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Abstract

Recent Quality Estimation (QE) models based
on multilingual pre-trained representations
have achieved very competitive results in pre-
dicting the overall quality of translated sen-
tences. However, detecting specifically which
translated words are incorrect is a more chal-
lenging task, especially when dealing with lim-
ited amounts of training data. We hypothesize
that, not unlike humans, successful QE mod-
els rely on translation errors to predict overall
sentence quality. By exploring a set of fea-
ture attribution methods that assign relevance
scores to the inputs to explain model predic-
tions, we study the behaviour of state-of-the-
art sentence-level QE models and show that
explanations (i.e. rationales) extracted from
these models can indeed be used to detect
translation errors. We therefore (i) introduce a
novel semi-supervised method for word-level
QE; and (ii) propose to use the QE task as a
new benchmark for evaluating the plausibility
of feature attribution, i.e. how interpretable
model explanations are to humans.

1 Introduction

Quality Estimation (QE) is the task of predict-
ing Machine Translation (MT) quality at inference
time, when no gold standard human translation is
available (Blatz et al., 2004; Specia et al., 2009).
QE can be framed as a word-level or a sentence-
level task. Both tasks have numerous practical
applications, such as deciding whether a given MT
output can be published without editing, highlight-
ing potential critical errors. Current QE approaches
fine-tune powerful representations from pre-trained
multilingual encoders such as BERT (Devlin et al.,
2018) or XLM-R (Conneau et al., 2019). In the
recent Shared Task on QE at WMT2020 (Specia
et al., 2020) these approaches have achieved very
high performance at predicting sentence-level trans-
lation quality (up to 0.9 Pearson correlation with
human judgements for some language pairs). How-

ever, as evidenced by these results, the accuracy of
word-level prediction still leaves room for improve-
ment. This is partly due to the limited amount of
training data. Word-level error annotation is espe-
cially time-consuming and expensive, as it requires
work from bilingual experts. In this work we intro-
duce a new semi-supervised approach to word-level
QE that removes the need of training data at word
level. To achieve this, we propose addressing QE
as a rationale extraction task (Lei et al., 2016).

Explainability is a broad area aimed at explain-
ing predictions of machine learning models (Lip-
ton, 2016). Rationale extraction methods achieve
this by selecting a portion of the input that justifies
model output for a given data point. In transla-
tion, human perception of quality is guided by the
presence of translation errors (Freitag et al., 2021).
We hypothesize that sentence-level QE models also
rely on translation errors to make predictions. If
that is the case, explanations for sentence-level
predictions can be used to detect translation errors,
thus removing the need for word-level labeled train-
ing data. To extract model explanations, we use
post hoc rationale extraction methods (Sundarara-
jan et al., 2017) which try to explain the predictions
of a given model (as opposed to modifying its archi-
tecture or introducing constraints during training),
since one of our goals is to study to what extent
existing QE models rely on the same information
as humans to make predictions.

At the same time, by using word-level errors
as explanations for sentence-level QE scores, we
introduce a new benchmark for evaluating explain-
ability methods. Recent work has introduced vari-
ous datasets for measuring the agreement between
rationales extracted from NLP models and those
provided by humans (DeYoung et al., 2019). QE is
different from these datasets in various important
aspects. First, it is a regression task, as opposed
to binary or multiclass text classification mainly
explored in previous work. Second, it is a multi-
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lingual task where the output score captures the
relationship between source and target sentences.
Finally, manual annotation of translation errors is a
practical task with a long tradition in MT research
and translation studies (Lommel et al., 2014), and
thus offers an interesting alternative to human ex-
planations collected specifically for evaluating ra-
tionale extraction methods.

Our main contributions are:

• We introduce a novel semi-supervised ap-
proach for word-level QE. We provide practi-
cal recipes on how feature attribution methods
can be used to derive information on transla-
tion errors from sentence-level models.

• We provide insights into the behaviour
of state-of-the-art (SOTA) QE models by
analysing attributions to different parts of the
input sequence (source vs. target sentence,
correct words vs. errors) at different hidden
layers.

• We propose to use the QE task as a new bench-
mark for evaluating the plausibility of feature
attribution explanations, i.e. how interpretable
model explanations are to humans (Jacovi and
Goldberg, 2020).

2 Background and Related Work

Quality Estimation Current SOTA models in
sentence-level QE, which is typically framed as
a regression task, mainly use multilingual represen-
tations from pre-trained transformers (Devlin et al.,
2018), notably XLM-R (Conneau et al., 2019). The
input to a sentence-level QE model is a concate-
nation of the source and translated sentences, sep-
arated by the [SEP] token. The sequence is en-
coded by the pre-trained Transformer model, and
the [CLS] token is passed through a multilayer
perceptron (MLP) layer to obtain a sentence-level
score. During fine-tuning both the parameters of
the pre-trained model and the parameters corre-
sponding to the MLP layer are updated.

Word-level QE is typically addressed as a binary
classification task, where the QE model needs to
predict a binary label indicating whether a word is
correct or wrong for each word in the MT output
(Lee, 2020). As illustrated in Figure 1 (left), some
supervised approaches use both sentence-level and
word-level objectives in a multi-task setting, which
results in superior performance (Kim et al., 2017;

Lee, 2020). Methods that do not require word-level
training data either need access to the MT model
(Rikters and Fishel, 2017; Fomicheva et al., 2020b),
or still treat the problem as a supervised task but
use synthetically generated data for supervision
(Tuan et al., 2021).

Rationale Extraction for NLP SOTA NLP
models based on deep neural networks achieve
high performance in a variety of tasks, often at
the cost of interpretability (Lipton, 2016). Recent
work aims to address this issue by focusing on two
different goals. On the one hand, the aim is to pro-
duce justifications for model predictions that are
plausible to the users, in order to increase users’
trust (Ribeiro et al., 2016). On the other hand, the
aim is to reveal the inner workings of the model
and faithfully explain its predictions, so the expla-
nation can be useful to model developers (Jacovi
and Goldberg, 2020).

Typically, explainability methods operate by se-
lecting a portion of the input that justifies model
prediction for a single data point. This can be
done either by modifying the model architecture,
or by trying to explain the predictions of a given
model. The first type of approaches (a.k.a. ra-
tionalization by construction) involves imposing
restrictions on the generated rationales to satisfy
certain constraints, e.g. compactness (Yu et al.,
2019; Chalkidis et al., 2021). Note that such re-
strictions often result in lower performance and
indeed are not guaranteed to explain the behaviour
of an unconstrained model (Jain et al., 2020). The
second type of approaches (the so called post hoc)
usually rely on feature attribution methods, which
assign an importance value to each input feature of
a network (Sundararajan et al., 2017; Schulz et al.,
2020). These methods do not allow for introducing
useful biases during training, but focus on faithfully
explaining model behaviour.

Feature attribution has a long tradition in im-
age recognition tasks (Simonyan et al., 2013) and
only recently have been applied to some NLP tasks,
most commonly text classification (DeYoung et al.,
2019). QE is fundamentally different from text clas-
sification where clues are typically separate words
or phrases (Zaidan et al., 2007) which often can
be considered independently of the rest of the text.
This independence assumption does not hold for
the task of evaluating translation quality where a
word cannot be identified as a clue (e.g. translation
error) without considering the surrounding context.
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Figure 1: Fully supervised word-level QE (left) and semi-supervised word-level QE as rationale extraction (right).
Dashed and solid lines represent training and test time, respectively.

Furthermore, SOTA NLP models based on con-
textualized representations for input words make
rationale extraction especially challenging, as the
representation for a given word can encode not only
the word identity but also its interactions with other
words in the text. Recent work has revealed various
interesting properties that characterize the informa-
tion flow through hidden layers in deep transformer
models (Voita et al., 2019; De Cao et al., 2020; Yun
et al., 2021). We provide additional insights on this
topic in Section 5.2.

3 Translation Error Prediction as
Rationale Extraction

We propose framing semi-supervised word-level
QE as rationale extraction from sentence-level QE
models. Instead of training a dedicated supervised
model for word-level prediction, we propose deriv-
ing word-level scores from a strong sentence-level
QE model by extracting explanations for model
predictions (see Figure 1 (right)). Given a trained
sentence-level QE model and the test data, ratio-
nale extraction methods detect the parts of the input
that are relevant for model predictions on a sample-
by-sample basis. We hypothesize that words with
the highest relevance scores should correspond to
actual translation errors on word-level.

3.1 Approach
More formally, given the source sequence xS=
xS1 ,...,x

S
|S|, the target sequence xT=xT1 ,...,x

T
|T |

and the QE model M(xS ,xT )=ŷ that predicts
sentence MT quality, a feature attribution method
produces a vector of attribution scores a=
a1,...,a|S+T |, which represent the contribution of
each source and target word to the prediction ŷ.

Crucially, no word-level labels are required for
training. For evaluation, the attribution scores

are compared against binary gold labels w=
w1,...,w|T |∈{0,1} indicating whether each given
word in the target sequence is an error or correct.

The predictive models for QE explored in our ex-
periments are built by fine-tuning multilingual rep-
resentations from pre-trained transformers. Trans-
former model starts from context-agnostic repre-
sentations consisting of positional and token em-
beddings. These representations are passed through
a set of hidden layers where at each layer the rep-
resentations are iteratively updated via multi-head
attention. This allows the hidden representation for
each token to encode information on other words
in the sentence.

We note that attribution to the input tokens or to
the embedding layer can hardly succeed in detect-
ing translation errors, as those cannot be identified
independently from the context given by the source
and target sentence. In this work, we perform fea-
ture attribution to hidden states at different layers
and analyse which layer results in attribution scores
that best correspond to translation errors.

3.2 Feature Attribution Methods
Feature attribution methods can be divided into
those providing explanations by simplification,
such as LIME (Ribeiro et al., 2016); gradient-
based explanations (Sundararajan et al., 2017);
and perturbation-based explanations (Schulz et al.,
2020).

We select three popular methods for rationale
extraction, which (i) do not require modifying the
model architecture or re-training the model and (ii)
allow attribution to hidden states. For comparison,
we also use LIME which operates directly on the
input text. We note that this set is not exhaustive of
SOTA rationale extraction methods. Our main goal
is not to conduct a comparative study of feature
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attribution methods but rather testing whether it is
possible to address word-level QE as a rationale
extraction task without any word-level supervision.

LIME (Ribeiro et al., 2016) is a simplification-
based explanation technique, which fits a sparse
linear model in the vicinity of each test instance,
to approximate the decision boundary of the com-
plex model.1 The data for fitting the linear model
is produced by perturbing the given instance and
computing model predictions. Linear model coeffi-
cients are then used as attribution scores for each
input feature. For NLP tasks features correspond
to input tokens and perturbation is achieved by ran-
domly removing words from the sequence.

Information Bottleneck is a perturbation-based
method originally proposed by Schulz et al. (2020)
for the task of image recognition. The method ap-
plies the idea of information bottleneck (Tishby and
Zaslavsky, 2015) for feature attribution. Specifi-
cally, it injects noise into an intermediate layer
representation. The amount of noise injected at the
position corresponding to each input feature is op-
timized to minimize the loss of the main task while
at the same time maximizing the overall amount of
injected noise.

Integrated Gradients (Sundararajan et al.,
2017) is a gradient-based method similar to the
traditional salience and input∗gradients approaches
(Simonyan et al., 2013). The latter takes the signed
partial derivatives of the output with respect to the
input and multiply them by the input itself. Intu-
itively, this is analogous to inspecting the products
of model coefficients and feature values in linear
models (Sundararajan et al., 2017). Integrated gra-
dients improves on that by defining a baseline input
and computing the average gradient while the input
varies along a linear path from baseline input to
the actual input. The baseline is defined by the
user depending on the task. For image recognition,
black image is used as baseline. It is not clear what
such baseline representation should be in the case
of language tasks. Here, we select a zero baseline
for simplicity. Better results can be achieved with
a more informed choice of a baseline and we leave
this to future work.2

1We use the implementation available at https://github.
com/marcotcr/lime

2For both information bottleneck and integrated gradi-
ents method we adapt the implementation available at https:
//github.com/nicola-decao/diffmask for our QE scenario. Our
code will be made available upon acceptance.

Attention Finally, we test attention as an attribu-
tion method. Self-attention mechanisms have been
widely studied in the context of explainability (Jain
and Wallace, 2019; Serrano and Smith, 2019; Bujel
et al., 2021). To compute a single attention score
for a transformer-based model with multi-head at-
tention, we average the weights across the different
attention heads.

4 Experimental Setup

4.1 Evaluation Metrics
Given a test set with both sentence-level and word-
level gold labels, we want to measure to what extent
the words with the highest attributions according to
the QE model correspond to human annotations for
MT errors. Note that we cannot use the evaluation
metrics traditionally employed for assessing the
performance of word-level QE, such as F1 score
and Matthews correlation coefficient (Specia et al.,
2020), as they require binary predictions while fea-
ture attribution methods return continuous scores.
Instead, we rely on metrics based on class proba-
bilities (Atanasova et al., 2020). Since attribution
methods proceed on instance-by-instance basis and
the scores produced for different instances are not
necessarily comparable, we compute the evaluation
metrics for each instance separately and average
the results across all instances in the test set.

AUC score For each instance, we compute the
area under the receiver operating characteristic
curve (AUC score) to compare the continuous attri-
bution scores a against binary gold labels w. For a
test set with N instances:

AUC=
1

N

∑
n

AUCn(wn,a
xT

n ) (1)

Average Precision AUC score can be overly op-
timistic for imbalanced data. Therefore, we also
use Average Precision (AP).

Recall at Top-K In addition, we report the
Recall-at-Top-K commonly used in information re-
trieval. Applied to our setting, this metric computes
the proportion of words with the highest attribution
that correspond to translation errors against the to-
tal number of errors in the MT output. Thus, for a
given instance (we omit the instance index n here
for simplicity):

Rec@TopK=
1

k

∑
j∈e1:k

wj (2)
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Ro-En Et-En Ne-En

Pearson r 0.84 0.66 0.66
Average DA 68.9 55.2 36.6

Num. sentences (all data) 1,000 1,000 1,000
Num. sentences (DA < 70) 438 640 935

Error rate (all data) 0.21 0.28 0.65
Error rate (DA < 70) 0.35 0.36 0.66

Table 1: General statistics for MLQE-PE test sets: per-
formance of sentence-level QE models (Pearson r), av-
erage DA score, total number of sentences in the test
set, number of sentences with DA < 70, as well as er-
ror rate in the full test set and in the subset of selected
sentences.

Where e=argsort(ax
T
) is a sequence of indices

corresponding to target words sorted by attribution
score from highest to lowest and k is the number of
errors in the sentence. We then average the result
across all instances in the test set.

Accuracy at Top-1 Finally, we report the propor-
tion of sentences where the word with the highest
attribution in the target corresponds to a translation
error.

Acc@Top1=
1

N

∑
I[ae1=1] (3)

We note that the above metrics are not defined
for sentences where all words are labelled as er-
rors or correct. We exclude such sentences from
evaluation.

4.2 Sentence-level QE
For sentence-level QE, we rely on TransQuest
(Ranasinghe et al., 2020b), which was one of the
top submissions to the WMT20 QE Shared Task
(Specia et al., 2020). To facilitate the use of feature
attribution methods described above, we use our
own implementation of the approach proposed by
(Ranasinghe et al., 2020b,a). It achieves compa-
rable results to the ones reported by the authors.
Due to limited computational resources we use the
XLM-R-base as the underlying pre-trained Trans-
former model. We expect that using a more pow-
erful sentence-level model would result in higher
performance.

4.3 Data
We use the MLQE-PE (Multilingual Quality Es-
timation and Post-Editing) dataset described in

Fomicheva et al. (2020a).3 MLQE-PE provides
various types of manual MT evaluation for multi-
ple language pairs. The MT outputs were assigned
a sentence-level score inspired by the Direct As-
sessment (DA) annotation (Graham et al., 2015;
Guzmán et al., 2019) on a continuous [0, 100] scale
capturing overall translation quality. In addition,
the MT outputs were independently post-edited
by professional translators. MT outputs and their
corresponding post-edited versions were automati-
cally aligned in order to derive word-level binary
labels (“BAD” if the word was corrected, and “OK”
otherwise), as well as their HTER score that cor-
responds to the average number of “BAD” labels
in a sentence (Snover et al., 2006). We use these
labels to evaluate the performance of different fea-
ture attribution approaches. We treat “BAD” labels
as the positive class and “OK” labels as negative
class in all of our experiments.4 We do not evaluate
attribution to source words.

It is worth noting that word-level labels derived
from post-editing do not capture error severity
and do not always correspond to translation errors.
However, due to the costs of collecting detailed er-
ror annotations for the substantially large amounts
of data required to train SOTA models, this is a
standard way of approximating error annotation in
QE (Specia et al., 2020).5

To circumvent the above limitation, we lever-
age both types of sentence-level annotation (DA
and HTER scores) in our experiments. We train
sentence-level QE models with (i) DA scores and
(ii) HTER scores. We evaluate both types of mod-
els using the word-labels derived from post-editing
as described above. We then conduct evaluation as
follows:

1. We first evaluate explanations for DA-based
models on the sentences with a sentence-level
DA score lower than 70.6

3https://github.com/sheffieldnlp/mlqe-pe
4The tokenization used internally by XLM-R model is

different from the tokenization used for producing word-level
error labels. To map the attribution scores to the word labels
we take their maximum value.

5Despite the limitations, we have chosen this dataset be-
cause it provides (i) sufficient amount of word-level training
data, which allows us to compare our approach to a SOTA
supervised approach; and (ii) access to the neural MT models
that were used to produce the translations, thus enabling a
comparison to an unsupervised glass-box approach.

6This threshold is selected based on the annotation guide-
lines described in Fomicheva et al. (2020a), as the sentences
assigned a score lower than 70 are guaranteed to have transla-
tion errors.
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Romanian-English Estonian-English Nepalese-English

Method AUC AP A@1 R@K AUC AP A@1 R@K AUC AP A@1 R@K
Gradients 0.75 0.72 0.84 0.62 0.66 0.63 0.72 0.52 0.66 0.81 0.91 0.72
Info. Bottleneck 0.65 0.62 0.71 0.50 0.58 0.55 0.56 0.46 0.64 0.78 0.80 0.71
Attention 0.79 0.73 0.80 0.63 0.65 0.57 0.52 0.49 0.69 0.82 0.88 0.74
LIME 0.54 0.48 0.40 0.39 0.56 0.56 0.65 0.46 0.52 0.75 0.76 0.68

Random 0.50 0.43 0.36 0.33 0.50 0.47 0.38 0.37 0.50 0.70 0.62 0.65

Glass-box 0.74 0.66 0.66 0.55 0.69 0.63 0.65 0.54 0.64 0.79 0.78 0.73
MicroTransQuest 0.88 0.81 0.88 0.70 0.84 0.80 0.89 0.70 0.82 0.89 0.96 0.82

Table 2: AUC/AP scores, as well as accuracy at top-1 (A@1) and recall at top-K (R@K) for different rationale
extraction methods on the test partition of MLQE-PE dataset. Best rationale extraction results are highlighted in
bold. Attributions are computed with respect to the hidden states at layer 10.

2. We also evaluate explanations for DA-based
sentence-level models on the full subset of
sentences that contain at least one word-level
error.

3. Finally, we evaluate explanations for HTER-
based sentence-level models on the full subset
of sentences that contain at least one word-
level error.

Interestingly, despite the discrepancy between
DA training objective and word labels derived from
post-editing, explanations for DA-based models
achieve better accuracy. We report the results for
(1) in the main body of the paper, while (2) and (3)
are reported in Appendix B.

We select three language pairs for our ex-
periments: Estonian-English (Et-En), Romanian-
English (Ro-En) and Nepali-English (Ne-En) with
the best performance at sentence level achieved at
WMT2020 Shared Task. Table 1 shows statistics
for the respective test sets. These three language
pairs present very different conditions for the task.
Sentence-level model for Ro-En has much stronger
performance in terms of Pearson correlation with
human judgements. Ne-En has substantially lower
translation quality where “BAD” words actually
represent the majority class.

4.4 QE Benchmarks
We consider two benchmarks for word-level QE.
On the one hand, we report the results for a strong
supervised model based on pre-trained representa-
tions from XLM-R adapted to predict word-level
binary labels derived from post-editing. To report
the metrics presented in 4.1, we use the probabil-
ity of the positive class as attribution scores. On
the other hand, we consider a fully unsupervised

approach, which however, requires access to the
neural MT model, that was used to generate the
translations.

Black-box Supervised QE We use the word-
level architecture available as part of the Tran-
sQuest toolkit (Ranasinghe et al., 2020b).7 Simi-
larly to the sentence-level TransQuest model, it re-
lies on XLM-Roberta-base pre-trained model fine-
tuned for token classification task. We use XLM-
Roberta-base to be consistent with the sentence-
level settings.

Glass-box Unsupervised QE Fomicheva et al.
(2020b) propose to extract information from the
MT system to predict translation quality in a fully
unsupervised way. Following their work, we use
log-probabilities from the neural MT model as at-
tribution scores. The lower the log-probability cor-
responding to each word, the higher the chance that
this word constitutes an error.

5 Results

5.1 QE as Rationale Extraction
Table 2 shows the performance of our approach
with different rationale extraction methods, as well
as SOTA word-level QE methods for the MLQE-PE
dataset. For the first three methods we compute the
attributions to the hidden states at each layer on the
dev set and report the results for this layer on the
test set. First, our semi-supervised approach with
all explanation methods substantially outperforms
the random baseline.8 Among the different expla-

7https://tharindudr.github.io/TransQuest/architectures/
word_level_architecture

8The smallest gap with respect to the random baseline is
observed for Ne-En. The overall quality of the translation for
this language pair is low. This setting might be less suitable
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Figure 2: Average attribution at each hidden layer on the toy task (left) and MLQE-PE Et-En dataset (right).
Attributions are computed with the information bottleneck attribution method (Schulz et al., 2020).

Figure 3: AUC score at each hidden layer for integrated
gradients method.

nation methods, attention and integrated gradients
achieve the best results. Second, the performance is
comparable or better than the glass-box QE bench-
mark (MicroTransQuest) without requiring access
to the neural MT model. For example, for Ro-En
the AP scores achieved by the attention-based ex-
planations and the glass-box word-level QE are
0.73 and 0.66, respectively. Third, the gap between
the best-performing semi-supervised method and
the supervised QE benchmark is the smallest for
Ro-En, where the sentence-level QE model from
which explanations are extracted is the strongest
(see Table 1). Finally, on average, LIME-based
explanations are substantially outperformed by the
feature attribution methods. This agrees with our
intuition that for the translation task where con-
text plays a fundamental role, attribution to hidden
states achieves much better performance than direct
perturbation of input words.

for the proposed error detection methods as most of the words
in the data correspond to errors, as shown in Table 1.

Figure 4: Example of Estonian-English translation with
attributions to the source (left) and target (right) sen-
tences computed using integrated gradients method for
each hidden layer. The correct post-edited version of
this translation is: Evald cannot believe that Pille is so
attached to her.

5.2 Analysis
Feature Attribution per Layer Figure 2 shows
attributions to tokens of different types across hid-
den layers. On the left, we show the results for a
toy task, where we artificially introduced easy-to-
detect errors in human translations and trained a
QE model with near-perfect performance to predict
whether a given sentence contain errors (see Ap-
pendix A). On the right, we show the results for the
the MLQE-PE Et-En test set. Similarly to the toy
task, we observe that in the later layers the tokens
corresponding to translation errors receive higher
attribution scores. However, in the toy dataset, the
source tokens have very low attributions. Here, in
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Figure 5: Frequency of the tokens with highest attribution in the neural MT training corpus. Y-axis shows the fre-
quency of the source (left) and target (right) tokens with the highest attribution scores in low-quality MT sentences
(red) and high-quality MT sentences (blue). X-axis corresponds to the hidden layers.

contrast, the model appears to be relying on the
source as well as the target. This aligns very well
with human evaluation where both source and tar-
get sentences need to be considered in order to
correctly determine translation quality.

Figure 3 shows performance across layers for
the integrated gradients method. As expected, the
same layers that assign the highest attribution to the
bad tokens (layers 9-11) are the ones that achieve
the best performance. This finding is consistent
across language pairs and attribution methods. In-
terestingly, this is also consistent with the findings
reported in Voita et al. (2019), where they show
that models trained with MLM objective encode
context information in intermediate layers partially
discarding the information on the identity of the
input tokens which is recovered at the latest layers.

So far we have studied the behavior of the QE
models on the sentences that contain errors. We
now look at the pattern in the attributions scores
for sentences which were assigned high quality by
the model. We hypothesize that higher scores will
be assigned to the words that are "easy" to trans-
late. To test this, we select high-quality and low-
quality sentences (sentences with predicted scores
lower than 0.25 percentile and higher then 0.75
percentile, respectively). Figure 5 shows the aver-
age frequency with which the words occur in the
neural MT training dataset. Red line corresponds
to the words with the highest attribution for high-
quality MT sentences. Blue line corresponds to
the words with the highest attribution for the low-
quality MT sentences. The first plot corresponds to
the source tokens and the second plot corresponds
to the target tokens. As shown in the plots, when
the model predicts high quality the most frequent

words receive the highest attribution as the informa-
tion progresses through the network. By contrast
when low quality is predicted by the sentence-level
model, the least frequent words receive the highest
attribution.

Qualitative Analysis Figure 4 shows an exam-
ple. Attributions are shown for sentencepiece to-
kens, which is the representation used internally
by XLM-R. Interestingly, both translation errors
("You" and "Pilate") and the corresponding words
in the source ("Evald" and "Pille") receive higher
attribution scores.

6 Conclusion

In this work, we propose a new semi-supervised
approach for word-level QE by exploring feature
attribution methods. We show that for well per-
forming models our results approach performance
of supervised methods. We also consider the QE
as rationale extraction task as a new benchmark
for plausibility-based evaluation of explainability
methods. We hope this work will encourage further
research on improving the efficiency of word-level
QE models with lightly supervised methods. This
work opens many directions for future research:
from improving the achieved results by tuning lin-
ear weights to combine attributions to hidden states
at different layers, to exploring different underlying
architectures and sentence-level training objectives.
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A Toy dataset

We devise a toy task to test feature attribution
performance for word-level QE. We artificially
introduce easy-to-detect errors in human trans-
lations and train a QE model with near-perfect
performance to predict the presence/absence of
such errors in a sentence. Specifically, we sam-
ple 10K/1K/1K sentence pairs from Es-En News-
Commentary dataset (train/dev/test). Next, we ar-
tificially inject errors to half of the sentences at a
rate of 0.1 using the following operations: insert,
delete or replace random word, or swap two words
selected at random.

We fine-tune an XLM-R-base model for a
sentence-level binary classification task where sen-
tences that contain errors are considered as positive
class, and sentences that do not contain errors are
considered as negative class. The F1-score of this
sentence-level classifier is 0.97. This is expected
as the task is very easy.

B Performance of Rationale Extraction
Methods on HTER Data

Tables 4 and 5 show the performance of the pro-
posed methods on the full subset of sentences that
contain at least one word-level error for sentence-
level QE models trained with HTER and DA
ground truth scores. Pearson correlation for both
types of models is shown in Table 3. Interestingly,
even though for Ro-En and Et-En the performance
of sentence-level models is near identical, extracted
rationales are more accurate for the model trained
with DA judgements.
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Ro-En Et-En Ne-En

Pearson r (DA) 0.84 0.66 0.66
Pearson r (HTER) 0.82 0.62 0.51

Num. sentences (all data) 1,000 1,000 1,000
Num. sentences (with errors) 714 889 945

Error rate (all data) 0.21 0.28 0.65
Error rate (with errors) 0.28 0.31 0.65

Table 3: Statistics for MLQE-PE test sets: performance of sentence-level QE models (Pearson r), total number of
sentences with at least one translation error, and the error rate in the full test set and in the subset of sentences with
at least one error.

Romanian-English Estonian-English Nepalese-English

Method AUC AP A@1 R@K AUC AP A@1 R@K AUC AP A@1 R@K
Gradients 0.73 0.65 0.72 0.54 0.64 0.56 0.61 0.45 0.66 0.81 0.90 0.71
Info. Bottleneck 0.59 0.49 0.50 0.36 0.54 0.47 0.42 0.37 0.62 0.76 0.78 0.69
Attention 0.76 0.65 0.67 0.53 0.63 0.51 0.45 0.41 0.69 0.81 0.87 0.73
LIME 0.51 0.39 0.29 0.29 0.55 0.49 0.54 0.39 0.52 0.73 0.72 0.66

Random 0.50 0.38 0.27 0.25 0.50 0.41 0.34 0.31 0.50 0.70 0.63 0.64

Glassbox 0.73 0.59 0.55 0.48 0.70 0.58 0.59 0.48 0.64 0.78 0.77 0.72
MicroTransQuest 0.86 0.74 0.76 0.62 0.83 0.74 0.79 0.64 0.82 0.89 0.96 0.82

Table 4: AUC/AP scores, as well as accuracy at top-1 (A@1) and recall at top-K (R@K) for different rationale
extraction methods on the MLQE-PE test set on the subset of sentences that contain at least one error for the
sentence-level QE models trained to predict DA judgements.

Romanian-English Estonian-English Nepalese-English

Method AUC AP A@1 R@K AUC AP A@1 R@K AUC AP A@1 R@K
Gradients 0.69 0.59 0.61 0.48 0.66 0.59 0.66 0.49 0.64 0.77 0.82 0.70
Info. Bottleneck 0.53 0.43 0.38 0.32 0.58 0.50 0.47 0.38 0.57 0.73 0.68 0.67
Attention 0.74 0.61 0.59 0.49 0.69 0.59 0.58 0.48 0.66 0.78 0.82 0.72
LIME 0.61 0.47 0.37 0.35 0.64 0.56 0.59 0.45 0.53 0.74 0.76 0.68

Random 0.50 0.38 0.27 0.25 0.50 0.41 0.33 0.32 0.50 0.70 0.63 0.64

Glassbox 0.73 0.59 0.55 0.48 0.70 0.58 0.59 0.48 0.64 0.78 0.77 0.72
MicroTransQuest 0.86 0.74 0.76 0.62 0.83 0.74 0.79 0.64 0.82 0.89 0.96 0.82

Table 5: AUC/AP scores, as well as accuracy at top-1 (A@1) and recall at top-K (R@K) for different rationale
extraction methods on the MLQE-PE test set on the subset of sentences that contain at least one error for the
sentence-level QE models trained to predict HTER.
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