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Abstract

Existing studies have demonstrated that adver-
sarial examples can be directly attributed to
the presence of non-robust features, which are
highly predictive, but can be easily manipu-
lated by adversaries to fool NLP models. In
this study, we explore the feasibility of captur-
ing task-specific robust features, while elimi-
nating the non-robust ones by using the infor-
mation bottleneck theory. Through extensive
experiments, we show that the models trained
with our information bottleneck-based method
are able to achieve a significant improvement
in robust accuracy, exceeding performances of
all the previously reported defense methods
while suffering almost no performance drop in
clean accuracy on SST-2, AGNEWS and IMDB
datasets.

1 Introduction

Recently, a number of studies (Han et al., 2020; Jin
et al., 2020; Shafahi et al., 2019) have revealed the
fact that the performance of deep neural networks
(DNNs) can be severely undermined by adversar-
ial examples. In the text domain, these adversar-
ial examples are crafted by semantic-preserving
perturbations to inputs with word synonym sub-
stitution (Ebrahimi et al., 2018; Ren et al., 2019;
Alzantot et al., 2018) and character-level transfor-
mations (Gao et al., 2018; Zang et al., 2020). The
vulnerability of DNN models results in inferior
performances under adversarial attacks in many
NLP tasks including text classification, natural lan-
guage inference (NLI), question answering (QA),
etc. To resolve this problem, researchers have pro-
posed various methods to defend against adversar-
ial attacks (Goodfellow et al., 2014; Szegedy et al.,
2013; Jia and Liang, 2017; Kang et al., 2018; Zhou
et al., 2021).

In particular, Tsipras et al. (2019) and Ilyas et al.
(2019) showed that the vulnerability of computer
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vision models can be attributed to “non-robust fea-
tures,” which are features in the representation
space that are sensitive to adversarial attacks and
can be easily manipulated by attackers. The pres-
ence of these features will weaken the robustness
of deep learning models. Therefore, a potential
defense strategy is to filter out such non-robust
features in the inputs.

In this paper, we posit that the robustness of text
classification models can be improved by filtering
out the non-robust features. However, unlike the
continuous input in the computer vision domain,
input in the NLP domain is a sequence of words,
which makes it difficult to model its distribution.
We thus research into means to filter out the non-
robust features in language model inputs.

Inspired by (Li and Eisner, 2019; Wang et al.,
2021a), we propose to use the information bottle-
neck method (Tishby et al., 2000) in text classifica-
tion tasks. Specifically, we plug in an information
bottleneck layer (IB layer)1 between BERT (Devlin
et al., 2018) output layer and the text classifier to
preserve only task-specific features.

Since the IB layer trades off between minimiz-
ing preserved information and model prediction
performance, features that are not robust under the
targeted task are filtered out. Therefore, our ap-
proach is able to focus more on the robust features
and achieve an improvement in its robustness.

We conduct extensive experiments on three text
classification benchmarks: SST-2 (Socher et al.,
2013), AGNEWS (Gulli, 2004) and IMDB (Maas
et al., 2011). Results have shown that our approach
achieves a great improvement on model robustness
compared with traditional defense methods, while
only suffering little or even no performance drop
on clean accuracy. We also provide a visualization
to interpret how the information bottleneck layer
works to keep robust features, in order to justify

1The source codes are available at https://github.com/
zhangcen456/IB.
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our proposed approach.
In summary, we propose a new information

bottleneck-based approach to improve the robust-
ness of DNN language models. We demonstrate
that our approach is effective in improving models’
adversarial performance while maintaining their
performance on clean data. In addition, experimen-
tal results show that our approach can also be com-
bined with existing adversarial training methods
like FreeLB (Chen et al., 2020) to further improve
models’ robustness under adversarial attacks.

2 Related Work

In response to the discovery of DNN’s vulnerabil-
ity to adversarial examples and the emergence of
adversarial attacks, many defense methods have
also been proposed to improve the robustness of
DNN models.

Among these methods, adversarial training is
one of the most effective and widely used to defend
against adversarial examples. In adversarial train-
ing, the model is trained to correctly classify both
adversarial examples and normal examples. Good-
fellow et al. (2014) first propose a fast gradient
sign method (FGSM) to generate adversarial exam-
ples for adversarial training in the image domain.
In textual domain, many researchers tried to add
perturbation to input word embedding to generate
adversarial examples. Zhang and Yang (2018) ap-
plied several types of noises, such as Gaussian and
Bernoulli, to perturb the input embeddings while
Chen et al. (2020) proposed FreeLB, which mini-
mizes the resultant adversarial loss inside different
regions around input samples through adding adver-
sarial perturbations to word embeddings. However,
they all focus on the generalization of model, not
the robustness.

Wang et al. (2019) and Wang and Wang (2020)
proposed to replace certain words in the training
dataset with their synonyms for the purpose of
data augmentation. However, this kind of meth-
ods are specific for the defense against synonym
substitution attack, and may be weak when facing
other kind of adversarial attack methods, such as
character-level attack.

Apart from empirical methods, a set of certified
robustness training methods is introduced recently,
which have proven to be effective in improving a
model’s robustness against a specific type of at-
tacks. Huang et al. (2019) and Jia et al. (2019) used
interval bound propagation (IBP) to propose certi-

fied robustness training methods that can limit the
loss of the worst-case perturbations. These meth-
ods are provably robust to word substitution attacks.
However, certified robustness training sacrifices the
model’s clean accuracy and is not generalized to
all types of attacks.

The information bottleneck method was pro-
posed by (Tishby et al., 2000), aiming to provide a
quantitative notion of “relevant information”. Al-
though the method has been utilized in many NLP
tasks such as rationale extraction (Paranjape et al.,
2020), sentence summarization (West et al., 2019)
and parsing (Wang et al., 2020), only few of them
focus on combining information bottleneck with
adversarial defense methods. Wang et al. (2021b)
proposes infoBERT, which applied information bot-
tleneck to the embedding layer of pre-trained lan-
guage models to suppress noisy information con-
tained in word embeddings. The implicit assump-
tion of this approach is that the embedding layer
contains enough information for the model to make
predictions. However, different word combinations
can have different meanings, so the semantics of a
sentence can not be fully expressed without taking
contextual information into consideration.

Therefore, we propose a completely different
implementation of the information bottleneck. The
information bottleneck is utilized to extract task-
related features from the output of the last layer
of BERT, which is pre-trained and thus be capable
of generating a contextualized representation for
the input sequence, and calculated by using the
variational inference method.

Besides, InfoBERT uses the gradient informa-
tion of each word to find local anchored features
and aims at increasing the mutual information be-
tween the global representation and them, while in
our approach, robust features are extracted from
the global representation without additional steps.

3 Method

Derived from information theory, the information
bottleneck method (Tishby et al., 2000) was pro-
posed and has been used as a training objective as
well as a theoretical framework (Tishby and Za-
slavsky, 2015) in machine learning. The method of
information bottleneck can be statistically formu-
lated as follows: denote the input random variables
as X, which could be sentences or paragraphs, and
the output as Y. Denote the joint distribution of X
and Y as P (X,Y). The purpose of information
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Figure 1: We use the IB layer to filter out non robust
features, which are denoted by the gray circle dots in the
figure, flow from Bert output. I(·; ·) denotes the mutual
information and the jagged line denotes the compres-
sion process. By Maximizing the mutual information
between the final prediction Y and the hidden features
T while minimizing the mutual information between
input X and T through IB layer, we are able to obtain a
T that has all the non-robust features filtered out.

bottleneck is to learn a distribution pθ(t|x) from
X to a compressed hidden feature T. To simplify
the notation, we will omit θ in the subscript when
we mention p(t|x). The information bottleneck ob-
jective (IB objective) used for optimization is as
follows:

LIB = −I(Y;T) + β · I(X;T), (1)

where I(·; ·) denotes the mutual information. The
intuitive explanation for optimizing the informa-
tion bottleneck objective Eq.(1) is that we want
to compress all information given by the input X,
while still maintaining enough knowledge for the
model to give the correct prediction outcome Y.
This can be achieved through finding the minimum
value of LIB. In the equation, parameter β controls
how much information we want to preserve among
all the information extracted from the input X. By
increasing β, we can narrow the “neck”, thus al-
lowing less information from X to be transmitted
to the hidden feature T.

Inspired by (Ilyas et al., 2019)’s theory about
robustness of features, we utilize the information
bottleneck method to help the DNN models filter
out “non-robust features” and only preserve “robust
features” from model input. Since ”Robust fea-
tures” contribute to model’s prediction, they con-
tain semantic information of the input sequence.
Taking this into account, our goal would be to fil-
ter out task-unrelated information while keeping
the loss of task-related information to a minimum.
This way, our method would be able to help im-
prove model’s robustness without diminishing its

clean performance for the prediction task. By plug-
ging in the IB layer right after BERT output, we
can leverage the ability of pre-trained models on
extracting contextualized features, preventing the
possible loss of “robust features” after compression
of information.

Specifically, given an input X and output Y, we
want to obtain specific hidden features T from X
that only contain information which contributes
to the final prediction Y. By minimizing the IB
objective in Eq.(1), the IB layer filters out the task-
unrelated information in BERT output, which is
extracted from input X, and obtain the required T.

To minimize the IB objective, we maximize the
mutual information I(Y;T). Since the purpose
of maximizing I(Y;T) is to enforce T contain
enough information for the model’s prediction,
we choose to minimize the loss function of the
original task to approximate the maximization of
I(Y;T). Taking classification tasks as an example,
our method would be to minimize the cross entropy
function LCE.

The mutual information I(X;T) can be calcu-
lated by the Kullback-Leibler distance between the
distributions of P (T|X) and P (T) as follows:

I(X;T) = EX [DKL[P (T|X)||P (T)]]

=

∫
p(x, t) log

p(t|x)
p(t)

dxdt.
(2)

To calculate the Kullback-Leibler divergence be-
tween P (T|X) and P (T), we need knowledge of
their probability distributions. The P (T|X) term
can be sampled empirically. However, the P (T)
term is difficult to be estimated. To resolve this
challenge, we expand the Eq.2 to get the following
equation:

I(X;T) =

∫
p(x, t) log p(t|x)dxdt

−
∫

p(t) log p(t)dt,

(3)

where the marginal distribution of T, p(t) =∫
p(t|x)p(x)dx. Since the original Tishby et al.

(2000) relied on the iterative Blahut Arimoto algo-
rithm to opitimize the IB objective, which is infea-
sible to apply to deep neural networks, many re-
searchers try to use variational inference to approx-
imate this problem (Alemi et al., 2017; Chechik
et al., 2005). Inspired by previous studies, we re-
place p(t) with a variational approximation q(t) =
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N (µX , σ2
X), which is a Gaussian distribution with

the mean µX and standard deviation σ2
X . Since

the Kullback-Leibler divergence is defined to be
non-negative, which means

∫
p(t) log p(t)dt ≥∫

p(t) log q(t)dt, we derive the following upper
bound:

I(X;T) ≤
∫

p(x)p(t|x) log p(t|x)
q(t)

dxdt

= EX [DKL[P (T|X)||Q(T)]].

(4)

We want to reduce the mutual information be-
tween X and T so that more task-unrelated infor-
mation can be filtered out, which can help us retain
more robust features for the final prediction. To
achieve this goal in practice, we minimize the upper
bound of I(X;T) derived in Eq.(4). We achieve
this through adjusting the parameters in Q(T) in
order to minimize the Kullback-Leibler divergence
between P (T|X) and Q(T), which will lower the
upper bound of I(X;T). Combined with the opti-
mization goal of the term I(Y;T) we explained in
the former chapter, the final loss function is:

L = LCE + β ·DKL[P (T|X)||Q(T)]. (5)

By using the loss function Eq.(5) to optimize
our model, our approach would be able to filter out
the non-robust features for the classification task
among all the inputs.

4 Experiments

In order to validate our assumption, we conduct
several experiments to evaluate the effectiveness of
our approach. We first compare our model and the
baseline models both on their clean accuracy and
accuracy under attack. Furthermore, in exploration
of the ability of our model to work in conjunction
with adversarial training methods- such as FreeLB-
to achieve complementary effects, we also evalu-
ate the performance of the combined model. In
addition, we try to interpret and further analyze our
approach through several additional experiments.

4.1 Dataset

We evaluate our approach on three widely-used
classification benchmark datasets: IMDB dataset
(Maas et al., 2011), SST-2 (Socher et al., 2013)
dataset, and AGNEWS dataset (Gulli, 2004). Both
IMDB and SST-2 are sentimental classification
datasets with two classes, while AGNEWS is a
topic classification dataset with four classes.

4.2 Baseline Models

Because our model can be viewed as an enhanced
variant of the BERT models, we choose to use
BERT base (Devlin et al., 2018) as one of the base-
line models. We also establish a comparison with
InfoBERT (Wang et al., 2021a), a method that is
very similar to our approach, to verify the effec-
tiveness of the proposed way of injecting an IB
layer.

Apart from these two baseline models, we also
compare our approach with four adversarial train-
ing methods: PGD (Madry et al., 2018), which
is a classic and representative method, as well as
FreeLB (Chen et al., 2020), SMART (Jiang et al.,
2020) and TAVAT (Li and Qiu, 2021), which are
three state-of-the-art defense methods.

4.3 Robustness Evaluation

We evaluate models’ accuracy under four differ-
ent attack algorithms, including both word-level
attacks and character-level attacks.
Textfooler (Jin et al., 2019) Textfooler ranks the
importance of words by the drop of true class prob-
ability after deleting words from the original text.
By leveraging the similarity of word embeddings,
it builds a candidate word set and selects the word
that minimizes the predictive probability of the true
class label.
Textbugger (Li et al., 2018) Textbugger contains
both word-level and character-level perturbations
by inserting, removing, swapping and substituting
letters or replacing words.
BERT-Attack (Li et al., 2020) BERT-Attack uses
the masked language model (MLM) of BERT to
replace words with other words that fit the context.
In addition to achieving high attack success rate,
high perturbation percentage and relatively low cal-
culation costs, BERT-Attack also ensures fluency
and semanticality of adversarial samples.
Deepwordbug (Gao et al., 2018) Deepwordbug de-
signs a score system to find the rank the importance
of tokens to the prediction and perturb the top k
important tokens by swap, substitution, deletion
and insertion.

4.4 Implementation Details

We train 10 epochs of the models on AGNEWS
and SST-2 datasets, and 20 epochs on the IMDB
dataset and provide experimental results averaged
on three different random seeds: 0, 1, and 2.

For each attack, we take 1000 attack examples on
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Datasets Methods Clean% TextFooler TextBugger BERT-Attack Deepwordbug
Aua(Suc)% #Query Aua(Suc)% #Query Aua(Suc)% #Query Aua(Suc)% #Query

SST-2

BERT-base 93.2 25.3(72.7) 72.8 35.3(61.8) 43.4 20.7(77.6) 96.0 39.2(57.6) 27.5
PGD 93.5 27.9(70.2) 74.6 37.0(60.3) 43.6 22.0(76.3) 96.6 40.3(56.7) 27.2
SMART 94.1 32.8(64.8) 85.9 40.9(56.1) 48.2 20.8(77.7) 104.3 45.0(51.7) 29.7
FreeLB 93.9 29.5(68.5) 73.4 40.0(57.3) 44.6 23.7(74.7) 97.0 42.5(54.6) 28.0
InfoBERT 93.9 31.5(66.2) 74.1 40.9(56.1) 44.4 25.4(72.7) 99.4 42.9(53.9) 28.3
TA-VAT 93.6 34.6(62.6) 75.4 43.3(53.2) 44.4 26.4(71.5) 99.5 45.8(50.5) 28.0
Our Model 93.3 37.6(59.9) 104.8 46.5(50.3) 61.0 32.9(64.9) 147.0 48.4(48.0) 34.2

+ FreeLB 94.1 40.4(56.8) 106.9 48.1(48.8) 62.7 33.3(64.5) 146.8 51.6(44.9) 35.0

AGNEWS

BERT-base 94.5 9.1(90.4) 314.1 42.2(55.5) 174.9 13.3(86.0) 414.0 25.3(73.3) 104.7
PGD 94.9 59.0(37.6) 261.7 58.8(37.8) 287.3 62.7(34.0) 264.2 65.7(30.6) 254.8
SMART 94.4 54.4(42.3) 155.9 60.1(36.3) 102.2 37.8(59.9) 241.0 61.2(35.1) 62.9
FreeLB 94.7 13.6(85.7) 343.4 47.5(49.8) 175.2 15.9(83.2) 435.6 22.3(76.4) 106.3
InfoBERT 93.6 65.0(29.8) 173.0 68.0(26.6) 106.5 55.0(40.7) 261.3 67.0(28.0) 180.3
TA-VAT 94.5 56.7(40.1) 264.2 56.3(40.5) 290.1 63.1(33.5) 270.6 62.3(34.2) 260.0
Our Model 94.2 68.6(27.2) 516.4 70.8(24.9) 319.9 60.7(35.7) 827.2 70.0(26.0) 130.8

+ FreeLB 94.4 70.8(25.0) 521.3 73.4(22.4) 326.8 64.0(32.4) 851.5 71.6(24.1) 132.0

IMDB

BERT-base 91.5 0.8(99.1) 610.8 5.7(93.8) 524.2 0.1(99.8) 570.6 24.3(73.6) 355.7
PGD 92.6 35.7(61.4) 1911.8 33.3(63.9) 2261.9 36.8(60.1) 1549.4 41.7(54.9) 2082.7
SMART 93.1 48.2(48.1) 2035.4 53(43.2) 1238.7 23.2(75.2) 2053.1 58.8(36.8) 571.8
FreeLB 92.5 38.3(58.1) 1843.1 49.7(45.7) 1249.9 26.7(70.1) 2453.5 57.5(37.1) 550.5
InfoBERT 91.9 32.2(65.3) 1112.4 35.5(61.7) 756.9 24.5(73.5) 1394.3 44.7(51.8) 465.0
TA-VAT 92.5 38.3(58.7) 2230.1 36.5(60.6) 2864.5 40.3(56.5) 1754.4 51.1(45.0) 2258.17
Our Model 91.5 52.2(42.4) 2077.7 58.7(34.9) 1366.0 38.7(57.0) 2859.2 64.3(28.8) 597.9

+ FreeLB 92.4 64.3(30.1) 2293.8 69.2(24.9) 1513.4 52.7(43.0) 3356.0 71.3(22.5) 621.8

Table 1: Accuracy achieved by our method and other competitive models both on clean data and under attacks. The
number in bold denotes best performance on that dataset. Clean% denotes the prediction accuracy without attack.
Aua% denotes accuracy under attack, Suc% denotes attack success rate and #Query denotes average query numbers.
The average perturbed word percentage of all three attack methods are set to under 15%. All the attack methods
used in the experiment are from the implementation of TextAttack (Morris et al., 2020). All other baseline models
used in this study are based on our own implementation.

the SST-2 and AGNEWS datasets, and 200 attack
examples on the IMDB dataset due to the excessive
number of queries. We also set a default restriction
of 15% on the maximum modify ratio for each at-
tack algorithm. Further details for implementation
would be discussed in the following sections.

4.5 Hyperparameter

There are two main hyperparameters in our experi-
ments: hidden dimension (hd) and β. The hidden
dimension controls the dimension of the IB layer
and β controls the trade-off between better predic-
tion performance and restriction of the information
flow. We experiment with different sizes of hd
ranging from 100 to 700 and different values of
β from 0.05 to 0.3. Based on model performance,
we finally choose to use hd = 100 on SST-2, AG-
NEWS, and hd = 200 on IMDB. We used β =
0.1 on all three datasets. All hyperparameters are
chosen based on the experimental results on the
corresponding development dataset.

4.6 Results

Table 1 reports the detailed results of our experi-
ment. As shown in Table 1, our model suffers little
or even no performance drop in clean accuracy on
all of the three datasets. On the IMDB and AG-
NEWS datasets, our model achieves around the

same clean accuracy as the baseline model, while
on the SST-2 dataset, clean accuracy of our model
in fact outperforms the baseline model by a small
margin. This implies that even with an added in-
formation bottleneck layer, the proposed method
still ensures sufficient information flowing through
the information bottleneck for the model to make
accurate predictions.

Besides the clean performance, Table 1 also pro-
vides concrete experimental results on the robust-
ness of all the models under four different types
of attacks. The robustness accuracy result shows
our model not just demonstrates significant im-
provement in adversarial robustness compared to
BERT-base model, but is also very competitive with
other defense methods under both word-level and
character-level attacks. In particular, our model
outperforms all baseline models by a great margin
under the attack of TextFooler and TextBugger on
IMDB dataset.

Furthermore, combining our method with
FreeLB (a kind of adversarial training method)
can further improve models’ adversarial robustness.
We achieve the highest adversarial accuracy un-
der all circumstances in our experiments and only
suffer a small drop in clean accuracy compared
to the original FreeLB method. This implies that
adversarial training methods and our approach are
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Datasets Methods Clean% TextFooler TextBugger BERT-Attack Deepwordbug
Aua(Suc)% #Query Aua(Suc)% #Query Aua(Suc)% #Query Aua(Suc)% #Query

SST-2

BERT-base 93.2 5.6(94.0) 89.2 27.9(69.8) 47.5 6.2(93.3) 111.7 27.4(70.3) 29.0
PGD 93.5 6.7(92.8) 92.6 30.3(67.5) 47.8 7.5(91.9) 114.3 25.6(68.2) 28.7
SMART 94.1 12.0(87.1) 107.8 33.0(64.6) 53.7 8.6(90.8) 123.3 35.1(62.4) 31.2
FreeLB 93.9 8.1(91.4) 95.4 32.0(65.9) 49.5 9.2(90.2) 118.6 31.9(65.9) 29.5
InfoBERT 93.9 9.5(89.8) 99.3 32.8(64.8) 49.6 10.9(88.3) 126.1 32.8(64.7) 29.8
TA-VAT 93.6 14.5(84.3) 115.2 34.9(62.3) 51.5 11.5(87.6) 135.4 35.0(62.2) 29.8
Our Model 93.3 21.1(77.5) 125.7 39.8(57.5) 68.0 20.3(78.3) 167.9 39.1(58.1) 35.9

+ FreeLB 94.1 23.3(75.1) 129.8 42.7(54.4) 70.0 21.3(77.3) 169.0 41.7(55.7) 36.3

Table 2: Accuracy achieved by our method and other competitors on both clean data and adversarial examples. The
average perturbed word percentage of all four attack methods are not constrained. For the DeepWordBug method,
the edit distance is constrained to no more than five.

Figure 2: t-SNE visualization of our model under different β. Each marker in the figure denotes different sample.
This series of figures (from left to right) shows a progression from moderate compression to too much compression.
As the β increases, the boundary between the two classes gradually disappears.

complementary to each other.
We also evaluate the accuracy of models under

adversarial attack methods whose constraint is re-
laxed. Specifically, the maximum modify ratio
is not constrained for all attack methods, which
means that relatively stronger adversarial examples
can be generated. The result in Table 2 shows that
our method can still outperform all the baseline
methods in this setting.

5 Discussion

In this section, we study how the implementation
of IB layer affects the model’s robustness. Further-
more, we seek to find a reasonable explanation for
this effect.

5.1 Quantitative Analysis

First, we discuss the effect of the two hyperparam-
eters in our model: hidden dimension (hd) and β.
The size of the hidden dimension controls the di-
mension of the information bottleneck layer, thus
limiting the amount of total information that flows
through the information bottleneck. We test the im-
pact of 10 different hidden dimension sizes ranging
from 50 to 600 on the SST-2 dataset. As shown in
Figure 3, a small hidden dimension size helps our
model achieve better performance under adversar-
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Figure 3: Performance change under different hyperpa-
rameter choices. The y-axis on the left denotes clean
accuracy, while the y-axis on the right denotes accuracy
under attack, using TextFooler as the attack method.
The x-axis denotes different hyperparameters for our IB
layer, from left to right, shows the performance of our
model under different dimensionality of hidden layers
and β. We fixed the hidden dimension of IB layer at
100 when choosing different values of β.

ial attacks, while only suffering little drop in clean
accuracy. This indicates that choosing small hidden
dimension size works best in helping the model fil-
ter out task-unrelated information. However, when
the size of the hidden dimension gets too small, we
observe a significant drop in accuracy under attack.
This may indicate that when the hidden dimension
size is too small, the information bottleneck layer
would compress too much such that task-related
information is also filtered out.

We also test the influence of different values of
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βs from 0 to 6. Recall that the hyperparameter β
controls the trade off between better prediction per-
formance and restriction of the information flow
through the bottleneck. Therefore, adjusting the
value of β could also help with controlling the
amount of information that flows through the in-
formation bottleneck layer. Specifically, a smaller
β will allow more information to flow from X to
hidden representation T, while a larger β would
“narrow” the bottleneck, allowing less information
to flow through. When β is set to 0, the information
bottleneck layer is equal to a linear layer. Results
of experiments with different values of β on the
SST-2 dataset are shown in Figure 3. At first, as
the value of β increases, less information are able
to flow through the bottleneck, forcing the infor-
mation bottleneck to filter out non-robust features.
This results in an enhancement of model robust-
ness performance. However, the robust accuracy
decrease as β increase further. This might indicates
that if the information bottleneck is too “narrow”,
some robust features would also be filtered out by
the IB layer.

We further visualize the influence of β by using
t-SNE. As shown in Figure 2, when β is equal to
1.0, the samples can be clearly divided into two
clusters corresponding to their labels. As the value
of β increases, more information are filtered out,
including those useful for the sentiment classifica-
tion task. It can be observed from the figure that
samples from the two categories become close to
each other when the value of β is 5.0. Therefore, a
small perturbation may cause the model to make a
false prediction. The decision boundary becomes
unclear when β is set to 10.0 and the clean accu-
racy of the model decreases significantly in this
case.

5.2 Interpretation

As we have discussed in former sections, re-
searchers such as Tsipras et al. and Ilyas et al.
have proposed the idea that features contributing
to deep learning tasks can be divided into robust
features and non-robust features. In our assump-
tion, the information bottleneck layer that we plug
in after BERT output works to filter out non-robust
features while retaining the robust features from
all the information that flows out from BERT. By
only preserving task-specific robust features, our
model is able to attain an improvement in adversar-
ial robustness, while minimizing the drop in clean

Methods Attack Attack (filtered)
Sig% Acc% Sig% Acc%

Baseline −7.9 2.7 −3.6 7.3
Our model 4.6 37.1 23.7 92.0

Table 3: Accuracy achieved by our model and the base-
line under attacks. Sig% denotes the sum of signifi-
cance scores of words that are consistent with the whole
sentence’s sentiment tendency. Acc% denotes classifi-
cation accuracy. “Attack” denotes the adversarial exam-
ples generated by the TextFooler algorithm, from which
we choose two hundred sentences, indicated by “Attack
(filter)”.

accuracy performance at the same time.

5.2.1 Significance Score
In order to verify our assumption, we specifically
conduct an experiment on the SST-2 dataset to see
if our model is able to capture robust task-related
features. In this experiment, a score si is calcu-
lated for each word xi in the input sentence X to
measure the influence of xi when predicting the
sentiment of the sentence. We denote the embed-
ding of the input sentence X as E = {e1, ..., en},
and X\xi

= {e1, ..., ei−1, 0, ei+1, ..., en} denotes
setting the embedding of word xi to zero. The nor-
malized significance score si is defined as follows.

si = Rescale(FY (X)− FY (X\xi
)) (6)

where FY (X) denotes the probability that our
model gives a prediction of the label Y , and
Rescale(·) is defined by dividing the significance
score by the sum of the absolute values of signifi-
cance scores of all words in the sentence. Here, si
denotes the change in models’ predictions before
and after deleting word xi. A positive value indi-
cates that the word helps the model make correct
predictions, and a negative value means that the
word leads to incorrect predictions of the model.

We note that the SST-2 dataset provides senti-
ment labels for each word which are annotated
manually. In order to identify sentiment words in
sentences, we make use of these labels provided as
the golden truth. Since the words that are consis-
tent with the sentimental tendency of the sentence
are important for sentiment classification, we sum
the significance scores of these words and denote
this sum as Sig%.

As shown in Table 3, the baseline model is not
able to correctly classify most sentences under tex-
tual adversarial attacks on the SST-2 dataset. Note
that here Sig% is a negative value, meaning that the
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words that the baseline model considers “harmful”
to making classification predictions in fact have
a counter-effect on the model. This means that
the baseline model fails to correctly attention to
important features in the input sentences. By defi-
nition, Sig% increases when the models’ classifica-
tion accuracy improves, indicating their correlation.
Since our model achieves a higher Sig%, it can be
inferred that our model is better at extracting the
robust features that are not likely to be perturbed
under textual adversarial attacks.

Figure 4: Illustration of each word’s significance in the
model’s prediction process.

In order to better illustrate how our model suc-
ceeds in extracting robust features, specifically for
classification tasks, we visualize two examples
from the SST-2 dataset in Figure 4. In the first
sentence, our model better attends to the word “joy-
less”, which clearly expresses the emotional ten-
dency in the sentence. In contrast, the attention of
the baseline model is distracted by words such as
“perhaps” and “the”, which are almost irrelevant to
the sentimental classification task. In the second
sentence, “slipshod” is a sentiment word which is
helpful for predicting the sentiment of the sentence.
As demonstrated by the figure, our model succeeds
in accurately capturing the importance of this sen-
timent word. The baseline model, however, failed
to attend to this word and thus is unable to classify
the sentence correctly. The figure shows that our
model accurately captures robust features related
to important sentimental words in inputs, while the
baseline model fails to do the same thing. This
further validates the assumption that our model
is able to extract robust task-related features for
classification.
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Figure 5: The performance change of our model when
we add the Information Bottleneck layer after different
layers of BERT model.The dimensionality of hidden
layer and β is fixed at 100 and 1.0, respectively.

5.2.2 Plugging Information Bottleneck into
Different Layers

Features in the deep layer model have been ob-
served to transit from general to task-specific as
the position of the layer gets higher (Yosinski et al.,
2014; Howard and Ruder, 2018). More specifi-
cally, the first layers of deep neural networks may
contain more general and static knowledge of the
input sequences, while the higher layers contain
more knowledge related to the task. Since the in-
formation bottleneck layer is used to extract robust,
task-specific features, we assume that applying it to
higher layers instead of the embedding layer, which
is used in InfoBERT, would be a more reasonable
implementation. To verify this, we add the Infor-
mation Bottleneck layer to the output of different
layers of BERT model and calculate an additional
loss(Eq.(5)) as regularization. We train the models
to minimize the total loss. Experimental results
show that as the layer we choose to apply the infor-
mation bottleneck layer becomes higher, model’s
classification accuracy and accuracy under attack
both improve, which validates our assumption.

6 Conclusion

We propose a novel implementation of the informa-
tion bottleneck method on BERT-base models to
improve its adversarial robustness. Our method
is proven to be successful in filtering out non-
robust feature and keeping task-specific robust fea-
tures, thus improving the adversarial robustness
of models. Experimental results have shown that
our method outperforms four widely used defense
methods across three datasets with both sentence-
level and character-level attack algorithms. We also
validate our method through a comprehensive anal-
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ysis on experimental results as well as quantitative
interpretation of our model’s performance under
adversarial attacks.
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