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Abstract

With the recent success of dense retrieval meth-
ods based on bi-encoders, studies have ap-
plied this approach to various interesting down-
stream retrieval tasks with good efficiency
and in-domain effectiveness. Recently, we
have also seen the presence of dense retrieval
models in Math Information Retrieval (MIR)
tasks, but the most effective systems remain
classic retrieval methods that consider hand-
crafted structure features. In this work, we
try to combine the best of both worlds: a well-
defined structure search method for effective
formula search and efficient bi-encoder dense
retrieval models to capture contextual similari-
ties. Specifically, we have evaluated two repre-
sentative bi-encoder models for token-level and
passage-level dense retrieval on recent MIR
tasks. Our results show that bi-encoder models
are highly complementary to existing structure
search methods, and we are able to advance the
state-of-the-art on MIR datasets.

1 Introduction

Math Information Retrieval (MIR) is a special in-
formation retrieval domain that deals with hetero-
geneous data. The core task in this field is to re-
trieve relevant information from documents that
contain math formulas. As digitized math content
(mostly in LATEX markup or MathML format) be-
comes readily available nowadays, being able to
index and retrieve formulas (or equations) in those
documents effectively is possibly one of the hard
nuts left to be cracked before we can search freely
for scientific documents, educational materials, and
other math content.

The need to measure similarities for highly struc-
tured formulas with special semantic properties
and to model their connections to the surround-
ing text have a few interesting consequences: (1)
Heuristic scores like the term-frequency factor in
tf–idf scoring variants become less relevant in for-
mula similarity assessment because symbols in a

math formula can be interchangeable and similar-
ity may depend on expression structure rather than
frequency of co-occurrence. (2) At the same time,
the same math content can be expressed differently,
e.g., {1, 2, ...} and N+ represent the same concept
but they are made of totally different tokens. We
also need to capture similar math expressions with
different structure due to math transformations, e.g.,
1 + 1

x and 1+x
x . These have made structure search

approaches alone suboptimal. (3) Many existing
methods score math and text separately because
they are of different modalities; however, failing to
catch cross references between text and math will
penalize retrieval effectiveness. For example, a top
effective math-aware search engine adopting tradi-
tional ad-hoc search techniques (Fraser et al., 2018;
Ng et al., 2020, 2021) tunes a hyperparameter to
weight text and formulas in two separate passes,
which provides little awareness of the connections
between formulas and their surrounding text. The
aforementioned challenges have put limitations on
further advances in this field.

On the other hand, recent bi-encoder dense re-
trieval models (Karpukhin et al., 2020; Santhanam
et al., 2021; Hofstätter et al., 2021; Formal et al.,
2021; Gao and Callan, 2021) have been shown to
be highly effective for in-domain retrieval while
remaining efficient for large corpora in practice.
Compared to traditional retrieval methods, these
models use dual deep encoders, usually built on
top of a Transformer encoder architecture (Vaswani
et al., 2017; Devlin et al., 2019), to encode query
and document passages separately and eventually
output contextual embeddings. Similarity scores
can be efficiently computed given these embed-
dings, which limits costly neural inference to in-
dexing time. The effectiveness of these models
can be attributed to the encoder’s ability to capture
contextual connections or even high-level seman-
tics without the necessity for exact lexical match-
ing. This very complementary benefit compared to
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more rigorous structure search methods motivates
us to investigate whether dense retrieval models
can improve MIR results when combined with ex-
isting structure search methods. We summarize the
contributions of this work as follows:

• We have performed a fair effectiveness compar-
ison of a token-level and a passage-level dense
retrieval baseline in the MIR domain. To our
knowledge, this is the first time that a DPR model
has been evaluated in this domain.

• We have successfully combined dense retrievers
with a structure search system and have been able
to achieve new state-of-the-art effectiveness in
recent MIR datasets.

• A comprehensive list of dense retrievers and
strong baselines for major MIR datasets are cov-
ered and compared. We believe our well-trained
models and data pipeline1 can serve as a stepping
stone for future research in this domain, which
suffers from a scarcity of resources.

2 Background and Related Work

2.1 Classic and Structure Search

Research on math information retrieval started with
the DLMF project from NIST decades ago (Miller
and Youssef, 2003). Naturally, early studies (Miller
and Youssef, 2003; Youssef, 2005) directly con-
verted math symbols to textualized tokens (e.g.,
“+” will be converted to “plus”) so they can be
easily retrieved with existing IR systems. Later,
a line of studies (Hijikata et al., 2009; Sojka and
Líška, 2011; Lin et al., 2014; Zanibbi et al., 2015;
Kristianto et al., 2016; Fraser et al., 2018) utiliz-
ing full-text search engines additionally introduced
various intermediate tree representations to extract
features that capture more structure information.

The MathDowsers system (Fraser et al., 2018;
Ng et al., 2020, 2021; Ng, 2021) stands out in re-
trieval effectiveness by the incorporation of a ma-
ture full-text search engine and a curated list of
over 5 types of features extracted from the Sym-
bol Layout Tree (SLT) representation (Zanibbi
and Blostein, 2012). Other features like the leaf-
root paths extracted from the Operator Trees or
representational MathML DOMs are also popular
among researchers (Hijikata et al., 2009; Yokoi
1Our model checkpoints and source code are made
publicly available: https://github.com/approach0/
math-dense-retrievers/tree/emnlp2022

and Aizawa, 2009; Zhong, 2015; Zhong and Fang,
2016); these features are invariant to operand po-
sition mutation (e.g., due to commutativity) and
require less storage. More strict and top-down ap-
proaches (Kohlhase et al., 2012; Schellenberg et al.,
2012; Zanibbi et al., 2016b; Zhong and Zanibbi,
2019; Mansouri et al., 2020) have also been pro-
posed by evaluating well-defined math formula
structure similarity or edit distance, resulting in
higher precision in top-ranked results generally.
Furthermore, Zhong et al. (2020) have shown that
a top-down structure search method can be accel-
erated to achieve practically efficient first-stage re-
trieval as well.

2.2 Data-Driven Methods

More recently, data-driven approaches that incorpo-
rate word embeddings (Gao et al., 2017; Mansouri
et al., 2019), GNNs (Song and Chen, 2021), or
Transformer models (Peng et al., 2021; Reusch
et al., 2021a,b) have also been proposed for the
MIR domain. By observing token co-occurrence
and structure features during training, these mod-
els can discover synonyms or high-level seman-
tic similarities, making them a good enhancement
to strict structure matching. However, previous
Transformer-based retrievers in this domain (Man-
souri et al., 2021a; Reusch et al., 2021a,b) either
only evaluate partial collections due to the adop-
tion of expensive cross encoders, or cover only
a token-level bi-encoder retriever, i.e., using the
ColBERT model (Khattab and Zaharia, 2020; San-
thanam et al., 2021). The effectiveness of a fine-
tuned bi-encoder Transformer retriever for passage-
level semantic similarity remains unknown.

In this work, we examine the DPR model
(Karpukhin et al., 2020) as a passage-level dense
retriever baseline for the MIR domain. We also
fine-tune a ColBERT model (Khattab and Zaharia,
2020) that greatly outperforms the same type of
models previously described in this domain. Fur-
thermore, previous efforts (Mansouri et al., 2019;
Peng et al., 2021) to consider structure features us-
ing data-driven models have achieved good levels
of effectiveness; we will follow this path and evalu-
ate the combination of structure-matching methods
and dense retrieval.

Finally, some previous effective cross-encoder
math retrieval runs (Reusch et al., 2021b) are based
on further-pretrained backbone models in this do-
main. However, this domain-adaptive pretraining
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(DAPT) (Gururangan et al., 2020) shows inconsis-
tent benefits to downstream tasks (Zhu et al., 2021).
In this work, we wish to investigate and compare
different bi-encoder backbones on downstream re-
trieval effectiveness in a fair manner.

2.3 Dense Retrieval Models

DPR In the Dense Passage Retriever (DPR) ar-
chitecture (Karpukhin et al., 2020), a Transformer
encoder E(·) is applied to the query or passage:
the output embedding corresponding to the [CLS]
token is used to calculate a similarity score. To
facilitate retrieval efficiency, a simple dot product
is used:

S(q, p) = E(q)T · E(p) (1)

where S(q, p) represents the similarity between a
query q and a passage p.

During training, a pretrained model is used as
the initial encoder state, and the encoder is opti-
mized through the objective of a contrastive loss
consisting of a query and a pair of positive and
negative passages, p+ and p−. A common practice
in training a batch of queries {qi}B1 is to utilize pas-
sages of other training instances from the batch as
additional in-batch negatives in the loss function:

L(i)(qi, p
+
i , p

−
i,1, ..., p

−
i,2B−1)

= − log
exp

(
S(qi, p

+
i )

)

exp
(
S(qi, p

+
i )

)
+

2B−1∑

j=1

exp
(
S(qi, p

−
i,j)

)

(2)

ColBERT Instead of using a single passage-level
embedding, the ColBERT model (Khattab and Za-
haria, 2020; Santhanam et al., 2021) preserves all
output embeddings for the similarity calculation.
Since each Transformer encoder is pretrained using
the MLM objective (Devlin et al., 2019), the model
provides fine-grained contextualized semantics for
individual tokens.

Given a query token sequence q = q0, q1, ...ql
and a passage token sequence p = d1, d2, ...dn,
ColBERT uses either dot product or L2 distance of
normalized embeddings for computing the token-
level similarity score s(qi, dj). During scoring, it
locates the highest-scoring token of a passage dj
for each query token qi (i.e., the MaxSim opera-
tor), and a summation is taken over these partial

scores as the overall similarity between query q and
passage p:

S(q, p) =
∑

i∈[E(q)]

max
j∈[E(p)]

s(qi, dj). (3)

Similar to the DPR model, given a triple of query
and a contrastive passage pair, i.e., (q, p+, p−),
the ColBERT model optimizes a pairwise softmax
cross-entropy loss.

Because ColBERT uses all passage token em-
beddings, it applies a linear pooling layer on top of
its backbone encoder to obtain smaller fixed-size
(d = 128 by default) embedding outputs for more
efficient score computation or token-level indexing.
In addition, the model prepends two different spe-
cial tokens, [Q] or [D], to distinguish the encoding
of a query or a passage. In practice, the authors
also demonstrate improved effectiveness via query
augmentation by rewriting [PAD] query tokens to
[MASK] tokens before query encoding.

In end-to-end retrieval, however, ColBERT typ-
ically relies on two-stage query processing for ef-
ficiency: (1) A candidate set of tokens is retrieved
using highly efficient approximate nearest neigh-
bors (ANN) search techniques (e.g., Jégou et al.,
2011). (2) Then, the passages containing these to-
kens need to be located. (3) Finally, the candidate
passages are then sent to the GPU for fast matrix
multiplication to calculate token similarities for
each query and passage in the candidate pool. Due
to the candidate selection pipeline, this process is
regarded as an approximate version of retrieval for
the similarity search specified by Eq. 3.

2.4 Fusing Dense and Structure Signals

Although Peng et al. (2021) have performed struc-
ture mask pretraining for better matching formula
substructures, their method is still based on addi-
tional structure embeddings generated from a dif-
ferent system. However, we argue that a dense
retrieval model may excel at adding fuzziness and
recall to math retrieval without being constrained
to require a structure match in candidates. Given
that previous math retrieval systems (Zhong et al.,
2020, 2021) have already incorporated effective for-
mula structure matching, we wish to combine exist-
ing well-defined structure similarity search systems
with more fuzzy and higher-level semantic search
capabilities from dense retrieval models.
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3 Evaluation Setup

3.1 Datasets

Evaluations in this paper are conducted on two
recent MIR tasks:

NTCIR-12 Wiki-Formula (Zanibbi et al., 2016a)
A formula-only retrieval task made from math-
related pages in Wikipedia. Both queries and
documents are isolated formulas encoded using
LATEX. We consider all 20 concrete queries (no
wildcards for formula variables) and index all
(around 591,000) formulas as documents in this
task. Judgment ratings are provided on a scale of
0 to 3. For each judged formula, the ratings are
mapped to fully relevant (≥ 2), partially relevant
(≥ 1), or irrelevant (= 0).

ARQMath-2 (main task) (Mansouri et al., 2021b)
A CLEF answer retrieval task for math-related
questions. The collection includes roughly 1 mil-
lion questions, containing 28 million formulas ex-
tracted from the MSE (Math StackExchange) web-
site.2 There are 100 question posts sampled from
MSE, where 71 of these questions are sufficiently
evaluated (an average of 450 answers per topic are
assessed by human experts). The official evaluation
measurements in ARQMath are prime-versions of
NDCG, MAP, and Precision at 10. They differ
from the original metrics in that unjudged docu-
ments from the ranked lists are removed before
evaluation. Relevance levels include High (= 3),
Medium (= 2), Low (= 1), and Irrelevant (= 0).
High and Medium relevance are collapsed for bi-
nary evaluation metrics.

We use the official evaluation metrics and protocols
for both tasks. Each run contains a ranked list of
1000 documents per query.

3.2 Pretraining Configurations

We consider three types of pretrained Transformer
backbones for downstream math retrieval tasks.

BERT (Devlin et al., 2019) A Transformer encoder
pretrained using MLM and NSP objectives on a
large corpus comprising the Toronto Book Corpus
and English Wikipedia.

SciBERT (Beltagy et al., 2019) A further pre-
trained Transformer encoder built on the BERT
base model using 1.14M scientific papers with ad-
ditional vocabularies for scientific content.
2https://math.stackexchange.com

Example: Inequality between norm 1, norm 2 and norm
∞ of matrices: ∥A∥2 ≤

√
∥A∥1∥A∥∞

Output: Inequality between norm 1, norm 2 and norm <in-
fty> of matrices: <Vert> <A> <Vert> <subscript> <2> <le>
<root> <{> <Vert> <A> <Vert> <subscript> <1> <Vert>
<A> <Vert> <subscript> <infty> <}>

Figure 1: Example of pre-tokenized math content con-
taining LATEX markup. The output has all meaningful or
syntactic LATEX tokens preserved.

Our further-pretrained BERTs We further pre-
train the BERT base model on 1.69M math-related
documents composed of texts and math formu-
las using the MLM and NSP objectives proposed
by Devlin et al. (2019). Specifically, we crawl MSE
and the Art of Problem Solving3 websites. Out of
9M sentences from these documents, we extracted
2.2M sentence pairs for training. All LATEX markup
are pre-tokenized using the PyA0 toolkit (Zhong
and Lin, 2021), which unifies semantically identi-
cal tokens (e.g., \frac and \dfrac), adding 539
new tokens into the vocabulary space. An exam-
ple of the pre-tokenizing process can be found in
Figure 1. We treat these LATEX tokens as regular
text during training. Our own backbone is trained
on eight A100 GPUs with a batch size of 240 for 3
and 7 epochs.

3.3 Fine-Tuning Configurations

On top of different backbones, we fine-tune our
bi-encoder models using the ARQMath collection
as training data (we use Q&A posts prior to the
year 2018). Given a query q, we sample a positive
passage p+ from accepted answers, duplicate ques-
tions, or any answer posts to the query receiving
more than 7 upvotes. A random answer passage
related to the same tags is treated as a hard negative
sample p−. We obtain 607K (q, p+, p−) triplets for
training dense retrieval models.

We use the AdamW optimizer (Loshchilov and
Hutter, 2017) in all our experiments, with a weight
decay of 0.01, and a learning rate of 1 × 10−6

for ColBERT and 3 × 10−6 for DPR. Following
Reusch et al. (2021b), we set the maximum number
of input tokens to 512.

DPR models trained for 1 epoch To validate the
effectiveness of our pretrained backbones, we de-
sign a comparative experiment where DPR models
on different backbones are trained for the same
3https://artofproblemsolving.com/community
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number of steps (∼550K iterations, approximately
one epoch) with a batch size of 15. The goal of
these conditions is to quickly compare the effec-
tiveness of different backbones.

Fully-trained models To maximize effectiveness,
we fine-tune our DPR and ColBERT models on
our backbone that has been further pretrained for
7 epochs. We fine-tune DPR for 10 epochs with a
batch size of 36, and ColBERT with a batch size of
30 for 3 epochs, both on A6000 GPUs.

3.4 Structure Search Fusion
The best way to add structure similarity awareness
to dense retrieval models remains an important and
open problem. In this work, we make the first
attempt to simply merge dense retrieval results with
results generated from a structure search system,
Approach0 (Zhong and Zanibbi, 2019; Zhong et al.,
2020). Approach0 takes a top-down approach to
evaluate formula similarities, and thus it is very
complementary to more fuzzy semantic retrieval.

We evaluate search fusion against the NTCIR-12
and ARQMath-2 tasks. Based on structure search
results, which are generated by Approach0 and
tuned on a different dataset (i.e., ARQMath-1), we
perform one of two alternatives: (1) rerank the base-
line using inference scores from DPR or ColBERT;
(2) linearly combine scores from the baseline and
from DPR or ColBERT. In the second case, we
perform 5-fold cross validation to tune a weight
α ∈ {0.1, ..., 0.9}. The final fusion score Sf is
interpolated by a convex combination:

Sf = α · Sd + (1− α) · Sa,

where Sd, Sa are the scores from the dense retriev-
ers and the structure search, respectively. Original
scores are rescaled using min-max normalization,
and when a document is missing from the other
source during fusion, we set its score to zero.

3.5 Baselines
For the NTCIR-12 dataset, we compare our scores
to the only Transformer retriever reported on this
dataset, i.e., MathBERT (Peng et al., 2021), a
BERT model with specialized structure-aware fur-
ther pretraining. However, their results should be
regarded as an ensemble run because they are gener-
ated from reranking a highly effective run produced
by Tangent-CFT (Mansouri et al., 2019).

For the ARQMath-2 dataset, we select other bi-
encoder Transformer runs submitted or reported on

the ARQMath-2 main task (Mansouri et al., 2021b).
This includes ColBERT runs based on different
backbones from the TU_DBS team (Reusch et al.,
2021b), using the weights of the original BERT-
base, SciBERT (Beltagy et al., 2019), and a Col-
ARQBERT pretrained from scratch on the ARQ-
Math corpus. Furthermore, two additional effective
bi-encoder models—CompuBERT (Novotnỳ et al.,
2021) from MIRMU and FormulaEmb (Dadure
et al., 2021)—are also compared. The former uses
averaged token embeddings of SentenceBERT fine-
tuned by minimizing the cosine distance of ques-
tions to their accepted or high-ranking answers,
while the latter uses pretrained Transformer embed-
dings directly for similarity computations.

In our fusion results, we compare top-effective
existing systems. For the NTCIR-12 dataset,
we include: MCAT (Kristianto et al., 2016) –
an expensive MIR system that takes on average
over 25 seconds per query to run; the Tangent-
S system (Davila and Zanibbi, 2017) using low-
granularity structure node pairs; and its succes-
sor Tangent-CFT (Mansouri et al., 2019) based
on FastText embeddings of local structures from
the SLT representation; a GNN model for formula
retrieval (Song and Chen, 2021); and finally, Math-
BERT (Peng et al., 2021). However, the two most
effective ensemble runs, TanAPP (Mansouri et al.,
2019) and MathAPP (Peng et al., 2021), are ex-
cluded because their linear fusion weights are tuned
directly on the complete NTCIR-12 dataset.

For the ARQMath-2 dataset, we include the
most effective systems for comparison: the Math-
Dowsers primary system (Fraser et al., 2018; Ng
et al., 2020, 2021; Ng, 2021) and the up-to-date Ap-
proach0 system. Additionally, two cross-encoder
dense retrievers are included: the TU_DBS pri-
mary retriever based on ALBERT (Reusch et al.,
2021a) and QASim (Mansouri et al., 2021a), which
combines two Transformers, for question-question
and question-answer similarity assessment. We
also consider ensemble systems including the
most effective run (WIBC) from the MIRMU
team (Novotnỳ et al., 2021) and the official tf–
idf and tf–idf+Tangent-S baselines provided in
the ARQMath-2 main task. The tf–idf+Tangent-S
baseline is an unweighted average fusion between
the results produced by the Terrier system (Ounis
et al., 2005) and a structure-search system, Tangent-
S (Davila and Zanibbi, 2017). In the Terrier pass,
LATEX strings are directly used for retrieval.
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Table 1: Effectiveness comparisons of bi-encoder Transformers. Rows (1)–(4) show DPR models fine-tuned for
one epoch, starting from different pretrained backbones. Our fully-trained passage-level and token-level models
(DPR and ColBERT, respectively), rows (11) and (12), are compared with existing Transformer models in rows
(5)–(10). */** denotes that the compared row performs weaker than the bottom row in each block, i.e., the 1-epoch
fine-tuned and 7-epoch further-pretrained BERT in row (4) or our fully-pretrained ColBERT model in row (12), at
p < 0.05/0.01 level using the two-tailed pairwise t-test. Underlined scores are not involved in any test of significance
due to unavailable run files.

Runs NTCIR-12 Wiki-Formula CLEF ARQMath-2
Full BPref Part. BPref Judged ‰ NDCG’ MAP’ P’@10 BPref Judged ‰

DPR models fine-tuned for 1 epoch
(1) BERT (2019) 0.505 0.393 21.9 0.174* 0.051 0.116 0.073 45.3
(2) SciBERT (2019) 0.512 0.363 21.1 0.176* 0.056 0.134 0.073 42.3
(3) further-pretrained BERT (3 epochs) 0.486 0.392 21.8 0.195 0.058 0.126 0.073 45.0
(4) further-pretrained BERT (7 epochs) 0.522 0.439 23.2 0.200 0.060 0.130 0.081 46.8

Other bi-encoder Transformers
(5) MathBERT † (2021) 0.614 0.736 - - - - - -
(6) TU_DBS ColSciBERT (2021b) - - - 0.028** 0.004** 0.009** 0.009** 17.5
(7) TU_DBS ColBERT (2021b) - - - 0.183 0.053 0.110 - -
(8) TU_DBS ColARQBERT (2021b) - - - 0.225 0.073 0.131 - -
(9) MIRMU CompuBERT (2021) - - - 0.262** 0.083** 0.135** 0.087** 69.2
(10) FormulaEmb (2021) - - - 0.161 0.059 0.197 - -

Our fully-trained models
(11) Our DPR 0.516 0.427 23.4 0.270** 0.087** 0.152** 0.097** 66.3
(12) Our ColBERT 0.545 0.483 25.1 0.329 0.128 0.213 0.136 69.5
†: Ensemble system.

Ca
lcu

la
tio

n
Co

nc
ep

t
Pr
oo
f

Bo
th

Fo
rm

ul
a

Te
xt

Hi
gh

Lo
w

M
ed

iu
m

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

M
AP

'

DPR
Category
Dependency
Difficulty

Ca
lcu

la
tio

n
Co

nc
ep

t
Pr
oo
f

Bo
th

Fo
rm

ul
a

Te
xt

Hi
gh

Lo
w

M
ed

iu
m

ColBERT

Ca
lcu

la
tio

n
Co

nc
ep

t
Pr
oo
f

Bo
th

Fo
rm

ul
a

Te
xt

Hi
gh

Lo
w

M
ed

iu
m

Cross Encoder

Ca
lcu

la
tio

n
Co

nc
ep

t
Pr
oo
f

Bo
th

Fo
rm

ul
a

Te
xt

Hi
gh

Lo
w

M
ed

iu
m

Structure Search

Figure 2: The MAP′ scores produced by our fully-trained DPR, ColBERT, a cross encoder represented by the
TU_DBS primary run, and the structure matching retriever Approach0, all evaluated on the ARQMath-2 dataset.
Results are divided by different topic categories (Calculation, Concept, or Proof), semantic dependencies (Text,
Formula, or Both), and different difficulty levels (Low, Medium, and High). Note that the y-axes of all plots have
the same scale.
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4 Results

4.1 Overall Comparisons
Evaluation results for Transformer-based dense
models are shown in Table 1. Across both formula-
only retrieval (NTCIR-12) and math-aware full-text
retrieval (ARQMath-2), our pretrained backbones
can generally boost downstream DPR retrieval ef-
fectiveness compared to DPR models based on
vanilla BERT, row (1), or SciBERT, row (2). This
is presumably because we have further pretrained
on more domain-specific data (unlike SciBERT,
which also includes scientific text like biomedical
articles) with a much larger batch size, i.e., 240
compared to SciBERT’s 32 batch size. According
to rows (2)–(4) in Table 1, with pretraining only
for 3 epochs, our model reaches a similar level of
effectiveness as SciBERT; and more pretraining
results in better downstream effectiveness.

Our fully-trained ColBERT model, row (12),
achieves the best scores among other Transformer
models. Compared to other ColBERT variants
from rows (6)–(8) submitted by the TU_DBS team,
we also achieve higher scores. Our DPR model,
row (11), is generally more effective than previ-
ous bi-encoder systems, so it can be considered
a cost-effective alternative to ColBERT, since the
latter requires a much bigger index. For ARQMath-
2, our DPR model requires a 5.3G index (at full
precision), while our ColBERT model requires a
77G index (at half precision). However, our dense
models are not on par with the MathBERT run on
the NTCIR-12 dataset, row (5). This is because
MathBERT reranks a highly effective run gener-
ated by Tangent-CFT; the latter is directly tuned on
complete NTCIR-12 data.

4.2 Comparisons on Different Topics
To further investigate the strengths and weaknesses
of different architectures for math-aware retrieval,
we break down results by different types of top-
ics, e.g., computation, concept, or proof. Topic
categories are labeled by the ARQMath-2 task or-
ganizers (Mansouri et al., 2021b).

As shown in Figure 2, the DPR model, com-
pared to itself, is good at text retrieval but bad at
formula retrieval, while ColBERT is the opposite.
The cross encoder (from left to right, the 3rd plot),
on the other hand, handles all types of dependen-
cies equally well, and it shows sufficient under-
standing for easy math question retrieval and proof-
related topics. On the other hand, structure search

Table 2: Comparison of effectiveness on the NTCIR-12
Wiki-Formula dataset. We combine a structure search
system (Approach0) with our fully-trained DPR and
ColBERT models. End-to-end fusion weights are tuned
via cross-validation. */** denotes that the compared row
performs weaker than the bottom row (i.e., Approach0 +
DPR in end-to-end fusion) at p < 0.05/0.01 level using
the two-tailed pairwise t-test. Underlined scores are not
involved in any test of significance.

Runs Part. BPref Full BPref

Previous systems
(1) MCAT (2016) 0.57 0.57
(2) Tangent-S (2017) 0.59 0.64
(3) Tangent-CFT (2019) 0.71 0.60
(4) GNN (2021) 0.54 0.63
(5) MathBERT (2021) 0.74 0.61
Structure search baseline
(6) Approach0 (2019; 2020) 0.54* 0.63
Our reranking
(7) Approach0 + DPR 0.48** 0.53*
(8) Approach0 + ColBERT 0.52* 0.56*
Our end-to-end fusion
(9) Approach0 + ColBERT 0.63 0.65*
(10) Approach0 + DPR 0.62 0.70

(the rightmost plot) excels at the calculation cate-
gory and formula-dependent retrieval, with most
categories performing even better than the cross
encoder. This demonstrates that matching formula
structure is still crucial for effective math-aware
search, especially for formula-heavy content such
as the calculation category.

4.3 Fusion Results

As shown in Figure 2, even a cross encoder (with-
out special structure pretraining) can fall short for
formula retrieval compared to the structure search
approach. Nevertheless, we want to learn if dense
retrieval can be combined with structure search to
further advance structure search effectiveness.

Our fusion results are summarized in Table 2 and
Table 3. On the NTCIR-12 Wiki-Formula dataset
(Table 2), comparing rows (1)–(5), our linear fu-
sion runs in rows (9)–(10) outperform others in
fully relevant BPref scores. This shows we can
generate a good ranking for highly relevant for-
mulas when linearly combining end-to-end dense
retrieval and structure search. The formula-only
reranking in rows (7)–(8) is not beneficial, but on
the other hand, end-to-end fusion in rows (9)–(10)
is helpful because dense retrieval can improve re-
call when structure matching is too strict (more
discussion below).

On the ARQMath dataset, comparing rows (7)–

1098



Table 3: Results from the most effective runs of previous systems in ARQMath-2 compared to our method for
combining a structure search model (Approach0) with our fully-trained DPR and ColBERT models. End-to-end
fusion weights are tuned via cross-validation. */** denotes that the compared row performs weaker than the bottom
row (i.e., Approach0 + ColBERT in end-to-end fusion) at p < 0.05/0.01 level using the two-tailed pairwise t-test.

Runs NDCG’ MAP’ P’@10 BPref

Previous systems
(1) MathDowsers Primary (2018; 2020; 2021) 0.434 0.169* 0.211* 0.145**
(2) TU_DBS Primary (2021b) 0.377** 0.158** 0.227* 0.158*
(3) DPRL QASim (2021a) 0.388* 0.146** 0.193* 0.135**
(4) MIRMU WIBC (2021) 0.332** 0.087** 0.106** 0.069**
(5) tf–idf (Terrier) (2021b) 0.185** 0.046** 0.063** 0.046**
(6) tf–idf+Tangent-S (2021b) 0.201** 0.045** 0.086** 0.048**
Structure search baseline
(7) Approach0 (2019; 2020) 0.381** 0.189* 0.234* 0.180*
Our reranking
(8) Approach0 + DPR 0.372** 0.169** 0.235* 0.162**
(9) Approach0 + ColBERT 0.383** 0.182** 0.276 0.181*
Our end-to-end fusion
(10) Approach0 + DPR 0.429* 0.203 0.258 0.189
(11) Approach0 + ColBERT 0.447 0.215 0.252 0.202

(11) in Table 3 and rows (11) and (12) in Table 1,
we see that although the structure search baseline
produced by Approach0 alone is generally more ef-
fective than dense retrieval models, both DPR and
ColBERT can still boost the baseline results. With
the assistance of structure search, we are also able
to outperform cross-encoder models shown in row
(2) and row (3) in Table 3. These cross encoders re-
quire costly inference over every candidate pair. In
fact, due to the impractical inference times of cross
encoders for the ARQMath dataset, the TU_DBS
team had to limit their candidate pool prior to in-
dexing. Similarly, the DPRL QASim run adopts a
smaller TinyBERT model to practically compute
similarities for all candidate pairs in a limited set.

Interestingly, across two datasets, reranking is
not helpful in general, other than a precision boost
in rows (8)–(9), Table 3. This is because the dense
rerankers are prone to false positives at formula
retrieval compared to structure search, and this is
especially the case when a dense retriever is used to
rerank a highly effective formula retriever baseline.
We report extra experiments to support this argu-
ment in Section 5. This indicates that the dense
retrievers are only complementary to the structure
search approach in a way that helps recall rather
than reranking.

5 Discussion

Given that linear fusion is able to produce such
good results, a natural question to ask is whether
other fusion methods can lead to even better results.

Table 4: Other fusion methods evaluated using the most
competitive Approach0 + ColBERT model combina-
tion on the ARQMath-2 dataset. */** denotes that the
compared row performs significantly weaker than the
linear fusion at p < 0.05/0.01 level using the two-tailed
pairwise t-test. ISR and RRF stand for Inverse Square
Rank and Reciprocal Rank Fusion, respectively.

Fusion NDCG’ MAP’ P’@10 BPref

Borda Count 0.443 0.213 0.280 0.197
CombSUM 0.411** 0.213 0.296 0.216
ISR 0.433** 0.203 0.263 0.191
log-ISR 0.432** 0.202 0.263 0.189
RRF (k = 60) 0.449 0.221 0.284 0.200

Linear 0.449 0.217 0.279 0.204

Therefore, we compare popular fusion methods4

on the ARQMath-2 datasets and our results are
summarized in Table 4. In all experiments, we
directly choose the best fusion parameters tuned
on the ARQMath-2 dataset to obtain an optimistic
bound for each method. Table 4 shows that linear
interpolation is sufficient to generate “good enough”
results that are not significantly worse (sometimes
better) than other popular fusion methods.

We further investigate the reasons why structure
search and dense retrieval are highly complemen-
tary but not so in the reranking case. After probing
a number of queries where fusion runs achieve
much better results, we find that the structure con-
straint imposed on candidates by Approach0 can

4We use the polyfuse tool: https://github.com/
rmit-ir/polyfuse
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Figure 3: Retrieved document ranks of the Approach0
+ ColBERT fusion run (topic A.219, cut off at 10) and
their positions in the original runs. The x-axis corre-
sponds to the ranks of retrieved documents in the fusion
run, the y-axis corresponds to the ranks of retrieved doc-
uments in the original runs, and each point represents
one document.

fail completely when relevant documents do not
share any common substructure in math formulas,
especially if the query is formula-centered, while
dense retrieval has the capacity to find these rele-
vant documents by matching contextual semantics.
On the other hand, structure search is helpful to
dense retrieval in cases where an obviously rele-
vant document is found by matching a candidate
formula perfectly.

We illustrate the above statement using the topic
where the precision metric has the largest increase
after fusion. Specifically, topic A.287, which
gains the most when the fusion run is compared
against the Approach0 baseline (P@10 changes
from 0 to 0.8), fails for Approach0 because struc-
ture match does not occur in relevant documents
and the query is formula-centered. On the other
hand, when compared to the ColBERT run, the
fusion run in topic A.219 shows the most gain in
precision (P@10 increases from 0.1 to 0.5). Fig-
ure 3 shows the ranks of top-10 fusion results and
their original positions in topic A.219. By fur-
ther inspecting in detail, we discover that structure
search prevents false positives in dense retrieval.
Specifically, the top-3 dense retrieval hits in topic
A.219 contain binomial coefficient notation, e.g.,
r∑

k=0

(
m
k

)(
n

r−k

)
=

(
m+n
r

)
, which looks similar to

the query
(
n+r+1

r

)
=

∑r
k=0

(
n+k
k

)
but is not equiv-

alent mathematically. They are ruled out or get
lowered in rank in the top-10 final results because
their counterparts in structure search are missing

(e.g., rank 1st and 2nd results from ColBERT run)
or out of sight (e.g., rank 3rd result from ColBERT
run), and those ColBERT hits paired with a struc-
ture hit in the Approach0 pass stand out.

6 Conclusions

Rapid progress in dense retrieval models using deep
neural networks has greatly influenced many IR
tasks. In this paper, we provide a thorough eval-
uation of both token-level and passage-level bi-
encoder models in the math information retrieval
domain. Our DPR and ColBERT models adapted
to this domain in both pretraining and fine-tuning
are made publicly accessible to provide stepping
stones for future research. Our study also high-
lights the importance of combining structure search
with dense retrieval models for better math-aware
search. We show that bi-encoder dense retrieval
models alone can be less effective than cross en-
coders, but when combined with strong structure
search methods, they can further improve state-
of-the-art effectiveness. With the huge modeling
capacity of dense retrieval models, we believe it is
worth exploring other directions for improvements
so that we can unleash the potential of deep models
in this domain, for example, to better identify simi-
larities in mathematically transformed expressions
with different structures.

7 Limitations

What our evaluations suggest in this work is to
build end-to-end retrievers by combining strict
structure search and dense retrieval for a highly
effective math-aware search. We are aware of two
limitations: First, an ensemble of two different
end-to-end retrieval systems imposes engineering
challenges; the benefit of supporting math-aware
search may be offset by the overhead of adding
multiple software stacks. Second, it is unclear how
to highlight matching in the case of DPR; and in the
case of ColBERT, it demands larger storage (see
Section 4.1) and requires intensive GPU resources
to perform the MaxSim operation over the embed-
dings of all candidate tokens (see Section 2.3).
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.
arXiv:2004.10964.

Yoshinori Hijikata, Hideki Hashimoto, and Shogo
Nishida. 2009. Search mathematical formulas by
mathematical formulas. In SHI (Symposium on Hu-
man Interface).

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Ef-
ficiently teaching an effective dense retriever with
balanced topic aware sampling. In SIGIR.

Hervé Jégou, Romain Tavenard, Matthijs Douze, and
Laurent Amsaleg. 2011. Searching in one billion vec-
tors: Re-rank with source coding. In IEEE ICASSP.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
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