powerful representation extractors (wav2vec 2.0,
XLS-R, mBART-50), the achieved results are
rather low.

This year’s best submission (primary, ON-
TRAC) leveraged a Tamasheq wav2vec 2.0 model
trained on 234 h. In their post-evaluation results,
they included a comparison with different larger
wav2vec 2.0 models: XLSR-53 (Conneau et al.,
2020), LeBenchmark-7K (Evain et al., 2021), and
a multilingual wav2vec 2.0 trained on the Niger-
Mali audio collection. Their results hint that
smaller pre-trained models focused on the tar-
get data seemed to perform better in these low-
resource settings. This might be due to the existing
domain mismatch between pre-training data (from
the off-the-shelf models) and the target data.32

The second best submission (contrastive, ON-
TRAC) illustrates how even approximate tran-
scriptions can attenuate the challenge of the direct
ST task. The authors trained a phonetic French
ASR model, and used the produced transcriptions
as additional supervision for joint ASR, MT and
ST optimization. This solution is very attractive
for low-resource settings, as off-the-shelf ASR

32It was previously observed that the wav2vec 2.0 per-
formance degrades when applied to audio data of different
speech styles (Conneau et al., 2020).

models – and annotated data to train new ones –
are largely available for high-resourced languages.

Finally, we find that TalTech submission il-
lustrates how the application of off-the-box pre-
trained multilingual models can be challenging. A
similar point can be made about the GMU submis-
sion, which despite multilingual finetuning failed
to produce meaningful outputs for this challenging
task.

In summary, this year’s submissions focused
on the application of large pre-trained mod-
els for end-to-end ST in low-resource settings.
They illustrated how low-resource ST remains ex-
tremely challenging, even when leveraging pow-
erful speech feature extractors (wav2vec 2.0), and
massive multilingual decoders (mBART-50). In
such settings, we find that the training of self-
supervised models on target data, and the produc-
tion of artificial supervision (approximate phone-
mic transcriptions) were the most effective ap-
proaches for translating 17 h of Tamasheq audio
into French text.

6 Dialect Speech Translation

In some communities, two dialects of the same
language are used by speakers under different set-
tings. For example, in the Arabic-speaking world,
Modern Standard Arabic (MSA) is used as spo-
ken and written language for formal communica-
tions (e.g., news broadcasts, official speeches, re-
ligion), whereas informal communication is car-
ried out in local dialects such as Egyptian, Mo-
roccan, and Tunisian. This diglossia phenomenon
poses unique challenges to speech translation. Of-
ten only the “high” dialect for formal communica-
tion has sufficient training data for building strong
ASR and MT systems; the “low” dialect for infor-
mal communication may not even be commonly
written. With this shared task (new for 2022), we
hope to bring attention the unique challenges of
dialects in diglossic scenarios.

6.1 Challenge

The goal of this shared task is to advance di-
alectal speech translation in diglossic communi-
ties. Specifically, we focus on Tunisian-to-English
speech translation (ST), with additional ASR and
MT resources in Modern Standard Arabic.

The ultimate goal of this shared task is to
explore how transfer learning between “high”
and “low” dialects can enable speech transla-
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Team System Pre-trained Models BLEU chrF++

ON-TRAC primary wav2vec 2.0 (Tamasheq) 5.7 31.4
contrastive ASR (French) 5.0 26.7

TalTech primary XLS-R, mBART-50 2.7 24.3
GMU primary XLS-R (Arabic, French) 0.5 16.9

Table 4: Summary of results for the Tamasheq-french corpus for the low-resource shared task.

tion in diglossic communities. Diglossia is
a common phenomenon in the world. Be-
sides Arabic vs. its dialects, other exam-
ples include Mandarin Chinese vs. Can-
tonese/Shanghainese/Taiwanese/etc., Bahasa In-
donesia vs. Javanese/Sundanese/Balinese/etc.,
Standard German vs. Swiss German, and
Katharevousa vs. Demotic Greek. With this
shared task, we imagine that techniques from
multilingual speech translation and low-resource
speech translation will be relevant, and hope that
new techniques that specifically exploit the char-
acteristics of diglossia can be explored.

6.2 Data and Metrics
Participants were provided with the following
datasets:

• (a) 160 hours of Tunisian conversational
speech (8kHz), with manual transcripts

• (b) 200k lines of manual translations of the
above Tunisian transcripts into English, mak-
ing a three-way parallel data (i.e. aligned au-
dio, transcript, translation) that supports end-
to-end speech translation models

• (c) 1200 hours of Modern Standard Arabic
(MSA) broadcast news with transcripts for
ASR, available from MGB-2 (Specifically,
MGB-2 contains an estimated 70% MSA,
with the rest being a mix of Egyptian, Gulf,
Levantine, and North African dialectal Ara-
bic. All of the MGB-2 train data is allowed.)

• Approximately 42,000k lines of bitext in
MSA-English for MT from OPUS (specifi-
cally: Opensubtitles, UN, QED, TED, Glob-
alVoices, News-Commentary).

Datasets (a) and (b) are new resources devel-
oped by the LDC, and have been manually seg-
mented at the utterance level. This three-way par-
allel data (Tunisian speech, Tunisian text, English
text) enables participants to build end-to-end or

cascaded systems that take Tunisian speech as in-
put and generate English text as final output. The
main evaluation metric is lower-cased BLEU on
the final English translation33.

Participants can build systems for evaluation in
any of these conditions:

• Basic condition: train on datasets (a) and
(b) only. This uses only Tunisian-English re-
sources; the smaller dataset and simpler setup
makes this ideal for participants starting out
in speech translation research.

• Dialect adaptation condition: train on
datasets (a), (b), (c), (d). The challenge is
to exploit the large MSA datasets for transfer
learning while accounting for lexical, mor-
phological, and syntactic differences between
dialects. This condition may be an interest-
ing way to explore how multilingual models
work in multi-dialectal conditions.

• Unconstrained condition: participants may
use public or private resources for En-
glish and more Arabic dialects besides
Tunisian (e.g., CommonVoice, TEDx, NIST
OpenMT, MADAR, GALE). Multilingual
models beyond Arabic and English are al-
lowed. This condition is cross-listed with the
low-resource shared task.

The data and conditions available to partic-
ipants are summarized in Table 5. From the
LDC-provided dataset LDC2022E01, we create
official train/dev/test1 splits for the basic condi-
tion34 and encourage participants to compare re-
sults on “test1.” The official blind evaluation set
LDC2022E02 is referred to as “test2”; it is col-
lected in the same way as LDC2022E01 and utter-
ance segmentation is given.

33
SacreBLEU signature for dialect speech translation task:

nrefs:1|case:lc|eff:no|tok:13a|smooth:exp|version:2.0.0
34For datasplit and preprocessing details: https://

github.com/kevinduh/iwslt22-dialect
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Dataset Speech Text (#lines) Use
(#hours) Tunisian MSA English

LDC2022E01 train 160 200k - 200k Basic condition
LDC2022E01 dev 3 3833 - 3833 Basic condition
LDC2022E01 test1 3 4204 - 4204 Unofficial evaluation
LDC2022E02 test2 3 4288 - 4288 Official evaluation for 2022
MGB2 1100 - 1.1M - Dialect adaptation; mostly MSA
OPUS - - 42M 42M Dialect adaptation condition
Any other data - - - - Unconstrained condition

Table 5: Datasets for Dialect Shared Task.

6.3 Submissions
We received submissions from three teams (CMU,
JHU, ON-TRAC). Each team explored very differ-
ent architectures and adaptation techniques. We
recommend referring to the system descriptions
for details; below is just a brief summary of their
contributions:

CMU (Yan et al., 2022) focuses on the Multi-
Decoder architecture (Dalmia et al., 2021) im-
plemented in ESPnet, which is an end-to-end ST
model that decomposes into ASR and MT sub-
nets while maintaining differentiability. Intu-
itively, hidden states found by beam search from
the ASR decoder are fed as input to the ST en-
coder. New enhancements on this architecture
using hierarcharchical speech encoder and joint
CTC/Attention ST decoding are introduced, with
gains in BLEU.

Additionally, different approaches to integrat-
ing end-to-end and cascaded systems are exam-
ined in detailed; for example, one approach uses
one system to generate N-best candidates, and the
other system to help compute minimum Bayes
risk. This resulted in the strongest system for this
year’s shared task.

In terms of dialect adaptation, the CMU team
explored (a) using a Tunisian ASR model select
similar MGB2 data by cross-entropy, and (b) us-
ing MSA-EN MT trained on OPUS to syntheti-
cally augment MGB2 with translations.

JHU (Yang et al., 2022) uses a cascaded archi-
tecture, where the ASR component is a conformer-
based hybrid attention/CTC model implemented
in ESPnet and the MT component is a Transformer
model implemented in fairseq. ASR pre-training
using wave2vec 2 (XLSR-53) is explored for the
unconstrained condition. There is also an empha-
sis on text normalization to reduce variation in the

Tunisian transcripts, which resulted in consider-
able BLEU gains.

In terms of dialect adaptation, the JHU team
investigated a novel data augmentation technique
for the MT component: First, a EN→MSA MT
model is trained on OPUS and applied to decode
LDC2022E01 train set (treating English as source
input), synthesizing a paired MSA-Tunisian bi-
text. With this, a MSA→Tunisian MT model is
trained and applied on OPUS, synthesizing a large
Tunisian-English bitext. This can be then used in
a fine-tuning setup with the original LDC2022E01
data.

ON-TRAC (Boito et al., 2022b) compares both
end-to-end and cascaded systems. The end-to-
end ST system is a conformer model trained
with speed pertubation and SpecAugment, imple-
mented in ESPnet. The cascaded system consists
of an ASR component implemented in Speech-
Brain, and MT component implemented in fairseq
(either biLSTM or convolutional model). Specif-
ically, the ASR component is composed of a
wav2vec 2 module, followed by a dense hidden
layer and a softmax output of 34 character vocab-
ulary. The use of character outputs in the ASR
component is unique to ON-TRAC; other teams
employ sub-word units (1000 units for CMU, 400-
1000 units for JHU).

In terms of dialect adaptation, the ON-TRAC
team explored fine-tuning on the ASR component:
first, the ASR model is trained on the MGB2 data;
then the model is fine-tuned on the LDC2022E01
data, with the wav2vec portion fixed and the final
two layers randomly initialized.

6.4 Results

6.4.1 Automatic evaluation
We are interested in two main scientific questions:
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1. For speech translation of primarily spoken di-
alects, is it beneficial to incorporate data from
related dialects with larger written resources?
If so, what is the best way to incorporate
these resources in training?

2. Does the inherent imbalance and hetero-
geneity of resources in different dialects fa-
vor end-to-end or cascaded architectures?
Specifically, there are separate MSA datasets
(MGB2, OPUS) that correspond to ASR and
MT sub-tasks, but no single MSA dataset
that corresponds to an end-to-end speech
translation task like the Tunisian-English
LDC2022E01 dataset.

Table 29 in the Appendix presents the full re-
sults on test2 and test1 sets. Table 6 here presents
a summary of select systems in terms of the ar-
chitecture and training data employed. First, we
observe that mixing in MSA/English data tends
to improve results over the basic condition of us-
ing only the Tunisian/English data. For exam-
ple, CMU’s E2 system obtains 20.8 BLEU, a 0.4
improvement over the E1 system; these are both
multi-decoder ensembles, the difference being the
training data used. Similarly, JHU’s dialect adapt
primary system outperforms its basic condition
counterpart by 1.8 BLEU. While dialect adapta-
tion is promising, some of the system description
papers observe a plateauing effect with additional
data, so more work may be needed.

Second, the comparison between end-to-end ar-
chitectures (directing generating English text from
Tunisian speech) vs. cascaded ASR+MT archi-
tectures (two stage Tunisian speech to text, fol-
lowed Tunisian text to English text) is more com-
plex. On one hand, the ON-TRAC system descrip-
tion reports stronger results from its cascaded ar-
chitecture which exploits wav2vec and additional
MGB2 data in its ASR component; on the other
hand, the current best-performing model on this
task is CMU’s E2 system (20.8 BLEU on test2),
which mixes both end-to-end and cascaded sys-
tems in a Minimum Bayes Risk (MBR) frame-
work. We are not able to make a clear verdict re-
garding the best architecture for this task, but be-
lieve the distinction between end-to-end and cas-
cade architecture may become more blurred in the
future.

In summary, we conclude that (1) dialectal
adaptation is a promising direction that deserves

more research, and (2) the decision between end-
to-end vs. cascaded architectures most likely will
depend on complicated factors, and both should be
pursued during development.

6.4.2 Human evaluation
For the text-based human evaluation in this task,
we employed the Direct Assessment (DA) with
document context and extended with Scalar Qual-
ity Metric (SQM). The overview of the DA+SQM
is provided in Section A.4. In this section we only
highlight adaptations specific to the task and dis-
cuss the results. Since the test set consisted of a
few long conversations, human evaluation was run
on a subset of it: we sampled 92 excerpts including
10 consecutive segments and used them as docu-
ment context. We also adapted annotator guide-
lines for this task asking for judging correct mean-
ing preservation more than grammatical inconsis-
tencies that may appear in informal conversations,
as presented on Figure 6.

We have collected 13,860 assessment scores for
this task, after excluding quality control items (Ta-
ble 7). The official results of the human evalua-
tion are presented in Table 31. Systems from each
participating teams are significantly different from
other teams, but none of the systems was able to
provide translation quality competing with the hu-
man reference. From the post-annotation survey,
some translation issues noticed by annotators were
mostly related to incorrect translation of terminol-
ogy terms and colloquial phrases as well as gram-
matical and fluency inconsistencies. A few anno-
tators mentioned that in some cases the context of
10 consecutive segments was insufficient and hav-
ing an access to the original video or audio would
help them with the assessment decisions. We will
take this feedback into account in next editions of
the human evaluation.

7 Formality Control for SLT

Machine translation (MT) models typically re-
turn one single translation for each input seg-
ment. Specific problems can arise for spoken
language translation from English into languages
that have multiple levels of formality expressed
through honorifics or “grammatical register.” For
example, the sentence ‘Are you sure?’ can have
two possible correct translations in German: ‘Sind
Sie sicher?’ for the formal register and ‘Bist du
sicher?’ for the informal one. Leaving the model
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Team / Condition / System Architecture Training Data BLEU �
CMU / basic / E1 Mix TA/EN 20.4 -
CMU / dialect adapt / E2 Mix TA/EN + MSA/EN 20.8 0.4
JHU / basic / primary Cascaded TA/EN 17.1 -
JHU / dialect adapt / primary Cascaded TA/EN + MSA/EN 18.9 1.8
ON-TRAC / basic /primary End-to-End TA/EN 12.4 -
ON-TRAC / unconstrained / post-eval Cascaded TA/EN + MSA/EN 14.4 2.0

Table 6: Summary of select systems for Dialect Shared Task (BLEU on test2). We highlight the BLEU improve-
ments (�) obtained when training with additional MSA/English data compared with just the Tunisian/English
(TA/EN) in the basic condition.

Language pair Sys. Ass. Ass./Sys.

Tunisian→English 7 13,860 1,980

Table 7: Amount of human assessments collected in the
text-based evaluation for the Dialect Speech Transla-
tion Task run in Appraise. Counts after removing doc-
uments with quality control items.

to choose between different valid translation op-
tions can lead to translations with inconsistent tone
that are perceived as inappropriate by users de-
pending on their demographics and cultural back-
grounds, in particular for certain use cases (e.g.
customer service, business, gaming chat). Most
prior research addressing this problem has been
tailored to individual languages and proposed cus-
tom models trained on data with consistent for-
mality (Viswanathan et al., 2019), or through side
constraints to control politeness or formality (Sen-
nrich et al., 2016; Niu et al., 2018; Feely et al.,
2019; Schioppa et al., 2021a).

7.1 Challenge
The goal of this task was to advance research on
controlling formality for spoken language trans-
lation across multiple diverse target languages
and domains.35 How formality distinctions are
expressed grammatically and lexically can vary
widely by language. In many Indo-European lan-
guages (e.g., German, Hindi, Italian, Russian, and
Spanish), the formal and informal registers are dis-
tinguished by the second person pronouns and/or
corresponding verb agreement. In Japanese, dis-
tinctions that express polite, respectful, and hum-
ble speech can be more extensive, including mor-
phological markings on the main verb, as well
as on some nouns and adjectives; specific lexical
choices; and longer sentences. For this task we

35https://iwslt.org/2022/formality/

Source Could you provide your first name please?
Informal Könntest du bitte deinen Vornamen angeben?
Formal Könnten Sie bitte Ihren Vornamen angeben?
Source OK, then please follow me to your table.
Informal '/&⌧6K>'M+$⌅&Ì&⇤
Formal '/&⌧6K>'M+$⌅&Ì&✏ �⌅⇤
Respectful '/&⌧6K>'M+$⌅&⌅I⌫&✏ �⌅⇤

Table 8: Contrastive translations for EN-DE and EN-
JA with different formality. Phrases in bold were anno-
tated by professional translators as marking formality.
Example reproduced from Nădejde et al. (2022).

considered two formality levels: formal and infor-
mal. For Japanese, where more than two formality
levels are possible, informal was mapped to ku-
daketa and formal to teineigo. We give examples
of these phenomena in Table 8.

The task focused on text-to-text translation of
spoken language with a special theme of zero-
shot learning in multilingual models. The task
covered supervised and zero-shot settings, both
with constrained and unconstrained training data
requirements. For the supervised setting, partic-
ipants were provided with a formality-annotated
dataset for training and development for four lan-
guage pairs: English→German, Spanish, Hindi,
Japanese. For the zero-shot task, which covered
English→Italian, Russian, only targeted test data
was provided after system submission period.

As this was the first shared task organized on
formality control, one objective was to estab-
lish a standard benchmark including: formality-
annotated train and test sets, an evaluation metric,
pre-trained baseline models and human evaluation
guidelines. To encourage further research in this
area and improve the task definition, we will re-
lease all these resources (including system outputs
and human evaluation annotations) under a shared
repository.36

36https://github.com/amazon-research/
contrastive-controlled-mt/tree/main/
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7.2 Data and Metrics
7.2.1 Formality-annotated data
For this task, the organizers provided formality-
annotated parallel data comprising of source seg-
ments paired with two contrastive reference trans-
lations, one for each formality level (informal and
formal). The dataset (CoCoA-MT), released by
Nădejde et al. (2022), includes phrase-level an-
notations of formality markers in the target seg-
ments in order to facilitate evaluation and analysis
(shown in bold in Table 8). Formality distinctions
are expressed by the use of grammatical register
or honorific language. The training set provided
to participants comprises segments sourced from
two domains: Topical-Chat (Gopalakrishnan et al.,
2019) and Telephony. For the test set, organiz-
ers additionally included segments sourced from
a third held-out domain: Call-Center.

Table 9 reports the number of source segments
used for training and evaluation and the overlap
between the references (informal vs. formal) as
measured by BLEU. The lowest overlap is for
Japanese and the highest overlap is for Hindi, indi-
cating that the task of controlling formality is more
challenging for Japanese than for Hindi.

Setting Target #train #test overlap

Supervised

DE 400 600 75.1
ES 400 600 79.0
HI 400 600 81.1
JA 1,000 600 74.6

Zero-shot IT 0 600 78.8
RU 0 600 -

Table 9: Number of segments in the training and test
data, and overlap between the references in the test set
as measured by BLEU (informal vs. formal). Table
adapted from Nădejde et al. (2022).

7.2.2 Task definition
Participants were allowed to submit systems under
the constrained and unconstrained data settings.
To train their systems, participants were allowed
to use the formality-labeled dataset provided by
the organizers as well as the additional resources
described below.

Constrained task: Textual MuST-C v1.2
data (Di Gangi et al., 2019) (for EN-DE, EN-ES,
EN-IT, EN-RU), data released for the WMT
news translation tasks (WMT2137 for EN-JA;

IWSLT2022/
37https://www.statmt.org/wmt21/

translation-task.html

WMT1438 for EN-HI), multilingual data from the
same dataset (e.g. using EN-FR MuST-C data
for training EN-ES models). Participants were
not allowed to use external auxiliary tools (e.g.,
morphological analysers) or pre-trained models
(e.g., BERT).

Unconstrained task: Pre-trained models (e.g.,
mBERT, mBART), additional annotations from
morphological analysers, data released by the
WMT news translation tasks (WMT21 for EN-
DE, EN-RU; WMT1339 for EN-ES; News Com-
mentary v1640 and Europarl41 for EN-IT) and
ParaCrawl v9.42 For EN-HI, EN-JA, participants
were allowed to use any other publicly avail-
able textual datasets such as WikiMatrix43 and
JParaCrawl.44

In both settings, no additional manually cre-
ated formality-labeled data was allowed. For the
unconstrained setting, obtaining additional anno-
tations automatically was allowed as long as the
code and data would be publicly released.

Evaluation sets Systems were evaluated for
overall quality on MuST-C v1.2 test sets (tst-
COMMON) (Di Gangi et al., 2019) for EN→DE,
ES, IT, RU. For EN→HI, JA, systems were eval-
uated on WMT newstest2014 and 2020, respec-
tively. Formality control accuracy was evaluated
on the CoCoA-MT formality-annotated test set.

Automatic metrics Overall quality was
measured by sacreBLEU (Post, 2018) and
COMET (Rei et al., 2020). Formality control ac-
curacy was measured using the referenced-based
corpus-level metric released with the CoCoA-MT
dataset. The metric relies on the contrastive
reference translations to automatically assign,
with high precision, formality labels (formal vs.
informal) to each hypothesis. The segment-level
labels are then aggregated to compute the corpus
level Matched-Acccuracy (M-ACC). For further
details on and evaluation of the M-ACC automatic

38https://www.statmt.org/wmt14/
translation-task.html

39https://www.statmt.org/wmt13/
translation-task.html

40https://data.statmt.org/
news-commentary/v16/

41https://www.statmt.org/europarl/
42https://paracrawl.eu/
43https://opus.nlpl.eu/WikiMatrix.ph
44http://www.kecl.ntt.co.jp/icl/lirg/

jparacrawl/
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metric, we refer the reader to the corresponding
CoCoA-MT paper (Nădejde et al., 2022).

7.3 Submissions
We received submissions from three teams. We
briefly summarize their methodologies below and
refer the reader to their system description papers
for details.

ALEXA AI (Zhang et al., 2022a) focused on us-
ing data augmentation to generate additional for-
mality data and on using post-editing strategies to
convert outputs from a generic NMT system into
the desired formality level. They participated in
the unconstrained supervised setting for EN→HI,
JA. The authors made use of the limited amount
of formality data released for the shared task to
fine-tune mBART to classify segments as formal
or informal. The formality classifier was then used
to augment the available training data with addi-
tional formal/informal examples which they used
to fine-tune a generic NMT system. The final sys-
tem output from this fine-tuned model was then
post-edited using a variety of strategies that the au-
thors examine.

For EN→HI, the post-editing strategy was a
rule-based approach which turned informal pro-
nouns to formal pronouns. For EN→JA, the au-
thors focused on a rule-based method for conju-
gating verbs. Finally, the authors addressed ex-
pansion of their methods to something language-
agnostic and examined a seq2seq model used to
transform formal outputs into informal outputs
(they assumed that the output from the fine-tuned
model was formal already and the seq2seq model
was only used to generate informal translations).
Generally, the authors found that the rule-based
approaches worked better than the seq2seq post-
editing model.

UOS (Vincent et al., 2022) focused on using
data augmentation to generate additional formality
data and on re-ranking translations from a generic
NMT system for a given formality level. They
trained systems for all four settings: {constrained,
unconstrained} × {supervised, zero-shot}. For
the supervised settings, they submitted models for
EN→DE, ES. For the zero-shot settings, they sub-
mitted models for EN→IT, RU.

In order to augment the formality data, the
authors fine-tuned a language model which they
used to rank sentences from the available paral-
lel corpora (depending on the constrained or un-

constrained setting) by their similarity with the
released formal and informal data. Most similar
sentences were extracted using a relative position
difference algorithm. For the zero-shot case, they
noted that a smaller subset of sentences were con-
sidered formal (or informal) across the supervised
sets for EN→DE, ES. They considered these seg-
ments to be strongly formal/informal and used this
to find pairs in the zero-shot languages.

They fine-tuned their generic NMT system us-
ing the augmented and released formality data. At
inference time, they used a large beam width k
for beam search and generated k-best hypotheses.
The resulting set of hypotheses were re-ranked us-
ing a relative frequency model trained on the re-
leased formality data (or, for the zero-shot case,
using the similar sentences extracted earlier).

UMD (Rippeth et al., 2022) proposed training a
single multilingual model that can cover all target
languages and formality levels, and experimented
with both mBART and mT5 as this model. They
also worked with different fine-tuning strategies
using both the gold labeled data from the shared
task and formality-labeled data extracted from the
unlabeled parallel data through rule-based meth-
ods or through automatic classification. As fine-
tuning strategies they compared using pre-trained
models with adapted vector-valued interventions
proposed by Schioppa et al. (2021a) against bilin-
gual models optimized towards one formality level
(formal or informal) by fine-tuning all model pa-
rameters. For automatically labeling data, the au-
thors also relied on fine-tuning a pre-trained mul-
tilingual model (XLM-R) for binary classification.

7.4 Results

7.4.1 Automatic Evaluation
In Table 10 and Table 11, we report the formal-
ity control accuracy scores (M-ACC) defined in
§7.2 for the unconstrained and constrained tracks
respectively.45 For the supervised language arcs
(i.e. EN→DE, ES, HI, JA) and unconstrained set-
ting, submitted systems were successfully able to
control formality. Average scores across formality
settings range from 99.4 for EN→HI to 92.9 for
EN→JA. EN→JA was the language pair with the

45Here, we focus on results for formality accuracy. We
additionally report overall machine translation quality on
generic test sets in Table 32 in the appendix along with base-
line (uncontrolled) model performance on the formality test-
set.
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Language Pair System F I

EN→DE UMD 99.4 96.5
UOS 100.0 100.0

EN→ES UMD 99.5 93.2
UOS 98.1 100.0

EN→HI ALEXA AI 99.6 99.8
UMD 99.4 98.7

EN→JA ALEXA AI 88.8 98.8
UMD 86.3 97.5

EN→IT UMD 32.8 97.9
UOS 51.2 98.6

EN→RU UMD 100.0 1.10
UOS 99.5 85.8

Table 10: Formality control accuracy (M-ACC) re-
ported for Formal (F) and Informal (I) for the uncon-
strained task. Note that EN→IT, RU are zero-shot set-
tings.

Language Pair System F I
EN→DE UOS 100.0 88.6
EN→ES UOS 87.4 98.0
EN→IT UOS 29.5 92.9
EN→RU UOS 98.1 15.4

Table 11: Formality control accuracy (M-ACC) re-
ported for Formal (F) and Informal (I) for the con-
strained task. There was only one system submission
by UOS for this track. Note that EN→IT, RU are zero-
shot settings.

largest gap between formal and informal accuracy,
with both submitted systems doing an average of
11.0 points better on informal translations than
formal translations. Finally, we observed that the
ALEXA AI and UOS teams generally performed
better on the supervised unconstrained task than
UMD, possibly due to the former’s use of high-
quality parallel training data as opposed to the lat-
ter’s use of multilingual pre-trained models.

For the supervised and constrained setting, we
had one submission from UOS for EN→DE, ES.
On average over both formality settings, their sys-
tems achieved an accuracy of 94.3 on EN→DE and
92.7 on EN→ES. For EN→DE, performance was
significantly better for formal translations vs. in-
formal translations, while the reverse was true for
EN→ES.

In the zero-shot (EN→IT, RU) unconstrained
setting, results were more mixed. For the two sub-
missions (from the UMD and UOS teams), there
was a clear bias toward one formality level: both

Language Pair System F I

EN→JA ALEXA AI 89.3 92.5
UMD 82.8 82.7

EN→IT UMD 13.7 78.3
UOS 6.0 81.0

EN→RU UMD 77.2 0.7
UOS 85.0 71.3

Table 12: Human evaluation of the system level for-
mality accuracy (Formal (F) and Informal (I)) for mod-
els in the unconstrained setting. Note that EN→IT, RU
are zero-shot settings.

Language Pair System F I
EN→IT UOS 0.2 36.3
EN→RU UOS 85.3 12.7

Table 13: Human evaluation of the system level for-
mality accuracy (Formal (F) and Informal (I)) for mod-
els in the constrained setting. Note that EN→IT, RU
are zero-shot settings.

systems were better at generating informal Italian
and formal Russian translations. This likely re-
flects the inherent bias toward one formality level
in the training set. For the zero-shot constrained
setting, only the UOS team submitted a system,
and results on the two formality levels were sim-
ilar, with one formality level outperforming the
other. In going from the unconstrained to the con-
strained setting, the UOS system lost an average
of 25 points in accuracy for the zero-shot setting,
while only losing 6 points in the fully supervised
setting.

7.4.2 Human Evaluation
To complement the automatic evaluations, we con-
ducted human evaluations of formality accuracy
for a subset of the language pairs and settings. We
selected EN→JA for the unconstrained supervised
task, since Japanese has more complex morpho-
logical differences between formal and informal
translations than the other target languages. We
selected both EN→IT, RU for the zero-shot tasks
(both constrained and unconstrained).

For each system, we selected a random sample
of 300 source segments and collected the formal
and informal outputs of the source segments. An-
notators were asked to evaluate the outputs and as-
sess whether the translation was formal, informal,
neutral, or other.46 We summarize the results of

46We refer the reader to Appendix A.5 for detailed evalua-
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the human evaluations here, and give full results
in Table 34 in the appendix. System-level accu-
racy was computed as the number of translations
matching their desired formality level divided by
the total number of outputs for a given formality
level. Inter-annotator agreement as measured by
the Krippendorff’s ↵ coefficient (Hayes and Krip-
pendorff, 2007) was high, with an average ↵ of
0.89.

Results from the human evaluation of EN→JA
for the unconstrained supervised setting were in
line with those obtained by the automatic met-
ric: the submitted systems were able to control the
formality of the output translations with reason-
ably high accuracy (90.9 for UMD and 82.8 for
ALEXA AI on average across formality levels).

Human evaluation results also corroborated
the automatic evaluations for zero-shot formality
transfer. The results underscore how challenging
the task of zero-shot formality transfer is, with
submitted systems generally performing signifi-
cantly better on one formality level than the other:
informal for EN→IT and formal for EN→RU. A
notable exception is the UOS EN→RU uncon-
strained system, which achieves a reasonable ac-
curacy for both formal (85.0) and informal (71.3)
registers (again mirroring the findings of the auto-
matic evaluation). Additionally, human evaluators
labeled more systems as “neutral” or “other” (i.e.,
neither formal nor informal) in the zero-shot set-
tings than in the supervised settings.

8 Isometric SLT

Isometric translation is the task of generating
translations similar in length to the source in-
put (Lakew et al., 2021b). As a new research area
in machine translation, this is the first time iso-
metric translation is proposed as a shared task.47

We considered 3 translations directions (English
- German, English-French and English-Spanish)
and 2 training conditions: constrained and uncon-
strained.

8.1 Challenge
Isometric MT targets issues that emerge when MT
is applied to downstream applications such as dub-
bing, subtitling, and translation of documents. In
particular, dubbing requires that the duration of the
target speech to be the same of the source in order

tion guidelines and label definitions.
47https://iwslt.org/2022/isometric

to achieve isochrony (Lakew et al., 2021b); subti-
tle translation requires the output to fit blocks of
pre-defined length (Matusov et al., 2019); and, fi-
nally, document translation requires sometimes to
control the translation length in order to preserve
the original layout.

We define isometric translations as translations
whose length (in characters) is within ±10% of the
length of the source (Lakew et al., 2021a). Sub-
jective evaluations of automatically dubbed videos
show that isometric translations generated better
dubs than translations without any length con-
trol (Lakew et al., 2021a).

A few works have focused on controlling the
output length of neural MT. Lakew et al. (2019)
proposed to split the parallel training data based
on target to source length ratio and prepend con-
trol tokens. Lakew et al. (2019) and Niehues
(2020) incorporated length-encoding mechanisms
that adapts positional-encoding (Vaswani et al.,
2017) to control the length of the output se-
quence. Post-hoc approaches have been proposed
by Saboo and Baumann (2019) and (Lakew et al.,
2021a), where MT system generates an N-best
list and then each hypothesis is re-ranked based
on its length and score. More recently, Schioppa
et al. (2021b) proposed to combine embedding
representing attributes (such as length and po-
liteness) with the encoder representation, to con-
trol for multiple attributes at generation time;
whereas Lakew et al. (2021b) applied self-training
to let the model incrementally learn how to gener-
ate isometric translations from its own output.

In this shared task, we proposed isometric MT
of spoken language transcripts from En → De, Fr,
Es. These three directions exhibit different target-
to-source length ratios in character count. The
length-ratios on the MuST-C training set is 1.12
for En→De, 1.11 for En→Fr, and 1.04 for En→Es.

Shared task participants were invited to work
under constrained or unconstrained training
regimes and to to submit systems for one or mul-
tiple translation directions. When submitting their
system outputs, participants were asked to score
their performance using a script available for the
evaluation period.48 Participant were also asked to
release their outputs under a MIT license to allow
for a human evaluation and further analyses.

48https://github.com/amazon-research/
isometric-slt/blob/main/scripts/compute_
isometric_slt_stat.sh
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En-De En-Fr En-Es
Test set LR LC LR LC LR LC
MuST-C 1.2 33.2% 1.2 35.2% 1.0 53.2%
Blind 1.1 62.0% 1.1 70.5% 1.0 64.0%

Table 14: Target to source sample length ratio (LR),
and length compliance (LC) within a ±10% range, with
respect to the source in terms of characters counts, for
the MuST-C (tst-COMMON) and blind test sets.

8.2 Data and Metrics
8.2.1 Task Definition
We proposed two types of training regimes:

Constrained task allows the participants to use
language pair specific parallel data from the Ted
Talks MuST-C v1.2 corpus (Di Gangi et al., 2019).
This is an in-domain training data setting for eval-
uation using the MuST-C test set (tst-COMMON).

Unconstrained Task allows the participants to
leverage WMT data, or any other parallel or mono-
lingual data in addition to the MuST-C data which
is available under Constrained task. Participants
are also allowed to use any pre-trained models like
mBART (Liu et al., 2020).49

8.2.2 Evaluation Sets
We evaluated isometric machine translation on
two test sets:

• MuST-C (tst-COMMON): in-domain test
ada that is publicly available for participants
to optimize their models.

• Blind Test: a test set of 91 dialogues ex-
tracted from 3 YouTube videos.50 Each di-
alogue is containing 5-17 utterances is seg-
mented into sentences for a total of 200 sen-
tences. During the evaluation period partici-
pants had only access to the source sentences
(English).51

Target to source sample length ratio and length
compliance (±10%) for these test sets are shown
in Table 14. The blind dataset was manually
post-edited for isometric translation condition i.e.
the translators were asked to keep the length
of the translation possibly within ±10% of the
source length. As a result, it shows a lower

49https://www.statmt.org/wmt20/index.
html

50https://github.com/amazon-research/
isometric-slt/tree/main/dataset

51Dialogue level data and references will be released.

length ratio and a higher length compliance than
tst-COMMON. Length compliance of the blind
set is however not 100% because translators did
not find a way to generate translations for many
source sentences (phrases) within the range.

8.2.3 Evaluation Metrics
Submissions were evaluated on two dimensions –
translation quality and length compliance with re-
spect to the source input.

Translation Quality metrics for isometric
translation should be robust to length variations
in the hypothesis. For this reason we assessed
n-gram metrics such as BLEU (Papineni et al.,
2002), and recently proposed semantic based
metrics like COMET (Rei et al., 2020) and
BERTSCore (Zhang et al., 2019). Our analysis
shows that BERTScore is more robust to length
variations in the hypothesis when compared with
BLEU and COMET. The latter two tends to pe-
nalize short hypotheses even for cases where the
semantics is preserved. As a result, we primarily
use BERTScore to assess translation quality.

Length Compliance (LC) is formulated as the
% of translations in the test set that meet the ±10%
length criterion. That is, if the source length is
50 characters, a length compliant translation is be-
tween 45 to 55 characters. We calculate how many
translations fall in this bracket and report the per-
centage over a test set. In this evaluation, LC is
applied only for source samples with length above
10 characters.

8.3 Submissions
We have received four submission from APPTEK,
HW-TSC, Amazon Prime Video (APV), and
NUV teams.52 Below we briefly present submit-
ted systems, followed by the baseline approaches
we considered for the evaluation.

APPTEK (Wilken and Matusov, 2022) participated
in the constrained task for En-De pair. They ex-
plored various length controlling approaches with
data pre-processing, data augmentation, length to-
kens as indicators, and multi-pass decoding. For
data augmentation, forward and backward trans-
lations are applied, together with sample length-
targeted pre-processing. For modeling, they com-
bine fine-grained length control token on the en-

52APV team had to withdraw the system paper due to
which we are unable to provide a citation.
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coder/decoder (Lakew et al., 2019) and length en-
coding modifying positional encoding (Takase and
Okazaki, 2019). As a post-hoc step after transla-
tion, the primary system applies a system combi-
nation (denoted as length ROVER) over multiple
translations from 7 different length classes, rang-
ing from “extra short” to “extra long”.

HW-TSC (Li et al., 2022b) participated in the
constrained and unconstrained tasks for En-De,
and constrained tasks for En-Fr and En-Es. Their
submission investigated bi-directional training,
R-drop (Wu et al., 2021) (a variant of dropout),
data augmentation in forward and backward
translation setting, and model ensemble to im-
prove translation quality. For length control they
prepended length tokens to the encoder (Lakew
et al., 2019), added length ratio based positional
encoding (Takase and Okazaki, 2019), applied
length aware beam (LAB) to generate N-best
lists, and explored different re-ranking strategies.
The primary system for HW-TSC was a combi-
nation of length token, decoding with LAB and
re-ranking of different system outputs. It shows
the highest LC score with, however, a tradeoff on
translation quality w.r.t. BERTScore.

APV leverages human-in-the-loop mechanism to
train an isometric translation model. Their ap-
proach builds on top of a multi-source transformer
that takes a source and an hypothesis (Tebbifakhr
et al., 2018) as input. The hypothesis comes
from human post-editing effort for style variation
such as matching translation length with the
source input. Differently from previous work on
interactive post-editing, their work proposes the
isometric translation attribute as a new dimension
in the human-in-the-loop translation modeling.
APV team participated in the unconstrained task
for En → De, Fr and Es. Their result shows per-
formance gains against the baseline model when
utilizing the post-edited reference as addition
model input. However, when adding the isometric
criterion for the post-editing stage, translation
quality degrades with a slight gain in LC.

NUV (Bhatnagar et al., 2022) participated in the
unconstrained task for En-Fr. Their approach is
to first translate and then paraphrase. Their MT
system is a Marian-NMT system pre-trained on
OPUS-MT data (Tiedemann et al., 2020) and fine-
tuned on MuST-C training data with three to-

kens for “short”, “normal” and “long” transla-
tions. Paraphrases are generated by a MT5 (Xue
et al., 2020) model fine-tuned on the PAWS-X
paraphrasing data set (Yang et al., 2019).
Baselines: based on the task definition two sys-
tems are considered as baselines:

• WEAKBASELINE is a standard neural MT
model trained in the constrained data setting,
without any isometric translation feature.

• STRONGBASELINE is trained in an uncon-
strained data setting and implements output
length control as in Lakew et al. (2021a)
by prepending a length token on the input,
generating N-best hypotheses, and re-ranking
them with a linear combination of model
score and length ratio.

8.4 Evaluations
To assess the performance of isometric transla-
tion systems, we measure translation quality and
length compliance via automatic and subjective
metrics.

8.4.1 Automatic Evaluation
As discussed in Sec. 8.2 we leverage BERTScore
and LC metrics to measure isometric translation
performance. We take primary system run from
each submission and the baseline systems for com-
parison. Scores are computed against the human
post-edited reference of the the blind test set. The
automatic evaluation results are given in Table 35.

Translation quality in terms of BERTScore
shows that STRONGBASELINE is the best per-
forming system for all directions and training
conditions. APPTEK’s constrained submission
for En-De is the only system performing simi-
larly to STRONGBASELINE. For length compli-
ance, HW-TSC-Constrained shows the best result
(LC>=96%) for all pairs. However, the high LC
score comes at the cost of lower translation qual-
ity with BERTScore.

For the En-De direction, the system from
APPTEK-Constrained shows the best trade-off be-
tween BERTScore and LC, followed by STRONG-
BASELINE and HW-TSC-Unconstrained. On
En-Fr, NUV-Unconstrained has the best trans-
lation quality among all submitted systems in
terms of BERTScore but with a significant trade-
off on length compliance. On En-Es, APV-
Unconstrained shows the highest translation qual-
ity but again with a significant trade-off on length
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compliance. Over all language pairs, STRONG-
BASELINE stands out when we look at trade-offs
between translation quality and length compli-
ance.

8.4.2 Human Evaluation of Machine
Translation Quality

For the text-based human evaluation, we em-
ployed the Direct Assessment (DA) with docu-
ment context and extended with Scalar Quality
Metric (SQM). The overview of the DA+SQM is
provided in Section A.4. In this section we only
highlight modifications specific to the task and dis-
cuss the results. The original segmentation was
preserved when generating annotation tasks for
the human evaluation. In contrast to the Dialect
Speech Translation Task, annotators were guided
to assess both grammar and meaning of the trans-
lations, as presented on Figure 7. The total num-
ber of assessment scores collected in text-based
human evaluation campaigns per language pair is
listed in Table 15.

The official results of the human evaluation
are presented in Table 36. Reference transla-
tions (TRANSLATOR-A) are significantly better
than participating systems and baselines across
all three language pairs. In En-De APPTEK-
Constrained and the STRONGBASELINE are to-
gether in a separate cluster outperforming the rest
of the systems. This is also reflected in the auto-
matic metric, where the two systems standout with
a higher BERTScore than the other systems. In
En-Fr task, a single large cluster includes all sys-
tems and baselines. This mean none of the systems
were significantly better than the other. In En-
Es task, APV-Unconstrained outperformed HW-
TSC-Constrained and show similar performance
with the STRONGBASELINE.

In the post-annotation questionnaire, most fre-
quently mentioned common issues found in the
translation outputs by annotators were: lack of
coherence between segments and inter-sentential
translation errors, terminology translation errors
and grammatical inconsistencies. Annotators no-
ticed that one source of those issues was splitting
source sentences into short utterances, which au-
tomatic systems treated and translated as full sen-
tences.

Language pair Sys. Ass. Ass./Sys.

English→German 7 12,996 1,857
English→French 6 11,286 1,881
English→Spanish 5 9,692 1,938

Table 15: Amount of human assessments collected in
the text-based evaluation for the Isometric SLT Task
run in Appraise. Counts after removing documents
with quality control items.

8.5 Isometric SLT Use case
8.5.1 Automatic Dubbing
As noted in Sec. 8.1, Isometric SLT can be useful
for Automatic dubbing that requires the dubbed
synthetic speech in the target language to fit the
duration of the original speech in the source lan-
guage. In the previous section, DA+SQM eval-
uation mainly looked at the translation quality.
In this section, using the dubbing architecture of
(Federico et al., 2020b) we test the downstream
dubbing quality of these translations. To adapt the
translations for dubbing, we segment them so as to
follow the speech-pause arrangement of the source
audio using prosodic alignment (PA) (Virkar et al.,
2021, 2022). Using the output from PA mod-
ule, we produce the dubbed audio utilizing a com-
mercial grade Text-to-Speech system with fine-
grained duration control (Effendi et al., 2022). We
then replace the original audio with the dubbed au-
dio to produce the final dubbed video.

8.5.2 Human evaluation
We generate dubbed videos using all MT outputs
and (segmented) post-edited references. To reduce
cognitive load, each subject is asked to compare
only two MT systems at a time. This results in a
total of 31 evaluations across the three dubbing di-
rections, i.e., En-De,Fr,Es. Subjects first watch the
dubbed video produced using the reference trans-
lation and then rate dubbed videos from two MT
outputs. We employed subjects native in the tar-
get language and asked them to grade each dubbed
video on a scale of 0-10 (0 being the worst and 10
being the best). For each MT system, we compute
% Wins, i.e., % subjects preference when compar-
ing two MT systems. For example, if we have 100
clips and according to annotators system A per-
forms better than system B on 60 clips and ties
with system B for 10 clips, then %Wins is 60% for
system A v/s 30% for system B. We do not use the
absolute grading to avoid the bias of each subject
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towards dubbing content in general.
For our experiments, we selected 60 dialogues

from the blind set, to create 15 video clips such
that each clip contains 4 continuous dialogues.
To achieve statistically significant results, we em-
ployed 15 to 20 subjects (depending on the direc-
tions) across all the evaluations.

Table 37 shows the results for % Wins for all 31
evaluations. Additionally, in Table 38, we show
the ranking of MT systems based on their per-
formance for the dubbing use case. To rank the
systems, we use NWins that defines the number of
evaluations for which a system was preferred over
some other system. In general, similar to human
assessment for MT quality, we found STRONG-
BASELINE to be the best system for all three lan-
guages and WEAKBASELINE to be the worst for
French and Spanish.

Unlike MT human evaluation results, we found
WEAKBASELINE to be worse compared to HW-
TSC-Constrained even for English-German. In
a similar manner, we find that compared to the
rankings from MT evaluation, HW-TSCsystems
are ranked either higher or on par to APV-
Unconstrained and NUV-Constrained. To better
understand these differences in the ranking, we
computed the Smoothness metric (Federico et al.,
2020a) that measures TTS speaking rate stabil-
ity across contiguous sentences (or phrases) and
also consider the LC metric. Note that degraded
LC implies that we have either too high or too
low speaking rates for the dubbed speech, i.e., LC
directly impacts speech fluency (Federico et al.,
2020a). Table 39 shows these metrics with sys-
tems in a similar order as their ranking. We find
that WEAKBASELINE, APV-Unconstrained and
NUV-Constrained generally have either a much
lower Smoothness or a much lower LC compared
to the other systems. This results in poor speak-
ing rate control and impacts % Wins resulting in a
different ranking from MT evaluation. The main
takeaway is that MT evaluations do not show a
complete picture for the downstream task of dub-
bing as we need not only high quality translations
but also translations that permit good speaking rate
control.

8.6 Conclusion

This was the first time a shared task on Isomet-
ric MT was organized where we looked at eval-
uated systems on MT quality and length compli-

ance as well as on a downstream task of auto-
matic dubbing which requires isometric transla-
tions. With this shared task, we released a new
benchmark of manually transcribed and translated
scripts (with length compliance in mind) to evalu-
ate isometry in translation. In the possible exten-
sions of this shared task, we plan to include orig-
inal video along with the transcribed script at di-
alogue level so that participants can leverage the
duration in the source audio to fit the translation
within a given time stamp.
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Ondřej Bojar would like to acknowledge the grant
19-26934X (NEUREM3) of the Czech Science
Foundation.

References
Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
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losa, and Marta R. Costa-jussà. 2022b. Shas:
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A Human Evaluation

Human evaluation was carried out for the following tasks: (i) Simultaneous Speech Translation, (ii)
Offline speech translation, (iii) Speech to speech translation, (iv) Dialect speech translation, (v) Isometric
SLT, and (vi) Formality control for SLT.

Different evaluation protocols were adopted, which are described in the following sections.

A.1 Simultaneous Speech Translation Task

Simultaneous Speech Translation Task ran two different types of manual evaluation: “continuous rating”
for English-to-German and MQM for English-to-Japanese.

A.1.1 Human Evaluation for the English-to-German Simultaneous Task
Manual evaluation of English-to-German Simultaneous Task uses a variant of “continuous rating” as
described by Javorský et al. (2022).

During the evaluation, bilingual annotators were presented with the source audio and subtitles. The
subtitles were displayed in two lines below the audio following the guidelines for video subtitling (BBC,
2019). The annotators were asked to score the quality of the live-presented text output while listening
to the input sound. Specifically, the instructions explicitly asked to focus on content preservation, or
roughly the adequacy:

• We ask you to provide your assessment using so-called “continuous rating”, which continuously
indicates the quality of the text output given the input utterance you hear in the range from 1 (the
worst) to 4 (the best) by clicking the corresponding buttons or pressing the corresponding keys.

• The rate of clicking/pressing depends on you. However, we suggest clicking each 5-10 seconds or
when your assessment has changed. We encourage you to provide feedback as often as possible
even if your assessment has not changed.

• The quality scale should reflect primarily the meaning preservation (i.e. evaluating primarily the
“content” or very approximately the “adequacy”) and the grammaticality and other qualitative as-
pects like punctuation (i.e. the “form” or extremely roughly the “fluency”) should be the secondary
criterion.

Context-Aware Judgements One important aspect of the evaluation is that the systems are run inde-
pendently for each input segment while continuous rating is designed for following the whole speech.
Our continuous rating can be thus seen a variant of document-level measure, although the context is (on
purpose) available only from the history and not from the future.

When preparing the subtitles from system outputs, we concatenate all sentences into one continuous
stream of words.

Time Shift for Better Simultaneity To ease the memory overload of the evaluators, we reduced the
delay by shifting the subtitles ahead in time. The shift was done differently for the systems and for the
interpretation:

• Systems: Each translated sentence was shifted such that its first word was emitted immediately as
the source sentence audio began. If there were some words from previous sentence that have not
been displayed yet, the emission of the words from the next sentence was delayed. These words
were displayed right after all the last word of the previous sentence.

• Interpreting: Since we did not have the sentence alignment, we shifted the whole interpretation by
a constant such that the last word was emitted with the end of the last uttered word in the source
speech. This shift constant was chosen empirically.

135



Two Test Sets: Common and Non-Native There were two test sets used for the human evaluation: the
common test set (consisting of the TED talks used in the Offline Speech Translation task and serving also
in the automatic evaluation of Simultaneous Translation task); and a non-native test set. The non-native
test set was already used in IWSLT Non-Native Translation Task in 2020 and it is described in Ansari
et al. (2020) Appendix A.6. Specifically, we used the Antrecorp (Macháček et al., 2019; mock business
presentations by high-school students) and the auditing presentations (SAO) parts.

We show the size of the corpus, as well as the amount of annotation collected in Table 17.

Processing of Collected Rankings Once the results are collected, they are processed as follows. We
first inspect the timestamps on the ratings, and remove any that are more than 20 seconds greater than the
length of the audio. Because of the natural delay (even with the time-shift) and because the collection
process is subject to network and computational constraints, there can be ratings that are timestamped
greater than the audio length. If the difference is however too high, we judge it to be an annotation
error. We also remove any annotated audio where there is fewer than one rating per 20 seconds, since the
annotators were instructed to annotate every 5-10 seconds.

Obtaining Final Scores To calculate a score for each system, we average the ratings across each anno-
tated audio, then average across all the annotated audios pertaining to each system-latency combination.
This type of averaging renders all input speeches equally important and it is not affected by the speech
length.

The results are shown in Table 18. We observe that, overall, the systems do worse on the non-native
audios than they do on the common portion of the test set, whereas the human interpreter performs
similarly on both portions.

Indeed some of the high latency systems are rated slightly higher (on average) than the human inter-
preter on the common portion.

There is a clear effect of latency in almost all systems, with the low-latency subtitles generally rated
poorer than the high-latency subtitles by our annotators. This effect is strong in some systems (e.g. FBK)
but weaker in others (e.g. NAIST).

A.1.2 MQM-based Human Evaluation for English-to-Japanese Simultaneous Task
For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM). MQM has been used in recent MT evaluation stud-
ies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For the evaluation of
Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF, 2018), distributed
by Japan Translation Federation (JTF). The guidelines are based on MQM but include some modifica-
tions in consideration of the property of the Japanese language.

We hired a Japanese-native professional translator as the evaluator. The evaluator checked translation
hypotheses along with their source speech transcripts and chose the corresponding error category and
severity for each translation hypothesis using a spreadsheet. Here, we asked the evaluator to focus
only on Accuracy and Fluency errors, because other types of errors in Terminology, Style, and Locale
convention would not be so serious in the evaluation of simultaneous translation. Finally, we calculated
the cumulative error score for each system based on the error weighting presented by (Freitag et al.,
2021a), where Critical and Major errors are not distinguished.

A.2 Direct Assessment for Offline Speech Translation Task
For the Offline Speech Translation Task (Section 3) we conducted a human evaluation campaign featuring
the source-based direct assessment (DA) (Graham et al., 2013; Cettolo et al., 2017; Akhbardeh et al.,
2021). In this setting, assessments were performed on a continuous scale between 0 and 100.

Annotation Process We collected segment-level annotations based on the automatic segmentation of
the test data. Because we did not want issues from the segmentation to influence scores negatively,
we provided translators not only with the source sentence and system translation, but also with the
system translation of the previous and following segments. Annotators were then instructed as follows:
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”Sentence boundary errors are expected and should not be factored in when judging translation quality.
This is when the translation appears to be missing or adding extra words but the source was segmented
at a different place. To this end, we have included the translations for the previous and next sentences
also. If the source and translation are only different because of sentence boundary issues, do not let
this affect your scoring judgement.” No video or audio context was provided. Segments were shuffled
and randomly assigned to annotators to avoid bias related to the presentation order. Annotations were
conducted by a trusted vendor, with professional translators fluent in the source language and native in
the target language. For English to German, we additionally collected annotations for the references,
which received a considerably higher score than the best submitted system as expected (90.8 vs. 88.9).

Computing rankings System rankings are produced from the average DA scores computed from the
average human assessment scores without and with standardization according to each individual anno-
tator’s mean and standard deviation, similarly to Akhbardeh et al. (2021). Clusters are identified by
grouping together those systems which significantly outperform all others in lower ranking clusters, ac-
cording to Wilcoxon rank-sum test p < 0.05. In Tables 23, 24, and 25 – which show the rankings –
clusters are indicated by horizontal lines. Rank ranges giving an indication of the respective system’s
translation quality within a cluster are based on the same head-to-head statistical significance tests.

Official rankings and details on the evaluation campaign for the Offline Speech Translation Task are
presented in Section 3.

A.3 Speech to speech translation task
Output speech translations were evaluated with respect to translation quality and speech quality.

• Translation quality: Bilingual annotators were presented with the source audio and the target
audio, and gave scores on the translation quality between 1 and 5.

• Output speech quality: In addition to translation quality (capturing meaning), the quality of the
speech output was also human-evaluated along three dimensions: naturalness (voice and pronun-
ciation), clarity of speech (understandability), and sound quality (noise and other artifacts). These
axes are more fine-grained than the traditional overall MOS score.

The detailed guidelines for output speech quality were as follows:

• Naturalness: Recordings that sound human-like, with natural-sounding pauses, stress, and into-
nation, should be given a high score. Recordings that sound robotic, flat, or otherwise unnatural
should be given a low score.

• Clarity of speech: Recordings with clear speech and no mumbling and unclear phrases should be
given a high score. Recordings with a large amount of mumbling and unclear phrases should be
given a low score.

• Sound quality: Recordings with clean audio and no noise and static in the background should be
given a high score. Recordings with a large amount of noise and static in the background should be
given a low score.

A.4 Direct Assessment with Scalar Quality Metric for the Dialect and Isometric Speech
Translation Tasks

For the Dialect Speech Translation Task (Section 6) and Isometric SLT Task (Section 8) we piloted a
human evaluation campaign featuring the source-based direct assessment (DA) (Graham et al., 2013;
Cettolo et al., 2017; Akhbardeh et al., 2021) with document context extended with Scalar Quality Metric
(SQM) (Freitag et al., 2021a). In this setting, assessments were performed on a continuous scale between
0 and 100 as in traditional DA but with 0-6 markings on the analogue slider and annotator guidelines
based on those proposed by Freitag et al. (2021a). SQM helped standardizing scores across annotators.

137



Tool We used the Appraise evaluation framework53 (Federmann, 2018) for collecting segment-level
judgements within document context. No video or audio context was provided. Annotation guidelines
were adapted specifically for each task as described in Sections 6 and 8. Screenshots of an example
annotation for the Dialect and Isometric Speech Translation Tasks are presented on Figures 6 and 7.

Task generation A single task consisted of 100 segments from around 10 documents. Human refer-
ences were included as additional system output to provide an estimate of human performance. Each
individual annotator completed between 4 and 8 tasks. Whenever possible, we assigned tasks to annota-
tors making sure that one annotator evaluates outputs from all systems on the same subset of the test set.
This increased repetitiveness, but potentially improved consistency of assessments across systems.

Annotation and quality control All annotators were either professional translators or linguists fluent
in the source language and native in the target language or linguists, and the majority of them had pre-
vious experience in the evaluation of translation outputs.54 Although our annotators were professionals,
we employed a standard quality filtering procedure. Around 10% of segments in each task were quality
control items in the form of bad reference pairs distributed usually across one or two documents. Please
refer to (Akhbardeh et al., 2021) for more details on the generation of bad references. Assessments
of an annotator who has not demonstrated ability to reliably score degraded translations significantly
lower than corresponding original system outputs using a paired significance test with p < 0.05 would be
omitted from the evaluation. As expected, none of our annotators appeared unreliable.

We have collected 47,834 assessments. This number already excludes documents with quality control
items, which provides almost 2,000 annotations per system, including references.

Computing rankings System rankings are produced from the average DA scores computed from the
average human assessment scores without and with standardization according to each individual anno-
tator’s mean and standard deviation, similarly to Akhbardeh et al. (2021). We exclude entire documents
with one or more quality control items from ranking computation. Clusters are identified by grouping
those systems together which significantly outperform all others in lower ranking clusters, according to
Wilcoxon rank-sum test p < 0.05. In Tables 31 and 36 – which show the rankings – clusters are indicated
by horizontal lines. Rank ranges giving an indication of the respective system’s translation quality within
a cluster are based on the same head-to-head statistical significance tests.

Official rankings and details on the evaluation campaign for the Dialect Speech Translation Task and
Isometric SLT Task are presented respectively in Sections 6 and 8.

A.5 Formality Control

In this section, we reproduce the instructions given to the translators for IT, JA and RU for the formality
control shared task. Instructions for JA are similar but include some language-specific notes. For brevity,
we also remove example translations show to the translators.

Overview We would like to annotate multiple system outputs. For each of the 300 sentence ids (sid)
there are 4-6 system outputs - please shuffle the order of the systems when showing it to annotators. We
would like two annotators per target language.

Guidelines You will be shown an English source sentence and a machine translation of the source
sentence. Your task will be to label the translation based on the formality level. Note that labels that you
generate will be on the sentence level (one label per sentence). For example, given the source sentence “It
was nice chatting with you, have a great night!” and a translation “Es war schön, mit Ihnen zu plaudern,
haben Sie eine tolle Nacht!”, you would label the example based on the formality level of the translation
as one of Formal, Informal, Neutral, Other.

53https://github.com/AppraiseDev/Appraise
54In the post annotation questionnaire, 57% of annotators indicated their experience as high (evaluating MT outputs regularly)

and 32% as moderate (did it more than few times).
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Special Cases to Consider

1. Only label formality level, and ignore other mistakes such as a wrong sense.

2. Only label based on the formality level of the translation. Note that we don’t want to label whether
the formality level is correct in translation, but rather which formality level is marked in the trans-
lation.

3. If at least one word in the source is not translated at all and some meaning is lost, then label the
translation as Other.

Label Categories

1. Formal – The formality level is consistently Formal in the translation.

2. Informal – The formality level is consistently Informal in the translation.

3. Neutral – The translation is phrased in a way that does not explicitly express a formality level.

4. Other – Explain the reason in the Notes section.

– The formality level is inconsistent such as using both formal and informal pronouns.
– If at least one word in the source is not translated at all and should have been marked in the

target language for formality and some meaning is lost.
– If you feel strongly that the translation does not fit into any of the cases listed above, please

label it as “other” and explain the reason in the Notes section.

139



Appendix B. Evaluation Results and Details

140



B.1. Simultaneous Speech Translation

Automatic Evaluation Results

⋅ Summary of the results of the simultaneous speech translation for English-German.⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2)⋅ For each entry for latency metric, the upper one is non computation aware, while the lower one is computation aware.⋅ BLEU number in parenthesis indicate that the system does not satisfy the latency constraints.⋅ Raw system logs are also provided on the task web site.55

Low Latency Medium Latency High Latency

Team BLEU AL AP DAL BLEU AL AP DAL BLEU AL AP DAL

tst-COMMON v2

CUNI-KIT 26.82 0.96 0.77 2.07 31.47 1.93 0.86 2.96 32.87 3.66 0.96 4.45
2.94 1.52 6.38 3.71 1.39 5.80 5.54 1.37 6.61

FBK 13.38 0.94 0.58 1.31 25.08 1.99 0.80 2.36 30.07 3.92 0.95 4.15
1.23 0.66 1.47 2.48 0.93 2.79 4.49 1.09 4.70

HW-TSC (18.56) 1.96 0.79 2.41 23.90 2.61 0.87 3.07 24.78 4.02 0.96 4.31
2.39 0.92 2.82 3.03 1.01 3.49 4.42 1.10 4.71

NAIST 17.54 0.99 0.68 1.50 19.15 1.93 0.82 3.63 19.45 3.98 0.94 5.17
1.58 0.87 2.43 2.15 0.91 3.99 4.23 1.01 5.50

UPV 20.82 0.86 0.70 1.43 27.80 1.93 0.83 2.34 29.78 3.46 0.93 3.71
2.23 1.18 3.71 3.70 1.43 5.06 6.23 1.71 7.53

Gold Segmentation

CUNI-KIT 20.56 1.09 0.76 2.25 23.31 2.13 0.85 3.24 24.11 4.10 0.96 4.92
3.13 1.46 6.69 4.06 1.37 6.27 6.12 1.36 7.29

FBK 10.23 0.87 0.54 1.28 20.12 1.91 0.78 2.37 23.59 4.05 0.95 4.36
1.18 0.61 1.42 2.43 0.89 2.79 4.67 1.07 4.93

HW-TSC (13.97) 1.91 0.77 2.47 19.10 2.62 0.86 3.18 19.73 4.20 0.95 4.57
2.39 0.89 2.91 3.10 0.99 3.66 4.65 1.09 5.00

NAIST 13.40 0.97 0.67 1.55 15.29 1.98 0.82 3.96 15.47 4.80 0.96 5.79
1.64 0.85 2.60 2.21 0.89 4.35 5.07 1.02 6.14

UPV 16.09 0.71 0.68 1.42 19.94 2.81 0.84 3.36 23.55 3.51 0.92 3.85
2.18 1.13 3.78 6.00 1.58 7.76 6.35 1.63 7.82

Segmentation 1

CUNI-KIT 15.25 1.16 0.75 2.67 18.15 2.72 0.86 3.98 18.74 5.00 0.97 5.67
3.59 1.47 7.23 5.12 1.36 6.99 7.38 1.37 8.16

FBK 9.20 1.25 0.60 1.95 15.16 2.42 0.80 3.07 17.71 4.75 0.96 5.08
1.58 0.66 2.14 3.00 0.91 3.58 5.41 1.07 5.71

HW-TSC (10.66) 2.65 0.79 3.23 14.58 3.37 0.87 3.94 15.07 4.98 0.96 5.32
3.10 0.88 3.59 3.86 0.99 4.36 5.40 1.08 5.71

NAIST 9.78 0.97 0.65 1.75 12.23 2.67 0.83 4.30 12.40 5.78 0.98 6.26
1.66 0.82 2.66 2.91 0.89 4.67 6.08 1.03 6.59

UPV 12.23 1.06 0.68 1.86 15.86 2.26 0.80 2.87 17.89 4.12 0.93 4.51
2.87 1.14 4.45 4.53 1.35 5.91 7.64 1.67 8.86

Segmentation 2

CUNI-KIT 19.51 0.73 0.66 2.71 21.41 1.95 0.74 4.10 21.82 4.81 0.88 7.06
3.79 1.43 11.29 4.67 1.28 9.69 7.66 1.29 11.31

FBK 4.45 0.68 0.34 1.17 15.12 1.82 0.61 2.65 20.89 4.62 0.85 5.50
1.07 0.39 1.30 2.52 0.69 3.17 5.56 0.96 6.35

HW-TSC (12.53) 1.92 0.63 2.81 17.92 2.71 0.75 3.77 18.66 4.86 0.86 5.84
2.66 0.74 3.58 3.56 0.88 4.75 5.68 1.00 6.73

NAIST 11.77 0.93 0.60 1.92 13.49 2.76 0.84 7.75 13.64 8.76 0.97 10.62
2.11 0.83 4.32 3.05 0.90 8.42 9.26 1.03 11.23

UPV 14.89 0.55 0.62 1.78 18.32 1.69 0.70 2.71 20.72 3.74 0.82 4.62
2.85 1.03 5.84 4.43 1.17 7.29 7.75 1.48 11.16

55https://iwslt.org/2022/simultaneous
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⋅ Summary of the results of the simultaneous speech translation for English-Japanese.⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2)⋅ For each entry for latency metric, the upper one is non computation aware, while the lower one is computation aware.⋅ Raw system logs are also provided on the task web site.56

Low Latency Medium Latency High Latency

Team BLEU AL AP DAL BLEU AL AP DAL BLEU AL AP DAL

tst-COMMON v2

CUNI-KIT 16.92 2.46 0.90 3.22 16.94 3.77 0.97 4.29 16.91 4.13 0.98 4.53
3.84 1.38 5.45 5.20 1.34 6.03 5.61 1.34 6.20

HW-TSC 7.27 2.28 0.81 2.68 12.17 2.92 0.92 3.38 11.56 3.40 0.95 3.84
2.61 0.92 2.91 3.30 1.06 3.71 3.79 1.09 4.16

NAIST 9.25 2.24 0.88 3.04 9.90 3.95 0.96 4.59 10.22 4.73 0.99 4.96
2.65 1.03 3.50 4.26 1.07 4.94 5.05 1.09 5.30

Gold Segmentation

CUNI-KIT 16.50 2.71 0.90 3.35 16.68 4.10 0.97 4.57 16.75 4.42 0.98 4.80
4.10 1.37 5.79 5.66 1.34 6.48 6.02 1.34 6.67

HW-TSC 5.62 2.44 0.79 2.71 11.79 3.11 0.91 3.46 11.48 3.63 0.95 3.96
2.75 0.89 2.92 3.48 1.04 3.80 4.00 1.08 4.30

NAIST 8.70 2.28 0.86 2.89 9.41 3.41 0.94 4.46 9.83 4.66 0.98 5.08
2.68 0.99 3.40 3.73 1.04 4.87 4.98 1.06 5.44

Segmentation 1

CUNI-KIT 12.24 3.12 0.87 4.22 12.38 5.12 0.97 5.79 12.44 5.54 0.98 6.03
4.99 1.34 7.14 7.17 1.33 8.10 7.58 1.33 8.22

HW-TSC 4.15 3.25 0.79 3.75 8.40 4.05 0.91 4.55 8.18 4.68 0.95 5.14
3.63 0.87 4.01 4.46 1.01 4.89 5.09 1.05 5.49

NAIST 6.67 2.40 0.81 3.35 7.13 4.64 0.93 5.56 7.39 5.86 0.98 6.23
2.87 0.92 3.90 4.98 1.00 5.97 6.19 1.04 6.58

Segmentation 2

CUNI-KIT 14.65 3.19 0.77 4.54 14.82 5.71 0.90 7.37 14.71 6.55 0.93 8.11
5.34 1.27 9.80 7.95 1.29 11.45 9.06 1.30 12.03

HW-TSC 2.36 2.56 0.52 2.99 10.23 3.62 0.76 4.38 8.70 4.39 0.82 5.30
3.05 0.58 3.26 4.33 0.87 5.01 5.17 0.94 5.96

NAIST 8.10 2.67 0.73 3.81 8.36 5.28 0.91 9.00 8.57 8.69 0.97 10.32
3.32 0.85 4.82 5.71 0.99 9.72 9.20 1.03 10.94

56https://iwslt.org/2022/simultaneous
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⋅ Summary of the results of the simultaneous speech translation for English-Mandarin.⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2)⋅ For each entry for latency metric, the upper one is non computation aware, while the lower one is computation aware.⋅ BLEU number in parenthesis indicate that the system does not satisfy the latency constraints.⋅ Raw system logs are also provided on the task web site.57

Low Latency Medium Latency High Latency

Team BLEU AL AP DAL BLEU AL AP DAL BLEU AL AP DAL

tst-COMMON v2

AISP-SJTU 25.87 1.99 0.87 3.35 26.21 2.97 0.94 4.16 26.46 3.97 0.98 4.62
3.39 1.81 6.53 5.14 1.97 7.80 7.12 2.05 8.42

CUNI-KIT 23.61 1.75 0.85 2.56 24.37 2.79 0.93 3.49 24.58 3.67 0.97 4.22
3.11 1.34 4.77 4.16 1.34 5.32 5.12 1.34 5.88

HW-TSC (18.60) 2.18 0.84 2.66 22.51 2.88 0.92 3.33 23.60 3.46 0.95 3.81
2.56 0.97 2.93 3.26 1.06 3.62 3.82 1.09 4.10

Xiaomi 19.74 1.97 0.83 2.64 20.18 2.84 0.90 3.62 20.10 3.73 0.95 4.18
3.63 1.32 4.82 6.46 2.18 9.68 8.36 2.31 10.81

Gold Segmentation

AISP-SJTU 30.74 2.05 0.86 3.46 31.22 3.08 0.93 4.34 32.09 4.15 0.97 4.83
3.44 1.56 6.72 5.22 1.72 8.06 7.34 1.81 8.75

CUNI-KIT 26.71 1.92 0.83 2.65 27.09 2.93 0.92 3.62 27.22 3.90 0.97 4.44
3.29 1.32 5.09 4.29 1.31 5.57 5.39 1.32 6.23

HW-TSC (19.83) 2.25 0.82 2.68 26.02 3.00 0.91 3.43 27.65 3.62 0.95 3.97
2.66 0.95 2.98 3.37 1.04 3.72 4.00 1.08 4.29

Xiaomi 23.75 2.04 0.82 2.62 24.34 2.97 0.90 3.71 24.56 3.87 0.95 4.29
3.61 1.28 4.78 6.48 2.11 9.86 8.55 2.28 11.15

Segmentation 1

AISP-SJTU 24.90 2.39 0.83 4.12 25.33 3.87 0.93 5.30 26.01 5.18 0.97 5.93
4.11 1.41 7.78 6.56 1.60 9.57 9.04 1.70 10.48

CUNI-KIT 20.80 2.29 0.81 3.51 21.83 3.82 0.92 4.79 21.66 4.95 0.97 5.66
4.13 1.27 6.30 5.73 1.30 7.16 6.96 1.31 7.81

HW-TSC (16.09) 3.03 0.82 3.68 20.42 3.90 0.91 4.50 21.52 4.63 0.95 5.11
3.47 0.91 3.99 4.31 1.00 4.80 5.04 1.05 5.43

Xiaomi 19.79 2.30 0.79 3.20 20.29 3.53 0.89 4.57 20.47 4.60 0.94 5.25
4.03 1.19 5.43 7.62 1.97 11.32 9.72 2.09 12.54

Segmentation 2

AISP-SJTU 28.36 3.06 0.83 7.10 28.79 4.82 0.91 8.71 29.03 5.97 0.94 9.26
5.50 1.50 14.52 8.33 1.64 16.96 10.29 1.70 17.68

CUNI-KIT 24.96 1.97 0.70 3.41 25.01 3.46 0.80 5.19 24.81 5.11 0.88 7.01
4.20 1.20 8.54 5.57 1.21 9.32 7.48 1.25 10.79

HW-TSC (13.80) 2.26 0.59 3.00 22.27 3.24 0.74 4.21 24.77 4.21 0.82 5.21
2.93 0.68 3.39 4.00 0.85 4.70 5.00 0.93 5.76

Xiaomi 22.15 1.85 0.69 3.04 22.71 3.23 0.77 4.84 23.08 4.43 0.83 5.63
4.50 1.19 8.10 8.80 2.10 18.63 11.55 2.30 21.16

57https://iwslt.org/2022/simultaneous
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⋅ Summary of the results of the simultaneous speech translation for text-to-text track, English-Mandarin⋅ The input of the each system is the output from the provided streaming ASR model, and the latency is evaluated in seconds.⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2)⋅ For each entry for latency metric, the upper one is non computation aware, while the lower one is computation aware.⋅ Raw system logs are also provided on the task web site.58

Low Latency Medium Latency High Latency

Team BLEU AL AP DAL BLEU AL AP DAL BLEU AL AP DAL

tst-COMMON v2

AISP-SJTU 18.36 2.35 0.88 4.04
2.89 1.05 4.83

HW-TSC 14.63 1.38 0.73 2.01 17.40 2.31 0.86 2.90 18.19 3.08 0.92 3.57
1.88 0.86 2.43 2.85 1.00 3.37 3.65 1.07 4.08

Xiaomi 19.74 1.97 0.83 2.64 20.18 2.84 0.90 3.62 20.10 3.73 0.95 4.18
3.63 1.32 4.82 6.46 2.18 9.68 8.36 2.31 10.81

Gold Segmentation

AISP-SJTU 22.85 2.38 0.87 4.17
2.67 0.96 4.56

HW-TSC 16.82 1.44 0.71 1.96 21.03 2.37 0.85 2.89 22.56 3.18 0.91 3.61
1.86 0.81 2.29 2.85 0.97 3.29 3.68 1.03 4.05

Xiaomi 23.75 2.04 0.82 2.62 24.34 2.97 0.90 3.71 24.56 3.87 0.95 4.29
3.61 1.28 4.78 6.48 2.11 9.86 8.55 2.28 11.15

Segmentation 1

AISP-SJTU 19.18 2.84 0.87 4.94
3.16 0.94 5.38

HW-TSC 14.44 1.53 0.68 2.42 17.63 2.64 0.82 3.50 18.85 3.66 0.89 4.37
1.98 0.76 2.76 3.14 0.91 3.92 4.18 0.99 4.84

Xiaomi 19.79 2.30 0.79 3.20 20.29 3.53 0.89 4.57 20.47 4.60 0.94 5.25
4.03 1.19 5.43 7.62 1.97 11.32 9.72 2.09 12.54

Segmentation 2

AISP-SJTU 21.61 3.71 0.88 8.70
4.08 0.94 9.35

HW-TSC 11.56 1.20 0.50 2.05 18.00 2.17 0.68 3.25 20.37 3.17 0.77 4.33
1.77 0.57 2.42 2.88 0.76 3.76 3.99 0.86 4.96

Xiaomi 22.15 1.85 0.69 3.04 22.71 3.23 0.77 4.84 23.08 4.43 0.83 5.63
4.50 1.19 8.10 8.80 2.10 18.63 11.55 2.30 21.16

58https://iwslt.org/2022/simultaneous
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Human Evaluation Results

English-Japanese BLEU Error score #Critical #Major #Minor

CUNI-KIT (high) 19.43 219 0 31 64
CUNI-KIT (low) 18.29 225 0 31 70
HW-TSC (medium) 15.21 472 2 85 37
NAIST (medium) 11.49 628 12 109 23

Table 16: Human evaluation results on one talk in the English-to-Japanese Simultaneous speech-to-speech trans-
lation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.

Common Non-native

Number of distinct audios 17 43
Mean length of audio (secs) 886 209
Total of subtitled audios annotated 439 1159
Mean ratings per annotated audio 164.4 40.8

Table 17: Human evaluation for the English-to-German task on two test sets: the Common one used also in
automatic scoring and Non-native one. We show the size of the evaluation corpus, and the number of ratings
collected.

Common Non-native

System Low Medium High Low Medium High

CUNI-KIT 3.13 3.26 3.44 2.46 2.57 2.98
UPV 2.96 3.32 3.40 2.07 2.55 2.72

Human FBK 2.23 3.02 3.44 1.76 2.20 2.36
HW-TSC 2.34 2.60 2.60 1.58 1.81 1.69
NAIST 2.28 2.31 2.44 1.77 1.64 1.60

Average±Std.dev. 2.59±0.38 2.90±0.39 3.06±0.45 1.93±0.31 2.15±0.38 2.27±0.55

Interpreting 2.99 3.22

CUNI-KIT 20.56 23.31 24.11 16.64 22.89 25.65
UPV 16.09 19.94 23.55 13.59 21.16 22.90

BLEU FBK 10.23 20.12 23.59 8.40 16.51 20.42
HW-TSC 13.97 19.10 19.73 10.35 13.47 13.55
NAIST 13.40 15.29 15.47 6.11 9.33 9.25

Table 18: Human evaluation results for English-to-German Simultaneous task (upper part), compared with auto-
matic BLEU scores (lower part). We calculate a mean score for each annotated audio file, then take the mean
across all annotated audio files, for each system-latency combination. We highlight the best results in bold and
report also the average across all submissions of a given latency band. The final row shows the results for human
simultaneous interpreting (transcribed). The lower part reports the BLEU scores for the gold segmentation of the
Common part of the test set (reported already on page 44) and for the Non-native part of the test set.
The BLEU scores correlate very well with the human judgement for each of the test sets parts: Pearson correlation
across the systems and latency regimes is .898 for the Common part and .933 for the Non-native part. When con-
sidered together, the correlation decreases to .858.
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B.2. Offline Speech Translation

Automatic Evaluation Results

Speech Translation: TED English-German tst 2022
⋅ Systems are ordered according to BLEU NewRef: BLEU score computed on the NEW reference set (literal translations).⋅ BLEU scores are given as percent figures (%).

System BLEU NewRef BLEU TEDRef BLEU MultiRef
USTC-NELSLIP cascade 26.7 23.9 37.6
YI end2end 25.7 23.6 36.5
YI cascade 25.6 23.7 36.4
USTC-NELSLIP end2end 25.3 22.9 35.7
NEMO 24.7 22.3 34.8
HW-TSC 24.2 20.8 33.5
KIT 23.9 22.0 33.8
FBK 23.6 21.0 32.9
UPC 23.0 20.8 32.3
ALEXA AI 22.6 20.1 31.5

Table 19: Official results of the automatic evaluation for the Offline Speech Translation Task, English to German.

Speech Translation: TED English-German tst 2021
⋅ Systems are ordered according to BLEU TEDRef: BLEU score computed on the ORIGINAL reference set.⋅ BLEU scores are given as percent figures (%).⋅ End-to-end systems are indicated by gray background.

System BLEU NewRef BLEU TEDRef BLEU MultiRef
USTC-NELSLIP cascade 28.9 24.1 40.3
YI cascade 28.1 23.2 39.0
YI end2end 27.8 23.1 38.8
HW-TSC 27.5 21.2 36.9
USTC-NELSLIP end2end 27.2 23.0 38.4
FBK 25.5 21.3 35.6
KIT 24.7 22.4 36.2
last Year’s best 24.6 20.3 34.0
UPC 24.5 20.9 34.8
ALEXA AI 24.4 20.6 34.5

Table 20: Progress test set results of the automatic evaluation for the Offline Speech Translation Task, English to
Japanese.
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Speech Translation: TED English-Chinese tst 2022
⋅ Systems are ordered according to BLEU TEDRef: BLEU score computed on the ORIGINAL reference set.⋅ BLEU scores are given as percent figures (%).⋅ End-to-end systems are indicated by gray background.

System BLEU NewRef BLEU TEDRef BLEU MultiRef
USTC-NELSLIP cascade 35.8 35.7 44.1
YI cascade 34.7 35.0 42.9
HW-TSC 34.6 33.4 42.1
YI end2end 34.1 34.6 42.3
USTC-NELSLIP end2end 33.8 34.1 41.9
NEMO 33.3 33.7 41.2
NIUTRANS 32.3 33.2 40.5
KIT 31.1 32.0 39.0
ALEXA AI 30.4 30.8 37.9
UPC 29.2 29.9 36.4
NEURAL.AI 22.8 23.0 28.2

Table 21: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Chinese.

Speech Translation: TED English-Japanese tst 2022
⋅ Systems are ordered according to BLEU TEDRef: BLEU score computed on the ORIGINAL reference set.⋅ BLEU scores are given as percent figures (%).⋅ End-to-end systems are indicated by gray background.

System BLEU NewRef BLEU TEDRef BLEU MultiRef
HW-TSC 22.7 14.3 30.8
USTC-NELSLIP cascade 21.6 20.1 33.4
USTC-NELSLIP end2end 20.5 17.4 30.5
YI end2end 18.0 19.1 29.8
YI cascade 18.7 20.2 31.3
KIT 16.2 17.2 26.4
UPC 15.1 15.6 24.7
ALEXA AI 15.3 16.2 25.3

Table 22: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Japanese.

Human Evaluation Results

Speech Translation: TED English-German tst 2022 (subset)
Rank Ave. Ave. z System
1-3 88.9 0.142 USTC-NELSLIP cascade
1-4 87.4 0.075 USTC-NELSLIP end2end
1-4 87.6 0.063 YI cascade
4-9 86.5 0.008 KIT
4-9 86.1 -0.004 FBK
2-7 86.3 -0.011 YI end2end
4-9 85.6 -0.023 NEMO
5-9 85.4 -0.039 UPC
5-9 84.8 -0.076 HW-TSC
10 83.9 -0.133 ALEXA AI

Table 23: Official results of the human evaluation for the Offline Speech Translation Task, English to German.
Systems ordered by the standardized DA z-score. Systems within clusters indicated by horizontal lines are consid-
ered tied. Scores collected using direct assessment with previous/next-sentence context.
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Speech Translation: TED English-Chinese tst 2022 (subset)
1 85.6 0.184 USTC-NELSLIP cascade

2-5 84.2 0.121 YI end2end
2-7 84.0 0.097 YI cascade
2-7 83.5 0.086 USTC-NELSLIP end2end
3-8 83.1 0.061 NEMO
3-8 83.2 0.057 KIT
2-7 82.8 0.038 HW-TSC
6-9 82.4 0.023 NIUTRANS
8-10 81.6 -0.023 ALEXA AI
9-10 80.8 -0.055 UPC
11 71.2 -0.589 NEURAL.AI

Table 24: Official results of the human evaluation for the Offline Speech Translation Task, English to Chinese.
Systems ordered by the standardized DA z-score. Systems within clusters indicated by horizontal lines are consid-
ered tied. Scores collected using direct assessment with previous/next-sentence context.

Speech Translation: TED English-Japanese tst 2022 (subset)
1-4 78.4 0.086 YI cascade
1-4 77.6 0.065 USTC-NELSLIP cascade
1-4 77.6 0.061 YI end2end
1-4 76.6 0.005 HW-TSC
5-6 76.3 -0.009 USTC-NELSLIP end2end
5-6 76.3 -0.013 KIT
7-8 74.7 -0.082 ALEXA AI
7-8 73.2 -0.113 UPC

Table 25: Official results of the human evaluation for the Offline Speech Translation Task, English to Japanese.
Systems ordered by the standardized DA z-score. Systems within clusters indicated by horizontal lines are consid-
ered tied. Scores collected using direct assessment with previous/next-sentence context.
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B.3. Speech to Speech Translation
Results for the speech to speech translation task, described in Section 4.

While both automatic metrics and human evaluation are provided, the task ranking was determined by
human evaluation of translation quality (Table 28).

System BLEU chrF

MLLP-VRAIN 19.70 53.15
HW-TSC primary 19.58 53.81
HW-TSC contrastive3 19.35 53.75
HW-TSC contrastive1 19.22 53.65
HW-TSC contrastive2 18.90 53.00
UPC 16.38 50.20

Reference text (+TTS) 68.46 88.78
FBK Offline (+TTS) 17.37 51.21
KIT Offline (+TTS) 16.63 50.43

Reference text (+normalization) 100.00 100.00
FBK Offline (+normalization) 23.44 55.84
KIT Offline (+normalization) 23.51 55.18

Table 26: S2ST: automatic metrics. Speech output is first transcribed with ASR before scoring against reference
text. Text is normalized for scoring (punctuation and case removed, whitespace standardized). The effects of
synthesis + ASR transcription are shown by synthesizing the reference text and selected Offline task submissions
and scoring after ASR.

System nat. clar. sound.

MLLP-VRAIN 4.156 (0.037) 4.626 (0.028) 4.562 (0.028)
HW-TSC primary 3.135 (0.042) 3.835 (0.037) 3.867 (0.034)
UPC 3.118 (0.042) 3.786 (0.037) 3.862 (0.032)
Reference 3.116 (0.043) 3.678 (0.038) 3.799 (0.032)

Table 27: S2ST: speech quality human evaluation. System outputs were evaluated along 3 dimensions, which are
more fine-grained than mean opinion score: speech naturalness (nat.), clarity of speech (clar.) and sound quality
(sound.). Numbers in parenthesis indicate a 95% confidence interval.

System Translation quality

HW-TSC primary 4.606 (0.034)
MLLP-VRAIN 4.439 (0.057)
UPC 4.374 (0.041)
Reference 4.369 (0.038)

Table 28: S2ST: translation quality human evaluation. The initial MLLP-VRAIN submission had a misalign-
ment and was later fixed. As a result, the number of samples for MLLP-VRAIN is 1000 instead of 2059. Numbers
in parenthesis indicate a 95% confidence interval.
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B.4. Dialect Speech Translation

Automatic Evaluation Results

Tunisian Arabic→English
Team Condition System test2 test1

BLEU↑ BP pr1 chrF2 TER↓ BLEU
CMU dialect adapt primary (E2) 20.8 ± 0.7 0.931 53.1 44.3 64.5 19.5
CMU dialect adapt contrastive 20.7 ± 0.7 0.929 53 44.1 64.6 19.3
CMU basic primary (E1) 20.4 ± 0.7 0.944 52.2 43.8 65.4 19.2
CMU basic contrastive 20.1 ± 0.7 0.936 52.2 43.5 65.3 19
CMU dialect adapt contrastive (D6) 19.8 ± 0.7 0.902 53.2 43.3 64.6 18.9
CMU basic contrastive (D3) 19.7 ± 0.7 0.916 52.4 43 65.5 18.7
CMU dialect adapt contrastive (D5) 19.5 ± 0.6 0.896 53.2 42.8 64.6 18.3
CMU dialect adapt contrastive (C6) 19.4 ± 0.6 0.937 50.7 43 67.1 17.9
CMU basic contrastive (D2) 19.1 ± 0.6 0.939 51.3 42.7 66.5 18.1
JHU dialect adapt primary 18.9 ± 0.7 0.99 48 42.1 70.2 17.8
JHU unconstrain. primary 18.7 ± 0.7 0.959 48.7 41.6 69.2 17.5
CMU basic contrastive (C3) 18.6 ± 0.6 0.942 49.4 41.8 68.3 17.5
JHU basic primary 17.1 ± 0.6 0.973 46.8 40.4 71.4 16.1
ON-TRAC unconstrain. post-evaluation 14.4 ± 0.6 1 42.7 36.5 76.7 -
ON-TRAC unconstrain. contrastive1 13.6 ± 0.6 1 41.7 35.7 78.3 -
ON-TRAC basic primary 12.4 ± 0.6 0.8 44.3 32.8 75.5 -
ON-TRAC unconstrain. contrastive2 11.3 ± 0.5 0.95 38.7 32.7 80.6 -
Baseline basic baseline E2E 11.1 ± 0.5 0.885 40 31.9 77.8 10.1

Table 29: Automatic evaluation results for the Dialect Speech Translation Task. Systems are ranked in order of the
official metric: BLEU on test2 blind evaluation set. We also report chrF2, TER, as well as the brevity penalty (BP)
and 1-gram precision (pr1) components of BLEU. We further use bootstrap resampling (1k samples) and report the
95% confidence interval for BLEU on test2 (Koehn, 2004). For details of each system, refer to the system name in
the respective papers.

Tunisian Arabic ASR Automatic Evaluation Results

ASR System WER↓ CER↓
Orig Norm Orig Norm

JHU / basic / primary 70.5 43.8 30.5 22.5
JHU / dialect adapt / primary 70.1 42.9 30.4 22.3
JHU / unconstrained / primary 69.4 42.8 30.6 22.5
ON-TRAC / unconstrained / primary 68.2 45.1 28.4 21.5
ON-TRAC / unconstrained / post-eval 65.7 41.5 28.1 21.1

Table 30: Word Error Rate (WER) and Character Error Rate (CER) of the ASR component of submitted cas-
caded systems on test2. This is computed by comparing ASR hypotheses with the Tunisian manual transcripts.
The original version (Orig) matches the minimal text pre-processing provided by the organizer’s data preparation
scripts, and results in relatively high WER. Transcription standards for primarily spoken dialects are challenging,
so it may be beneficial as diagnosis to run some additional Arabic-specific normalization (Norm) for e.g. Alif,
Ya, Ta-Marbuta on the hypotheses and transcripts before computing WER/CER. We are grateful to Ahmed Ali for
assistance on this.
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Human Evaluation Results

Tunisian Arabic→English
Rank Ave. Ave. z Team / Condition / System

1 76.6 0.457 translator-A
2-3 66.5 0.119 CMU / dialect adapt / contrastive (D6)
2-3 66.5 0.114 CMU / dialect adapt / primary (E2)
4-5 62.7 -0.032 JHU / dialect adapt / primary
4-5 60.7 -0.093 JHU / basic condition / primary
6-7 56.1 -0.271 ON-TRAC / unconstrained / primary
6-7 55.3 -0.302 ON-TRAC / unconstrained / contrastive1

Table 31: Official results of the human evaluation for the Dialect Speech Translation Task. Systems ordered by
the standardized DA z-score. Systems within clusters indicated by horizontal lines are considered tied. Scores
collected using the document-level DA+SQM task in Appraise.
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Figure 6: A screen shot of an example annotation task in Appraise featuring source-based document-level Direct
Assessment with SQM for the Dialect Speech Translation Task.
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B.5. Formality Control For Speech Translation

Automatic Evaluation Results

EN→HI EN→JA EN→DE EN→ES EN→IT EN→RU
Setting System BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

unconstrained

baseline 22.0 0.67 17.9 0.24 32.6 0.55 37.4 0.70 32.2 0.64 19.5 0.32
ALEXA AI 38.9 0.874 19.4 0.378
UMD 12.1 0.192 11.6 -0.023 22.4 0.161 27.8 0.344 22.9 0.247 14.4 0.075
UOS 32.5 0.497 37.0 0.635 33.1 0.562 21.5 0.357

constrained UOS 31.5 0.448 36.5 0.608 33.1 0.553 21.4 0.329

Table 32: Automatic evaluation using sacrebleu and COMET on generic test sets. For EN→DE, ES, IT, RU par-
ticipants were asked to evaluated their systems on MuST-C dataset. We have also included baseline models trained
in the unconstrained setting for comparison. For EN→HI, JA participants were evaluated on WMT Newstest 2014
and 2020 respectively.

Supervised Zero-shot
EN→HI EN→JA EN→DE EN→ES EN→IT EN→RU

Setting System F I F I F I F I F I F I

unconstrained
baseline (generic) 96.3 3.70 49.6 50.3 45.8 54.2 36.6 63.4 3.70 94.5 93.4 6.60
ALEXA AI 99.6 99.8 88.8 98.8
UMD 99.4 98.7 86.3 97.5 99.4 96.5 99.5 93.2 32.8 97.9 100.0 1.10
UOS 100.0 100.0 98.1 100.0 51.2 98.6 99.5 85.8

constrained UOS 100.0 88.6 87.4 98.0 29.5 92.9 98.1 15.4

Table 33: Automatic evaluation of formality control accuracy (M-ACC) reported for Formal (F) and Informal
(I). For comparison, we have included our baseline generic (uncontrolled) performance on the formality testset.
For EN→IT, RU participants were given a zero-shot task and asked to train a formality controlled model without
labelled training data in Italian or Russian.

Human Evaluation Results

Lang. Setting Sys. Control F I N O IAA

EN→JA unconstrained

UMD Formal 89.3 0.7 0.0 9.7

0.90UMD Informal 2.0 92.5 0.0 5.5
ALEXA AI Formal 82.8 1.3 0.0 15.5
ALEXA AI Informal 3.0 82.7 0.0 14.3

EN→IT
unconstrained

UMD Formal 13.7 25.2 47.0 14.2

0.91

UMD Informal 1.0 78.3 11.5 9.2
UOS Formal 6.0 7.2 81.3 5.5
UOS Informal 0.3 81.0 13.2 5.5

constrained UOS Formal 0.2 10.2 87.7 2.0
UOS Informal 0.2 36.3 58.3 5.2

EN→RU
unconstrained

UMD Formal 77.2 0.2 7.0 15.7

0.85

UMD Informal 74.3 0.7 7.8 17.2
UOS Formal 85.0 0.3 6.0 8.7
UOS Informal 10.3 71.3 3.2 15.2

constrained UOS Formal 85.3 2.0 5.7 7.0
UOS Informal 65.0 12.7 6.3 16.0

Table 34: Percentage of system outputs (with a given formality level (Control) and setting (Setting)) labeled by
professional translators according to the formality level: formal (F), informal (I), neutral (N), other (O). IAA was
computed using the Krippendorff’s ↵ coefficient.
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B.6. Isometric Spoken Language Translation

Automatic MT Evaluation Results

En→De
System BERTScore LC BLEU(detok)

STRONGBASELINE∗ 77.44 68.0 21.6
APPTEK-Constrained 77.32 86.5 18.7
HW-TSC-Unconstrained 75.79 96.5 20.2
APV-Unconstrained 73.68 39.0 16.5
WEAKBASELINE 74.86 43.0 15.5
HW-TSC-Constrained 74.07 98.0 17.9

En→Fr
System BERTScore LC BLEU(detok)

STRONGBASELINE∗ 81.75 75.5 36.2
NUV-Unconstrained 79.96 47.5 27.1
APV-Unconstrained 77.77 45.0 32.9
HW-TSC-Constrained 76.11 96.0 31.5
WEAKBASELINE 77.18 37.0 25.2

En→Es
System BERTScore LC BLEU(detok)

STRONGBASELINE∗ 81.86 80.5 36
APV-Unconstrained 80.87 49.5 35.3
HW-TSC-Constrained 78.57 96.5 29.9
WEAKBASELINE 78.32 51.0 27.7

Table 35: Automatic evaluation results for Isometric SLT task on the blind test set. Metrics are computed using the
submissions primary system. System ranking follows the human evaluation ranking in Table 36. If BERTScore is
a tie, system with the highest LC wins (∗). BERTSCore and LC are the primary metrics for the task, detoknized-
BLEU is provided only as a secondary reference. Bold highlights the top score.
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MT Human Evaluation Results

En→De
Rank Ave. Ave. z System

1 89.0 0.755 translator-A
2-3 72.6 0.189 STRONGBASELINE
2-3 69.9 0.123 APPTEK-Constrained
4-5 62.6 -0.153 HW-TSC-Unconstrained
4-6 62.1 -0.224 APV-Unconstrained
5-7 59.4 -0.298 WEAKBASELINE
6-7 56.3 -0.467 HW-TSC-Constrained

En→Fr
Rank Ave. Ave. z System

1 80.8 0.624 translator-A
2-3 64.3 0.009 STRONGBASELINE
2-4 60.2 -0.152 NUV-constrained
3-6 58.0 -0.280 APV-Unconstrained
4-6 53.2 -0.348 HW-TSC-Constrained
4-6 53.6 -0.389 WEAKBASELINE

En→Es
Rank Ave. Ave. z System

1 82.5 0.601 translator-A
2-3 70.3 0.020 STRONGBASELINE
2-3 69.9 -0.031 APV-Unconstrained
4-5 64.0 -0.283 HW-TSC-Constrained
4-5 59.8 -0.409 WEAKBASELINE

Table 36: Official results of the text-based human evaluation for the Isometric SLT Task. Systems ordered by
the standardized DA z-score. Systems within clusters indicated by horizontal lines are considered tied. Scores
collected using the document-level DA+SQM task in Appraise.
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Automatic Dubbing Human Evaluation Results

En→De
Comparison Wins (%)
WEAKBASELINE vs APPTEK-Constrained 32.9 vs 49.8∗
WEAKBASELINE vs HW-TSC-Constrained 29.0 vs 49.4∗
WEAKBASELINE vs HW-TSC-Unconstrained 41.1 vs 44.2
WEAKBASELINE vs APV-Unconstrained 37.9 vs 42.5
WEAKBASELINE vs STRONGBASELINE 29.0 vs 52.3∗
APPTEK-Constrained vs HW-TSC-Constrained 42.4 vs 38.8
APPTEK-Constrained vs HW-TSC-Unconstrained 41.0 vs 38.0
APPTEK-Constrained vs APV-Unconstrained 43.9 vs 36.9
APPTEK-Constrained vs STRONGBASELINE 38.0 vs 39.6
HW-TSC-Constrained vs HW-TSC-Unconstrained 38.3 vs 36.0
HW-TSC-Constrained vs APV-Unconstrained 44.3 vs 37.7
HW-TSC-Constrained vs STRONGBASELINE 36.0 vs 42.7
HW-TSC-Unconstrained vs APV-Unconstrained 49.3 vs 32.7∗
HW-TSC-Unconstrained vs STRONGBASELINE 37.2 vs 41.8
APV-Unconstrained vs STRONGBASELINE 31.3 vs 49.7∗

En→Fr
Comparison Wins (%)
WEAKBASELINE vs HW-TSC-Constrained 31.7 vs 51.7∗
WEAKBASELINE vs NUV-Unconstrained 32.6 vs 50.9∗
WEAKBASELINE vs APV-Unconstrained 25.7 vs 55.7∗
WEAKBASELINE vs STRONGBASELINE 26.7 vs 57.0∗
HW-TSC-Constrained vs NUV-Unconstrained 40.0 vs 40.0
HW-TSC-Constrained vs APV-Unconstrained 46.7 vs 34.7+
HW-TSC-Constrained vs STRONGBASELINE 31.9 vs 49.1∗
NUV-Unconstrained vs APV-Unconstrained 35.6 vs 40.0
NUV-Unconstrained vs STRONGBASELINE 29.0 vs 48.6∗
APV-Unconstrained vs STRONGBASELINE 34.3 vs 44.7

En→Es
Comparison Wins (%)
WEAKBASELINE vs HW-TSC-Constrained 21.0 vs 51.0∗
WEAKBASELINE vs APV-Unconstrained 30.3 vs 46.7∗
WEAKBASELINE vs STRONGBASELINE 24.3 vs 53.7∗
HW-TSC-Constrained vs APV-Unconstrained 37.7 vs 35.7
HW-TSC-Constrained vs STRONGBASELINE 34.3 vs 40.0
APV-Unconstrained vs STRONGBASELINE 30.3 vs 44.7∗

Table 37: Automatic dubbing human evaluation results on pairwise comparisons of submitted systems for the
Isometric SLT task. We report the Wins, i.e, the % of times one condition is preferred over the other with statistical
significance levels p < 0.01(∗) and p < 0.05(+).

156



En→De
Rank NWins System
1 5 STRONGBASELINE
2 4 APPTEK-Constrained
3 3 HW-TSC-Constrained
4 2 HW-TSC-Unconstrained
5 1 APV-Unconstrained
6 0 WEAKBASELINE

En→Fr
Rank NWins System
1 4 STRONGBASELINE
2 2 HW-TSC-Constrained
3 2 APV-Unconstrained
4 1 NUV-Constrained
5 0 WEAKBASELINE

En→Es
Rank NWins System
1 3 STRONGBASELINE
2 2 HW-TSC-Constrained
3 1 APV-Unconstrained
4 0 WEAKBASELINE

Table 38: Results of human evaluation of dubbed videos. Systems are ranked using NWins, i.e., the number of
evaluations for which that systems was preferred over some other system.

En→De
Systems Smoothness LC
STRONGBASELINE 88.55 68
APPTEK-Constrained 86.22 86.5
HW-TSC-Constrained 88.45 98
HW-TSC-Unconstrained 88.92 96.5
APV-Unconstrained 82.53 39
WEAKBASELINE 84.22 43

En→Fr
Systems Smoothness LC
STRONGBASELINE 80.66 75.5
HW-TSC-Constrained 77.93 96
APV-Unconstrained 78.31 45
NUV-Constrained 75.52 47.5
WEAKBASELINE 66.84 37

En→Es
Systems Smoothness LC
STRONGBASELINE 92.01 80.5
HW-TSC-Constrained 92.65 96.5
APV-Unconstrained 92.02 49.5
WEAKBASELINE 85.21 51

Table 39: Results of automatic evaluation for subset of 60 dialogues used for dubbing evaluation using smoothness
(Federico et al., 2020a) that measures the stability of speaking rate across contiguous phrases and length compli-
ance (LC).
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Figure 7: A screen shot of an example annotation task in Appraise featuring source-based document-level Direct
Assessment with SQM for the Isometric SLT Task.
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