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Abstract

Previous studies on question answering over
knowledge graphs have typically operated over
a single knowledge graph (KG). This KG is
assumed to be known a priori and is lever-
aged similarly for all users’ queries during in-
ference. However, such an assumption is not
applicable to real-world settings, such as health-
care, where one needs to handle queries of new
users over unseen KGs during inference. Fur-
thermore, privacy concerns and high compu-
tational costs render it infeasible to query the
single KG that has information about all users
while answering a specific user’s query. The
above concerns motivate our question answer-
ing setting over personalized knowledge graphs
(PERKGQA) where each user has restricted
access to their KG. We observe that current
state-of-the-art KGQA methods that require
learning prior node representations fare poorly.
We propose two complementary approaches,
PATHCBR and PATHRGCN for PERKGQA.
The former is a simple non-parametric tech-
nique that employs case-based reasoning, while
the latter is a parametric approach using graph
neural networks. Our proposed methods cir-
cumvent learning prior representations, can
generalize to unseen KGs, and outperform
strong baselines on an academic and an internal
dataset by 6.5% and 10.5%.

1 Introduction

The task of Question Answering over Knowledge
Graphs (KGQA), involves answering a natural lan-
guage question by querying a predefined knowl-
edge graph (KG), such as WikiData or Freebase.
Progress in KGQA research has addressed sev-
eral challenges, such as answering complex ques-
tions, multi-hop reasoning, (Lan and Jiang, 2020;
Ren et al., 2021), conversational KGQA (Kacupaj
et al., 2021), and multi-lingual KGQA (Zhou et al.,
2021), and has also found applications in tax, in-

∗ Work done during internship at Amazon AWS AI Labs.

surance, and healthcare (Lüdemann et al., 2020;
Huang et al., 2021; Park et al., 2020).

Most KGQA research has focused on generaliz-
able or generic knowledge, which assumes there
is a predefined global KG for all queries. This
assumes that nodes used during inference were al-
ready defined in the KG during training and holds
for cases that focus on generalizable knowledge.
This work proposes approaches that circumvent the
need to make such an assumption.

Furthermore, using a single global KG to handle
queries of different users raises additional concerns,
especially when a user’s query requires situated
knowledge such as personal information.
• Scalability: The massive size of the global KG

makes it computationally expensive to apply so-
phisticated neural architectures over it.

• Privacy: The unfettered access to information of
all individuals raises ethical or legal concerns.
In this paper, we formulate PERKGQA or

question answering over personalized knowledge
graphs. Here the user has access to their specific
KG, a subset of the global KG that contains only
the information relevant to the user. We are re-
stricted to the user’s KG to answer their queries
during training and inference. Such a setting ad-
dresses the challenges above of scalability, privacy,
and generalizing over unseen KGs.

PERKGQA appears deceivingly simple in con-
ception since we afford access to a subset of the
larger global KG. One can claim that our set-
ting is similar to the KGQA subtask where sub-
graphs and questions are predefined, and thus, tra-
ditional KGQA methods are applicable. However,
information retrieval based KGQA methods em-
ploy knowledge graph completion techniques like
TransE (Bordes et al., 2013) to learn node represen-
tations over the global KG and reuse them during
inference. Alternately, other approaches leverage
additional information such as semantic parses, log-
ical forms, and query graphs to answer queries.
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This sets PERKGQA apart because we lack ac-
cess to any prior information, be it text, semantic
parses, or prior representations of KG nodes. Our
setting requires learning node representations from
scratch for each KG to handle unknown entities dur-
ing inference. Moreover, other challenges prevalent
in KGQA settings, namely multi-hop reasoning or
answering complex/constraint-based questions, are
also applicable to PERKGQA. To the best of our
knowledge, we are the first to address the chal-
lenges of KGQA over unseen KGs in the absence
of any additional information.

We propose two approaches, PATHCBR and
PATHRGCN, that are well-suited to these settings.
PATHCBR is a simple non-parametric case-based
reasoning approach that encodes path information
of past queries to answer a new query. PATHRGCN
is a parametric approach that employs graph neural
networks, path information, and the KG’s structure
to extract answers. These approaches circumvent
the need for learning prior node representations and
can be readily applied to unseen KGs.
Contributions of the paper:
• We formulate PERKGQA, a new setting for

KGQA where we operate over unseen KGs in
the absence of any additional information. We
observe that SOTA methods that need to learn
underlying node embeddings fare poorly.

• To encourage research, we modify an existing
academic dataset (Yih et al., 2016) and make it
available for research (as Mod-WebQSP).

• We propose PATHCBR and PATHRGCN, which
outperform baselines on Mod-WebQSP and an
internal dataset by 6.5% and 10.5% respectively.

2 Preliminaries

2.1 Task Formulation

A Knowledge Graph (KG) is represented as K =
(V, E ,R), where V is the set of entities,R is the set
of relations, and E is the set of triplets. (e1, r, e2),
e1, e2 ∈ V , and r ∈ R. Thus E ⊂ (V × R × V).
Given a natural language question q, the objective
of KGQA is to retrieve answer entities from V .

For PERKGQA, we treat each question as posed
by a separate user, and each question is associated
with its corresponding knowledge graph, Kq. A
given Kq has a subset of nodes, Vq and relations,
Rq. Two knowledge graphs,Kq andKq∗ associated
with questions q and q∗ can have a varying degree
of overlap, even being distinctly different.

2.2 Running Example

We now demonstrate the applicability of
PERKGQA for a cloud service provider (e.g.
Microsoft Azure) in Figure 1. Here, users (blue
and red) can create cloud resources (yellow), and
index them using a unique system identifier. These
resources have a corresponding user-specific tag
(green), are located in a specific region (orange),
and have predefined services deployed on them
(purple). The entire system can be envisioned
as a knowledge graph (CloudKG) where nodes
represent concepts (users and services), and edges
define the relations between concepts. Due to
confidentiality, user names are replaced with
anonymous identifiers, while concept and relation
names in CloudKG are modified. The underlying
schema is unchanged.

Deploying a chatbot-based assistant that per-
forms QA over CloudKG would facilitate use, es-
pecially by novice users. It would enable users to
navigate the system and glean information by pos-
ing natural language questions. In Figure 1, when
User 101 asks “Which resources have nlp-serv and
demo_1 tags?”, the system is expected to answer
“res_1, res_3”. We refer to Figure 1 as a running
example in subsequent sections. As new users be-
come a part of CloudKG, the QA system should
accommodate their requests over the correspond-
ing KG without any training. KGQA approaches
that operate upon the entire CloudKG would be
computationally infeasible due to the massive size
of the user-base 1. Moreover, the approach should
be privacy-preserving wherein a given user’s infor-
mation is not revealed to another.

3 Datasets

We operate on two datasets: an internal dataset,
CloudKGQA, built on top of CloudKG, and an
academic dataset called Mod-WebQSP designed
to mimic our setting. An instance in either dataset
follows the same task formulation in Section 2,
namely, for each question q, there exists a corre-
sponding KG, Kq, which contains all the necessary
information. Also, each question q is associated
with one or more source entities; these correspond
to nodes in the Kq linked through salient mentions
of entities in q. E.g., the source entity for, “Who
was responsible for Lincoln’s assassination?” is
the node corresponding to Abraham Lincoln.

1https://www.statista.com/statistics/321215/global-
consumer-cloud-computing-users/
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Figure 1: PERKGQA for a cloud service provider setting. The two users (in blue and red) create cloud resources (in
yellow) in specific regions (in orange), and deploy services e.g. Chatbot service, or Analytics (in purple) on them.
The users assign customized tags (in green) to the resources. Each user has their unique KG. The system should
scale to support queries of new users over unseen KGs without any retraining or additional knowledge.

3.1 CloudKGQA

The internal dataset, which we refer to as Cloud-
KGQA, entails question-answering of a customer’s
queries on their respective cloud resources. We re-
fer the readers to Figure 1 as we present examples
that outline the key characteristics of CloudKGQA.
• Multiple Answers: A question can have one or

more correct answers.
• Varying Complexity: A question can either be

simple or complex.
(i) Simple: The question can be answered by a
single-hop relation, e.g. “Which resource has the
tag nlp_serv?”
(ii) Complex : The question involves logical op-
erations like union or intersection, e.g.“Show me
resources in US and India” or contains multiple
constraints, e.g. “Which resource has the TTS
and MongoDB service and is located in US?” has
three constraints, TTS, MongoDB, and US.

• Multi-Hop distance: The distance between the
source entities and the answers is variable (e.g.,
the number of hops for “Show me tags for re-
sources in US” is 2 in Figure 1).

• Variable graph size: The size of the KG varies
in terms of the number of nodes, edges, and rela-
tions for each question.

• Unseen nodes: Nodes that appear in the KG dur-
ing inference might not be seen while training.

3.2 Modified WebQSP (Mod-WebQSP)

We also operate on the publicly-available WebQSP
dataset (Yih et al., 2016), built over Freebase (F).
We chose WebQSP since it shares similar char-

acteristics of CloudKGQA, namely the presence
of multi-answer, multi-hop, simple and complex
questions. To completely mimic our setting, we
construct a KG, Fq for each question q, with the
caveat that a significant fraction of nodes remains
unseen during inference. We describe our process
for creating individual KG in the Appendix A. Our
modification achieves a low overlap of 4.0% be-
tween entities across training and test splits, imply-
ing that 96% of entities remain unseen.

3.3 Differences between the datasets

We present the descriptive statistics of the two
datasets in Table 1 corresponding to the mean num-
ber of nodes, edges, relations, answers, and hops
for a KG. We also depict the degree of overlap be-
tween nodes in training and test splits. The number
of instances in CloudKGQA and Mod-WebQSP
are 800 and 4468, respectively. Moreover, we split
the data into train, development, and test for both
datasets in the ratio of 8:1:1.

We observe that CloudKGQA is comparatively
smaller in size, had significantly fewer relations,
but had longer reasoning chains. Moreover, Cloud-
KGQA had more complex questions in terms of
logical operations and multiple-constraints. Specif-
ically, CloudKGQA had one or more source entities
for each question, q, whereas Mod-WebQSP had
only one source entity. The KGs in CloudKGQA
had a similar underlying schema; different KGs
had the same set of relations but different entities.
However, the questions in the test data had distinct
question templates from those during training, as
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Figure 2: PATHCBR Overview: (1) Retrieve questions similar to a given query template from set of questions; (2)
Encode path information as a path embedding; (3) Score generated paths using the retrieved path embedding.

seen in Figure 2. The Mod-WebQSP dataset, on
the other hand, had KGs with different relations,
but questions in the test data were similar to those
asked during training. We chose these two datasets
because they capture two different scenarios.

Dataset CloudKGQA Mod-WebQSP
Nodes 23.39 518.21
Edges 35.59 1334.10
Relations 8.00 36.20
Answers 1.99 4.94
Hops 1.75 1.36
Overlap 3.21% 4.01%

Table 1: An overview of the statistics of the two datasets,
CloudKGQA and Mod-WebQSP. We present the mean
number of nodes, edges, relations, answers, and hops,
and the overlap between nodes during test and train.

4 Methodology

4.1 PATHCBR
PATHCBR is a non-parametric approach that em-
ploys case-based reasoning to retrieve queries with-
out any training . Given a question q, the corre-
sponding knowledge graph Kq and the source enti-
ties, s1, s2, · · · , sk, PATHCBR (Figure 2) performs
the following steps:
(i) Query Retrieval: For a query, q, we first re-
trieve similar questions from the available train-
ing set. We consider a question to be similar if
they share similar answer types with the query
rather than the entities (Das et al., 2020). We per-
form Named Entity Recognition (NER) to iden-
tify text-spans that correspond to source entities
s1, s2, · · · , sk in Kq (Sun et al., 2019; Wang et al.,
2020b). We substitute the extracted text spans with
a special [MASK] token, yielding the masked query
template qMASK. We hypothesize that masking en-
tities can help us learn the association of the entity

with the template and could generalize to unseen
entities. We employ a pretrained language model,
such as RoBERTa, to create a contextualized em-
bedding of qMASK and call it vq. We then retrieve
the top n questions ( q1, · · · , qn) and their respec-
tive KGs, (Kq1 , · · · ,Kqn) ranked by decreasing
cosine similarity between vq and vqi . The vqi are
created in the same manner as vq. We represent the
steps of masking and retrieving below:

qMASK ← MASK(q)

vq ← ROBERTA(qMASK)

(q1,Kq1), · · · , (qn,Kqn)← RETRIEVE(vq)

(ii) Encoding path information: We now con-
struct the answer paths for the retrieved KGs Kqi .
An answer path psij ,aik comprises a sequence of
relations, starting from a source sij entity to the
answer entity aik in Kqi . There can be multiple
answer paths between the source and the answer,
but for simplicity we consider only the shortest
paths, similar to Srivastava et al. (2021). We repre-
sent an answer path, either explicitly as a sequence
of relations (ri1, ri2, ..rim) leading from sij to aik,
or by pooling over its constituent relation embed-
dings (vri1 , vri2 , ..vrim). We describe different ap-
proaches to obtain the relation embedding vri in
Section 5. Once we have embeddings for individ-
ual paths, we pool across all possible answer paths
over the retrieved KGs, Kq to obtain the retrieved
path embedding, vqP for q. We describe the steps to
encode the path information below:

psij ,aik ←[ri1, ri2, · · · , rim]

vpsij ,aik ←MAX-POOL([vri1 , vri2 , · · · , vrim ])
vqP ←MAX-POOL([∀vpsij ,aik ])

(iii) Scoring generated paths: For the given query
q, we generate all possible paths of a certain length,
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Figure 3: PATHRGCN Overview: (1) Initialize the question using a pretrained language model (PTLM) and the
nodes in the corresponding KG; (2) Perform information propagation using RGCN to update node embeddings; (3)
Encode path information from the source entities (shown in green) to all possible target nodes by pooling over the
constituent node embeddings; (4) Perform answer prediction at both the path and node level.

arising from s1, s2, · · · , sk. The length of the path
is determined by the maximum length of the answer
path encountered during retrieval. These generated
paths (say pj) constitute a sequence of relations
arising from the source node (say r1, r2, · · · , rm),
similar to the retrieved paths. We encode them by
pooling over the constituent relation embeddings
to obtain vpj , the generated path embedding. We
finally score the generated path embedding against
the retrieved path embedding vqP ; a higher similar-
ity implies that the generated path is more likely to
lead to an answer. However, if we store the path
information explicitly as a sequence of relations,
then the nodes we reach by traversing the retrieved
sequences are answers for q. The equations follow:

pj ←[r1, · · · , rim]

vpj ←MAX-POOL([vr1 , ..., vrm ])

score(vpj )←SIM(vpj , v
q
P ).

4.2 PATHRGCN
We now propose our parametric PATHRGCN
model that can encode and fine-tune path embed-
dings for KGQA. Given a question q, the corre-
sponding knowledge graph Kq and the source en-
tities, s1, s2, · · · , sk, PATHRGCN (Figure 3), en-
compass the following steps during training:
(i) Initialization: We encode q using a pretrained
language model (PTLM) such as RoBERTa (Liu
et al., 2019), to obtain the corresponding represen-
tation, vq. We use unsupervised graph represen-
tation learning techniques like Node2Vec (Grover
and Leskovec, 2016) and Walklet (Perozzi et al.,
2017), that leverage the neighbourhood informa-
tion of nodes in Kq to obtain the corresponding

embeddings: ve1 , ve2 , · · · , veN for the N nodes
e1, e2, · · · , eN inKq. Unlike Wang et al. (2020a,b),
we do not use pretrained word embeddings since
user-provided names can be arbitrary.

vq ←ROBERTA(q)

ve1 , ve2 , ..., veN ←WALKLET(Kq).

(ii) Information propagation using GNN: We
employ graph neural networks (GNN) to update
the node representations of Kq. We modify Kq

by adding the inverse-relations between nodes
and self-loops to facilitate information propaga-
tion across both directions similar to Wang et al.
(2020a,b). We concatenate vei with vq and a binary
value of bi. bi has a value of 1 or 0, corresponding
to whether ei is a source entity. The resultant repre-
sentation, h0ei = [vq, vei , bi], is then passed as input
to the first GNN layer, and the representations of
all nodes are updated. We perform such updates
L times, where L denotes the number of GNN lay-
ers, resulting in the final representation of hLei . We
use softmax as the non-linear activation and add
dropout for regularization between updates. We
use the RGCN model (Schlichtkrull et al., 2018) to
account for different relationships between nodes.

h0ei ←vq ⊕ vei ⊕ bi

hj+1
ei ←RGCN(hjei)

(iii) Path embedding generation: We construct
all possible paths p1, p2, ...pm upto a fixed distance
from the source entities, and generate their corre-
sponding path embeddings. The embeddings for
path pj or vpj is obtained by pooling over the up-
dated representations of the nodes that constitutes
pj . We hypothesize that learning the path structure
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can provide intermediate supervision (Srivastava
et al., 2021) and can help prune-out nodes that are
unlikely to be reached from the source.

vpj ←MAX-POOL(hLei) ∀ei ∈ pj

(iv) Answer prediction: We perform answer pre-
diction both at the node and path level. We con-
catenate the updated representation for node ei as
hLei , with the question-embedding vq, and pass it
through a linear layer with sigmoid activation. to
obtain ŷei). This represents the probability of ei
being an answer and is trained against the ground
truth value of yei . We perform the same procedure
at the path level to obtain the probability of path
pj that leads to ei as ( ˆypj ,ei). We use binary cross-
entropy loss for answer prediction at the node level
(NL) and path level (PL) and minimize these losses
jointly during training. Specifically :

ŷei ←σ(FFN(hLei ⊕ vq))

ŷpj ,ei ←σ(FFN(vpj ⊕ vq))

NL =−
∑

ei∈Kq

yei · log(ŷei)

PL =−
∑

ei

∑

∀pj;ei

yei · log(ŷpj ,ei)

Inference: During inference, given a question q∗

and its corresponding sub-graph Kq∗ , the learnt
PATHRGCN models outputs (i) probability that
the node e1, e2, · · · , eN is an answer and (ii) prob-
ability that the paths p1, p2, · · · , pm leads to an
answer. Thus for a given entity, ei, we compute
the maximum probability amongst all paths that
end in ei. We compute the mean of this probability
alongside the probability of ei being an answer.

5 Experiments

5.1 Baselines

We choose GNN-based retrieval models as our
baselines since they have achieved high perfor-
mance across different KGQA datasets without
additional information (query-answer paths or se-
mantic parses). We experiment with three rele-
vant KGQA retrieval techniques, namely, Embed-
KGQA (Saxena et al., 2020), Rel-GCN (Wang
et al., 2020a), and GlobalGraph (Wang et al.,
2020b). We do not use baselines that require ad-
ditional textual information to generate the hetero-
geneous graph, such as GraftNet (Sun et al., 2018)

or PullNet (Sun et al., 2019) since this informa-
tion is not available to us. We present a detailed
description of the baselines in the Appendix B.1.

5.2 Experimental Details

PATHCBR: We experiment with how masking en-
tities impact QA performance. For CloudKGQA,
we identify entities by performing string-match
over text spans in the question to their correspond-
ing nodes in the KG. For Mod-WebQSP, we use
the publicly available SpaCy NER2. We also
experiment with SpaCy’s POS-Tagger to mask
proper nouns. The masked query is encoded using
the [CLS] token of RoBERTa-BASE (Liu et al.,
2019). We experiment with different ways to en-
code relations, either as a one-hot vector or us-
ing RoBERTa-BASE to encode the text. We per-
form max-pooling over the constituent relation em-
bedding to obtain the resultant path-embedding.
Likewise, max-pooling over the resultant path-
embeddings yields the retrieved path-embedding.
We also experimented with mean-pooling, but max-
pooling fared consistently better. The generated
paths are similarly encoded during inference. We
compute cosine-similarity between a generated and
retrieved path embedding. We retrieve the top 5
questions in descending order of their similarity for
a given query.
PATHRGCN: For PATHRGCN, we use RoBERTa-
BASE to encode the question text, and Walklet
(Perozzi et al., 2017) to generate the unsupervised
node-representations for the KG corresponding to
the question. We use Walklet instead of Node2Vec
since it exhibits the highest performance over sev-
eral node classification tasks (Rozemberczki and
Sarkar, 2020). Moreover, it does not require any
additional features to generate the embeddings and
is computationally fast; Walklet was ≈ 20 times
faster than Node2Vec.
Baselines: We defer the reader to Appendix B.2
for the exact hyper-parameter settings and experi-
mental details of the baselines.

5.3 Evaluation Metrics

We evaluate the performance of the baselines and
our proposed approaches across two metrics com-
monly used in KGQA, namely, Hits@1 and Ac-
curacy. For a given question, Hits@1 has a value
of 100 if the highest-scoring candidate is a correct

2https://spacy.io/usage/spacy-101#
annotations-ner
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CloudKGQA Mod-WebQSP

Method Hits@1 Hits@K Accuracy Hits@1 Hits@K Accuracy

EmbedKGQA 31.6 ± 3.3 31.6 ± 3.3 31.6 ± 3.3 29.1 ± 1.9 32.6 ± 2.2 25.1 ± 1.8
Rel-GCN + TransE 44.9 ± 8.7 52.5 ± 6.1 41.4 ± 6.3 49.4 ± 2.3 59.6 ± 1.2 48.5 ± 1.8
GlobalGraph + TransE 46.6 ± 3.6 56.1 ± 1.9 43.6 ± 2.5 48.4 ± 0.6 59.1 ± 0.7 48.3 ± 0.9

PATHCBR (Ours) 95.4 ± 0.3 96.7 ± 0.3 95.8 ± 0.5 49.3 ± 0.1 56.0 ± 0.1 48.0 ± 0.1
PATHRGCN + Walklet (Ours) 90.4 ± 2.1 91.3 ± 1.5 90.7 ± 1.5 68.6 ± 0.2 75.2 ± 0.4 68.5 ± 0.3

Table 2: Performance of the baselines and our approaches on CloudKGQA, and Mod-WebQSP. K is the number of
correct answers. We report the mean and standard deviation across 5 runs. The best performance is highlighted.

No Masking Masking Entities Masking Proper Nouns

CloudKGQA Hits@1 Hits@K Acc Hits@1 Hits@K Acc Hits@1 Hits@K Acc

Path Sequence 67.9 67.9 67.9 67.9 67.9 67.9 66.4 66.4 66.4
One-Hot Vector 88.8 89.4 88.8 95.4 96.7 95.8 82.4 84.9 83.6
Text Embedding 83.6 86.1 84.8 95.7 96.9 96.0 78.4 80.9 79.5

Mod-WebQSP Hits@1 Hits@K Acc Hits@1 Hits@K Acc Hits@1 Hits@K Acc

Path Sequence 33.0 37.9 32.8 41.6 46.5 41.1 47.4 52.2 46.2
One-Hot Vector 32.5 41.1 32.3 44.6 52.1 43.7 49.3 56.0 48.0
Text Embedding 13.7 21.1 16.1 22.4 28.7 23.5 25.2 32.1 26.7

Table 3: Mean performance of PATHCBR across different settings for entity masking and encoding path information,
as a sequence of relations (Path Sequence), as a One-Hot Vector, or as a Text Embedding using a PTLM. The best
performance is highlighted in bold and the second best is underlined.

answer; else, it is 0. Accuracy denotes the frac-
tion of answers predicted correctly amongst the
top K candidates (as a percentage). We also mea-
sure Hits@K for a question, for which the value
is 100 if the answer is present amongst the top K
candidates; else it is 0. For both Accuracy and
Hits@K, K is the number of correct answers. We
carry out experiment for five random seeds and
report the mean and standard deviation. We per-
form statistical significance using the paired boot-
strapped test of Berg-Kirkpatrick et al. (2012) in
Dror et al. (2018).

6 Results

In this section, we pose the following research ques-
tions (RQs) and attempt to answer the same. We
present instances of preprocessed questions that
serve as input to the model.
RQ1. How do our proposed approaches fare on
PERKGQA compared to KGQA baselines?

We observe that both PATHCBR and
PATHRGCN, yield the highest performance
on CloudKGQA, outperforming the existing
baselines by over 100% for Hits@1 and Accuracy
in Table 2. We attribute the poor performance of
prior KGQA techniques to their inability to (i)
learn global node embeddings over the large base

KG or (ii) update the embeddings during training.

For Mod-WebQSP, PATHRGCN achieves the
highest performance outperforming preexisting
baselines significantly (p-value ≤ 0.001). How-
ever, PATHCBR achieves performance comparable
to the baselines, and can answer questions corre-
sponding to templates encountered during training,
for instance, “who plays ken barlow in coronation”.
We attribute the low performance of PATHCBR to:

(i) The underlying global KG for Mod-WebQSP
is more complex and dense. There are 572 pos-
sible relations as opposed to 8 for CloudKGQA .
Moreover, there can be multiple relations between
two entities, (e.g. ‘location.country.capital’ and

‘location.contained_by’ are both valid relations be-
tween Tokyo and Japan), a characteristic absent
in CloudKGQA. The possible paths increase ex-
ponentially with hops, and additional supervision
afforded by GNNs helps answer these questions
with long-range dependencies (Wang et al., 2020b).

(ii) Not all possible relations encountered dur-
ing inference were available during training. E.g.,
the most relevant question retrieved for “what was
wayne gretzky ’s first team” was “what team does
plaxico burress play for”, because the relation cor-
responding to “first team” was absent during train-
ing. At times, the pretrained language model could
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CloudKGQA Mod-WebQSP

Method Hits@1 Hits@K Accuracy Hits@1 Hits@K Accuracy

Rel-GCN + TransE 44.9 ± 8.7 52.5 ± 6.1 41.4 ± 6.3 49.4 ± 2.3 59.6 ± 1.2 48.5 ± 1.8
GlobalGraph + TransE 46.6 ± 3.6 56.1 ± 1.9 43.6 ± 2.5 48.4 ± 0.6 59.1 ± 0.7 48.3 ± 0.9
PATHRGCN + TransE 51.4 ± 4.8 68.4 ± 2.6 57.0 ± 4.4 53.1 ± 0.9 62.6 ± 0.7 52.0 ± 0.8

Rel-GCN + Walklet 79.1 ± 3.9 79.8 ± 4.2 79.3 ± 4.0 63.0 ± 1.1 71.3 ± 0.8 63.0 ± 1.2
GlobalGraph + Walklet 86.3 ± 3.8 87.2 ± 4.0 86.5 ± 3.9 64.4 ± 0.9 72.6 ± 0.9 64.6 ± 0.8
PATHRGCN + Walklet 90.4 ± 2.1 91.3 ± 1.5 90.7 ± 1.5 68.6 ± 0.2 75.2 ± 0.4 68.5 ± 0.3

PATHRGCN + Walklet - NL 90.3 ± 7.1 91.1 ± 6.9 90.6 ± 6.8 65.7 ± 1.0 73.0 ± 1.1 65.8 ± 1.0

Table 4: Performance of the baselines and PATHRGCN when initialized with different node embeddings. We report
the mean and standard deviation across 5 runs. The best performance is highlighted. NL stands for Node Loss.

not infer the query’s semantic meaning. E.g, the
most relevant question for “what town was mar-
tin luther king assassinated in” was “what town
was abe lincoln born in”, despite the occurrence
of questions like “where was huey newton killed”.
Thus if the templates are widely different, it is not
sufficient to encode the question using a PTLM;
rather, we need to fine-tune the questions to learn
meaningful representation.

We further inspect the capabilities of our tech-
niques to address the individual characteristics of
PERKGQA, namely multiple answers, variable
hop distance, multiple constraints, and variable
KG size. Our approaches outperform baselines
consistently and significantly on all such fronts.

A thorough analysis of our proposed approaches
to the different properties of these two datasets
reveals their complementary strengths. We note
PATHRGCN has a better performance on larger
KG size, more answers, longer hops, and addi-
tional constraints, and vice-versa for PATHCBR.
We defer the reader to Appendix C for these results.

RQ2. What is the impact of entity masking and
encoding different path-information strategies
on PATHCBR’s performance?

We observe that masking entities using NER, or
proper nouns using a POS Tagger improves per-
formance in Table 3. The only exception is for
CloudKGQA where due to arbitrary naming con-
ventions (e.g. “abc123”), entities were not detected
as proper nouns creating inconsistent templates.
We observe that encoding relations as a one-hot
vector yields better performance than a text embed-
ding, especially when the relation-names exhibit
high lexical overlap as in Mod-WebQSP. Moreover,
representing the path information as a sequence of
relations cannot deal with unseen templates as in
CloudKGQA. We highlight instances that substan-

tiate our claim in Appendix C.
RQ3. What role does graph structure and path-
information play on PERKGQA?

We investigate the benefits of unsupervised
graph representation learning techniques to ini-
tialize node embeddings. In particular, we com-
pare the efficacy of Walklet and TransE embed-
dings, when applied to Rel-GCN, GlobalGraph,
and PATHRGCN. We see significant improvements
for all models when TransE embeddings are substi-
tuted with Walklet in Table 4.

Since we operate for individual KGs, TransE
does not have sufficient information to generate
meaningful node representations. Walklet lever-
ages the neighbourhood information and thus can
capture the structural representation for each KG.
PATHRGCN significantly outperforms the base-
lines on both fronts, when all three models are
initialized with Walklet or when all three models
are initialized with TransE embeddings.

We also investigate the importance of incorpo-
rating node loss (NL in Table 2) for additional su-
pervision. This aids Mod-WebQSP, where multiple
relations between entities give rise to several pos-
sible paths between source and answer, most of
which are spurious. Since multiple paths do not ex-
ist for CloudKGQA, removing the node loss does
not deteriorate performance.

7 Related Work

The task of KGQA has evolved from a simple-
classification setting (Mohammed et al., 2018) to
an information retrieval paradigm (Wang et al.,
2020b; Saxena et al., 2020; Yasunaga et al., 2021;
Sun et al., 2019; Xiong et al., 2019) that can tackle
multi-hop relations or complex questions. Other ap-
proaches include semantic parsing (Lan and Jiang,
2020; Ding et al., 2019; Maheshwari et al., 2019;
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Zhu et al., 2020; Ren et al., 2021) and reinforce-
ment learning (Das et al., 2018; Lin et al., 2018;
Saha et al., 2019; Ansari et al., 2019). We in-
vestigate graph-based information retrieval meth-
ods in this work since they achieve SOTA perfor-
mance without any additional information like log-
ical forms or semantic parses. This sets us apart
from recent work on KGQA generalizability (Gu
et al., 2021; Chen et al., 2021) which requires such
logical forms during training; information often
unavailable for real-world data settings. Our work
also differs from Sidiropoulos et al. (2020) which
is more focused on entity-linking and relation pre-
diction for unseen domains and leverages existing
web resources, which is not applicable to us.

Most KGQA approaches that operate in an infor-
mation retrieval setting over predefined (or base)
knowledge graphs follow a similar procedure to
make the problem computationally feasible. (Sun
et al., 2018, 2019; Wang et al., 2020b,a). They first
construct a smaller sub-graph for each question
from the base graph, using the Personalized PageR-
ank algorithm (Haveliwala, 2003). then re-use the
base graph’s node representation to initialize the
nodes in the sub-graph. Thus during inference,
they already have prior representation of the nodes.
However, in our setting, we encounter new KG
during inference, and thus we need to learn the rep-
resentations of those unseen nodes from scratch.

Our PATHCBR approach is closely related to
Das et al. (2020), which performs relation link-
ing such as (Delhi, capital_of, _?_). They first
retrieve entities similar to the query entity and the
corresponding reasoning paths that lead to an an-
swer for those retrieved entities. They then apply
reasoning paths to the query entity. PATHCBR dif-
fers in two ways; (i) We operate upon complex or
compositional questions and retrieve similar tem-
plates rather than entities, and (ii) We do not use a
rule-based framework to generate reasoning paths.
Rather, we encode the retrieved path information
as an embedding and use it to score paths generated
during inference to ensure generalization. In a sim-
ilar vein, Das et al. (2021) uses a neuro-symbolic
case-based reasoning approach for answering com-
plex, multi-hop questions. However, their approach
cannot be applied to our setting since it requires
logical forms (SPARQL queries). We circumvent
this requirement by designing PATHRGCN that
leverages GNNs, KGs’ structure, and path informa-
tion between source and answers.

8 Conclusion and Future Work

We propose PERKGQA, a realistic setting for
performing question answering over knowledge
graphs; for each user’s question, we have their cor-
responding KG but no additional information. Such
a setting addresses the challenges of unseen nodes
during inference, and prevents access to informa-
tion of other users while being computationally fea-
sible. However, state-of-the-art KGQA techniques
that require learning node representations a priori
fare poorly. We propose two approaches, a simple
non-parametric case-based-reasoning model and
a supervised neural architecture, harness path in-
formation for QA. Our approaches improve upon
the baselines by 6.5% on an academic dataset and
10.5% on an internal dataset.

Having demonstrated the applicability of
PERKGQA in the cloud service provider domain,
we aim to explore other scenarios involving per-
sonalized or sensitive information, like healthcare.
Prior work in medical NLP has focused predomi-
nately on generic or ontological knowledge such
as UMLS. A personalized KG, constructed over a
patient’s health records, will encode information
specifically for the individual and not the general
population, e.g. whether the patient is allergic to
certain medications. We plan to collaborate with
medical professionals and create personalized KG
in the healthcare domain to assist patients.

Furthermore, we seek to address certain limita-
tions of our current approach, namely their inability
to tackle spurious paths. We plan to rectify it either
by explicitly providing the correct path information
or incorporating some learning paradigm to detect
them (He et al., 2021). Moreover, for PATHCBR,
the retrieval phase is a bottleneck since one needs
to compare a given query with all possible train-
ing questions and requires better indexing schemes
like FAISS (Johnson et al., 2019). Likewise, the
inference time for both approaches increases as
the number and the length of the paths increase.
However, PATHRGCN can adapt to longer paths
since the node embeddings provide some degree
of additional supervision. Nevertheless, we plan
to explore techniques beyond embedding-based ap-
proaches, namely semantic parsing or query-graph
generation, to alleviate the path-based constraint
and adapt them to our PERKGQA. In the absence
of gold logical forms, we plan to learn semantic
parses through a weakly-supervised or distantly-
supervised setting similar to Cheng et al. (2019).
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Supplementary Material

A Constructing Mod-WebQSP

We also mimic our setting on the publicly-available
WebQSP dataset (Yih et al., 2016), which operates
on the Freebase KG, F 1 . We use the pruned ver-
sion of the dataset provided by Saxena et al. (2020).
To completely mimic our setting, we construct a
graph Fq associated with each question q with the
caveat that a significant fraction of nodes we en-
counter during inference are not observed during
training.

Each question is associated with a source entity,
as noted in the dataset of Saxena et al. (2020). The
question’s corresponding KG, comprises all nodes,
a distance of k-hop from the source entity, where
k is the shortest distance between the source and
the answer. We limit ourselves to k=2, similar to
Saxena et al. (2020). Furthermore, to constrain the
size of Fq, we randomly sample 1000 paths at a
k-hop distance from the source entity; these are
inclusive of all paths that lead from the source to
an answer.

We observe a small fraction of questions (≈ 5%),
which have ≥ 100 answers; these correspond to
simple 1-hop questions like “What did Roald Dahl
write?”, or “Who are famous people from Spain?”.
We remove such questions to constrain the size of
the KG. Since our objective was to retrieve all pos-
sible answers in the KG for a given question, there
are no missing answers in the KG corresponding to
the question in the Mod-WebQSP.

To achieve low overlap between nodes we en-
countered during training and inference, we mod-
ify them by assigning new identifiers. For exam-
ple, a node, “m.0gzh” corresponding to “Abraham
Lincoln”, was modified to “KG_i_m.0gzh” and
“KG_j_m.0gzh” for questions qi and qj in their re-
spective KG Fqi and Fqj . Although these nodes
have the same underlying entity name in the origi-
nal KG, F , their node representations are different
in these two questions. We rank all relations in F ,
based on the decreasing order of frequency, and
chose the top 39 relations that occur in 95% of all
triplets in F . We modify only those nodes which
are associated with these 39 relations.

We added the graph-identifiers to the most fre-
quent relations to ensure a small degree of overlap
between the training and the test sets, similar to

1https://developers.google.com/
freebase/data

the CloudKGQA dataset, where certain entities
were universal, like names of regions (India, USA).
This would facilitate prior KGQA techniques, like
EmbedKGQA, that perform KGC on the individ-
ual KGs to share embeddings and perform better.
However, our proposed approaches, PATHCBR,
and PATHRGCN remain agnostic to the degree of
overlap. They do not keep track of any prior enti-
ties. Specifically PATHCBR masks these entities
in the question, whereas PATHRGCN learns these
entity representations from scratch for each KG.

B Experiments

In this section, we present the baselines in detail
and our experimental settings.

B.1 Baselines

EmbedKGQA: The EmbedKGQA model (Saxena
et al., 2020) performs Knowledge Graph Comple-
tion (KGC) on an existing knowledge graph, to
learn node representations. They use ComplEx
(Trouillon et al., 2016) to generate node embed-
dings, to account for the anti-symmetric nature of
the relations between nodes. Furthermore, they
use RoBERTa (Liu et al., 2019) as the Pre-Trained
Language Model (PTLM) to encode the question.
They learn an objective function to select answers
based on the similarity between question and node
embeddings and further perform pruning based on
the relation type to prevent over-generation of can-
didates. EmbedKGQA can perform arbitrary multi-
hop reasoning, is not restricted to a specific neigh-
bourhood, and can effectively handle incomplete
links/edges. To ensure EmbedKGQA can be ap-
plied in our setting, we carried out KGC on the KG
associated with the question instead of the entire
Freebase KG. This ensures that the entity represen-
tations are distinct for each individual KG.

Rel-GCN: The Rel-GCN approach of Wang
et al. (2020a) first constructs a smaller sub-graph
Kq for a given question, using PPR (Haveliwala,
2003) from the large base knowledge-graph, K.
They encode the question q using PTLM as vq,
and use TransE (Bordes et al., 2013) on K to
obtain the node representations vei for node ei
in K. They concatenate the node embedding
with the question-embedding eq, and then perform
RGCN on Kq to obtain their updated representa-
tions. These updated representations are used to
score whether a given node is an answer or not. For
PERKGQAsetting we perform TransE not on the
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original graph, K, but on each sub-graph Kq.

GlobalGraph: The GlobalGraph technique of
Wang et al. (2020b) is similar in conception to
Rel-GCN, having the same steps, (i) sub-graph
construction, (ii) encoding representations of ques-
tion and nodes, (iii) running RGCN to update the
node representations. Moreover, to capture long-
dependencies between nodes, the model leverages
the set of incoming and outgoing relations to as-
sign a global type for each node. They also identify
nodes that are correlated with the question and con-
struct a dynamic graph connecting such similar
nodes. GCN over this dynamic graph yields up-
dated representations for such nodes. Once again,
for PERKGQA, we perform TransE on the individ-
ual KG associated with the question Kq.

B.2 Experimental Details

We describe the hyper-parameters we employ for
the parametric models, namely PATHRGCN and
the baselines.

PATHRGCN: For PATHRGCN, we use RoBERTa-
BASE to encode the question text, and Walklet
(Perozzi et al., 2017) during initialization to gener-
ate the unsupervised node-representations for each
KG. The embedding sizes for the question, nodes,
and GNN layers was set to 768, 128, and 200, re-
spectively. We fix L, the number of GNN layers to
1. For Path-RGCN, the length of an answer-path is
chosen based on the maximum distance between a
source entity and an answer entity encountered dur-
ing training. This corresponds to a distance of 3 for
CloudKGQA and a distance of 2 for Mod-WebQSP.
We used Adam optimizer with a low learning rate
of 2e-5, a decay of 5e-4, and patience of 30, and
trained for 100 epochs. Each model took around 3
hours to complete on a p3.8x large EC2 instance.

Baselines: For Rel-GCN (Wang et al., 2020a),
and GlobalGraph (Wang et al., 2020b), we use
RoBERTa-BASE (Liu et al., 2019) to encode the
question, and TransE embeddings to initialize the
nodes (Bordes et al., 2013). We use the pub-
licly available PyTorch-Geometric library (Fey and
Lenssen, 2019) to implement RGCN (Schlichtkrull
et al., 2018) for these two baselines. The embed-
ding dimensions for our question, node, and GNN
layers are 768, 128, and 200 respectively. The num-
ber of GNN layers, was set to 2 and 1 for Rel-GCN
and GlobalGraph respectively, as specified in their
papers. For EmbedKGQA, we use the publicly

available code of Saxena et al. (2020) along with
the default hyper-parameters for training. We use
the publicly-available, LibKGE (Broscheit et al.,
2020) library to generate Complex embeddings for
each KG.

C Analysis

RQ1. What is the impact of entity masking and
encoding different path-information strategies
on PATHCBR’s performance?

We investigate the impact of different strategies
for masking entities and encoding path information
on the performance of the PERKGQAtask for the
two datasets and report them in Table 3.

(i) Entity-masking: For Mod-WebQSP, entity
masking using either a publicly-available NER or
a POS Tagger, shows a huge boost in performance
as seen in Table 3. Masking entities facilitates
retrieving relevant questions which share similar
answer types rather than similar entity names in
the query. For example, for “What county is gree-
ley colorado in ?”, the most relevant question re-
trieved after masking is “What county is novato
california in?”, as opposed to “What college is in
greeley colorado?”. We observe a similar trend
for CloudKGQA when we mask entities linked to
nodes in the KG. However, the performance drops
substantially when we use a POS-Tagger. Since
the naming convention for nodes is arbitrary, like

“abc123”, they are not detected as proper nouns;
this creates inconsistent templates, and irrelevant
questions appear higher in the ranked list.

(ii) Encoding path information: We ob-
serve that encoding relations as one-hot vectors
fare just as well, if not better than encoding
the relation-text using a PTLM. This is espe-
cially true for Mod-WebQSP where relation-names
have high lexical overlap and thus exhibit high
similarity. For example, for “where is jamar-
cus russell from”, the correct relation is “peo-
ple.person.place_of_birth”, but the relation pre-
dicted, was “people.person.date_of_birth”. En-
coding relations as one-hot-vectors circumvents
this issue. Encoding the path-information, as a se-
quence of relations works well for Mod-WebQSP
but not for our CloudKGQA, since the questions
encountered during inference have different tem-
plates.
RQ2. How does our proposed approaches fare
against the baselines for different KGQA prop-

https://github.com/malllabiisc/EmbedKGQA
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(a) CloudKGQA: Accuracy vs # Answers (b) Mod-WebQSP: Accuracy vs # Answers

(c) CloudKGQA: Accuracy vs Subgraph size (d) Mod-WebQSP: Accuracy vs # Subgraph Size

(e) CloudKGQA: Accuracy vs # Hops (f) Mod-WebQSP : Accuracy vs # Hops

(g) CloudKGQA: Accuracy vs # source entities (h) CloudKGQA: Accuracy vs # Constraints

Figure 4: Performance of the different techniques on the CloudKGQA dataset and the Mod-WebQSP dataset across
different properties of the dataset. For CloudKGQA, we investigate the difference in performance based on the
number of hops, head-nodes, logical constraints, and KG size. For Mod-WebQSP, we observe the difference in
performance based on the number of hops and the size of the subgraph.

erties?
We investigate the performance of the differ-

ent methods (accuracy) on the PERKGQA task
for different properties of the dataset. The meth-
ods we investigated were (i) PATHRGCN (ii)
PATHCBR (iii) GlobalGraph initialized with Walk-
let (iv) PATHRGCN initialized with TransE, and
(v) GlobalGraph initialized with TransE, the best
baseline without any modifications. We investigate
the following dataset properties.
(i) Variable number of answers: We observe the
performance for variable number of answers, for
CloudKGQA in Figure 4a and for Mod-WebQSP
in Figure 4b.
(ii) Variable size of the graph: We note the effect
of for varying graph size on different methods for

CloudKGQA in Figure 4c and for Mod-WebQSP
in Figure 4d.
(iii) Variable Hop Distance: We investigate the
performance for varying number of hops for the
CloudKGQA in Figure 4e and for Mod-WebQSP
in Figure 4f.
(iv) Complex Questions: We observe specifically
for CloudKGQA how the accuracy across methods
varies for complex questions, based on the varying
number of head-nodes in Figure 4g and the number
of logical constraints in Figure 4h. This informa-
tion was available to us for our internal dataset but
not for Mod-WebQSP.

For CloudKGQA, we observe that our non-
parametric PATHCBR approach achieves the high-
est performance when the number of answers is
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few (≤ 3), the subgraph is comparatively smaller
(# edges ≤ 50), the number of hops is few (≤
2), and when there are fewer constraints, (number
of logical constraints ≤ 2, and number of source
entities ≤ 3). PATHRGCN boasts a comparative
higher performance for the converse scenarios, i.e.,
greater answers, a larger size of the KG, more
hops, and additional constraints. This observation
highlights the trade-off between model complex-
ity and the complexity of the question itself. The
only exception lies for the 2-hop cases wherein
PATHCBR achieves a score of 1.0 because the ques-
tions seen during training had a similar template,
and answers were found within two hops. Neverthe-
less, across all sub-cases, we see that our proposed
architectures, PATHRGCN or PATHCBR, boasts
the highest performance, while the GlobalGraph +
TransE, the best performing baseline, achieve the
lowest performance. The baseline fares are con-
sistently poorer than the PATHRGCN + TransE,
which shows that incorporating the path informa-
tion was beneficial across all stages.

For Mod-WebQSP, we see that our PATHRGCN
model consistently boasts the highest accuracy
across all sub-cases. The trend is similar to Cloud-
KGQA, where the PATHRGCN model can handle a
larger KG size and more considerable hop distance.
The only difference is the higher performance of
PATHCBR when there are more answers, which is
justifiable since the mean number of answers for
Mod-WebQSP is five instead of two.

D Ethical Risks

In this paper, we propose PERKGQA, a realis-
tic setting for performing question answering over
knowledge graphs; for each user’s question, we
have their corresponding KG, but no additional in-
formation, and we have to perform QA using that
limited information. We acknowledge that our set-
ting could be applicable in scenarios involving per-
sonalized or sensitive information, like healthcare
or insurance providers. Our settings is explicitly
designed to deter access to another user’s informa-
tion when a given user poses a query. However,
the model might provide different answers to dif-
ferent users despite the same query because the
underlying KG is different. We acknowledge that
our proposed idea is still in its infancy and requires
more research to deem it suitable for real-world
applications.

268


