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Abstract
In multimodal machine learning, additive late-
fusion is a straightforward approach to com-
bine the feature representations from different
modalities, in which the final prediction can be
formulated as the sum of unimodal predictions.
While it has been found that certain late-fusion
models can achieve competitive performance
with lower computational costs compared to
complex multimodal interactive models, how to
effectively search for a good late-fusion model
is still an open question. Moreover, for dif-
ferent modalities, the best unimodal models
may work under significantly different learn-
ing rates due to the nature of the modality and
the computational flow of the model; thus, se-
lecting a global learning rate for late-fusion
models can result in a vanishing gradient for
some modalities. To help address these issues,
we propose a Modality-Specific Learning Rate
(MSLR) method to effectively build late-fusion
multimodal models from fine-tuned unimodal
models. We investigate three different strate-
gies to assign learning rates to different modali-
ties. Our experiments show that MSLR outper-
forms global learning rates on multiple tasks
and settings, and enables the models to effec-
tively learn each modality.

1 Introduction

Multimodal machine learning aims to jointly under-
stand and process the inputs from different modal-
ities (e.g., language, audio, vision). This usually
requires a model to have the ability to incorpo-
rate the feature representations from each modality
into a joint representation (the “multimodal fusion”
problem). There are two types of commonly-used
multimodal fusion methods: late-fusion and multi-
modal interaction. Late-fusion methods rely on the
representation vectors computed from unimodal
encoders, which are then combined into a joint
representation using operations such as addition,
multiplication (Kim et al., 2016), bi-linear pool-
ing (Fukui et al., 2016; Yu et al., 2017b), and so

on. Multimodal interactive methods apply com-
plex operations such as cross-modal attention (Yu
et al., 2017a), modulation (Yao et al., 2018), and
multi-head self-attention such as multimodal trans-
formers (Tan and Bansal, 2019; Tsai et al., 2019).

Despite the intuition that multimodal interac-
tion leverages the inter-dependency across differ-
ent modalities, (Hessel and Lee, 2020) proposed
that there is a method to simulate the outputs of
an additive late-fusion model that has the closest
possible performance to an arbitrary interactive
model (but not how to find the specific structure).
According to the experimental results in (Hessel
and Lee, 2020), the accuracy of the closest addi-
tive models is competitive with the corresponding
interactive models in some selected tasks. This
indicates that: (1) Currently, some interactive mod-
els are not strong enough to catch the complex
real-world inter-dependencies between modalities.
Studying the upper-bound of late-fusion methods
can help evaluate the limitations of interactive mod-
els. (2) The application of late-fusion models is
still open to in-depth research because they have
the potential of reducing the computational costs
while maintaining some effectiveness.

An additive late-fusion method with two modal-
ities M , N and inputs m, n can be fomulated as
follows:

f(m,n) = fM (m) + fN (n). (1)

We assume that such a well-performing f(m,n)
can be built up with the most effective unimodal
structures for fM and fN , i.e., a transformer
(Vaswani et al., 2017) for the textual modality and
convolution neural networks (CNN) (Ren et al.,
2015) for the visual modality. While training
f(m,n), the most common current practice is to
select a global learning rate. However, the optimal
unimodal learning rates of fM and fN can be sig-
nificantly different. For example, with an Adam
optimizer (Kingma and Ba, 2014), the best learn-
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ing rate for the transformer is usually around 2e-5,
while the best learning rate for Multi-Layer Percep-
trons (MLP) can be up to 1e-3. While combining
the two structures into a late-fusion model with a
global learning rate, i.e., 3e-4, the transformer part
turns out to be nearly frozen in the training proce-
dure (see the “Conductance Analysis” subsections
in the Experimental Results section).

To address this issue, we propose the Modality-
Specific Learning Rate (MSLR) method, which
uses different learning rates for different modalities
while training an additive late-fusion model. We
explore different model structures, tasks, and learn-
ing rate assignment strategies to analyse the impact
of MSLR on the gradient effectiveness, predicative
behaviors, and evaluation results.

Our contributions are as follows. Firstly, we
propose MSLR as an effective strategy to train an
additive late-fusion model for multimodal tasks;
secondly, we analyse the predicative behavior and
layer conductance to prove the necessity of using
MSLR instead of global learning rates in some
conditions; finally, experiments on three different
tasks: MuSE Stress Detection (Jaiswal et al., 2019,
2020), MELD Sentiment Analysis (Poria et al.,
2019), and MM-IMDb Movie Genre Classification
(Ovalle et al., 2017) indicate that MSLR outper-
forms global learning rates with certain assignment
strategies.

2 Related Work

2.1 Multimodal Classification

We focus on multimodal classification tasks which
have broad applications in real life. In multimodal
classification, the logits of each class predicted
by each unimodal sub-part of the joint late-fusion
model can be directly summed up and converted
into an output distribution. Examples of commoly-
studied multimodal classification tasks include sen-
timent analysis (Zadeh et al., 2016; Yao et al., 2020;
Poria et al., 2019), emotion recognition (Busso
et al., 2008; Jaiswal et al., 2020; Zadeh et al., 2018),
and other real-world applications such as disaster
classification (Tian et al., 2018) and movie genre
classification (Ovalle et al., 2017).

The inputs of multimodal classification models
are usually videos, which contain visual image
frames, audio utterances and textual transcripts.
These modalities are typically processed by differ-
ent models based on the nature of each modality.
For example, visual features are extracted by pre-

trained Convolutional Neural Networks (CNNs)
(Simonyan and Zisserman, 2014; Szegedy et al.,
2017), spectral or temporal acoustic features are ex-
tracted using tools such as OpenSmile (Eyben et al.,
2010) and Covarep (Degottex et al., 2014), textual
features are usually achieved by pre-trained word
embeddings (Peters et al., 2018) and Transformers
(Devlin et al., 2019). An effective model should
be able to incorporate these features with different
numerical properties and natural distributions.

2.2 Multimodal Fusion

There are two mainstream methods to encode and
combine multimodal features. The first approach
is late-fusion, in which the features from different
models are first encoded separately by unimodal en-
coders, and the single-vector representation is then
combined into a joint representation and fed into
the final classifier (Kim et al., 2016; Fukui et al.,
2016; Yu et al., 2017b). The advantages of late-
fusion is that the model is relatively light-weighted
and interpretable, and the sub-parts processing each
modality can be well-monitored. However, the low-
level alignments across the modalities, such as the
correspondence between a textual word and a vi-
sual object, can not be detected while computing
the unimodal feature vectors. On the other hand,
the multimodal interaction methods enable the en-
coders to interact with each other via cross-modal
attention mechanisms (Yu et al., 2017a; Tan and
Bansal, 2019; Tsai et al., 2019).

Although it is intuitive that the interaction meth-
ods can have better capability, Hessel and Lee
(2020) showed that the prediction of any interac-
tive model can be simulated by a corresponding
late-fusion model, making it possible to reduce the
computational costs without severely hurting the
performances.

2.3 Modality Specific Learning

2.3.1 Modality-Specific Early Stopping.
A closely related work to ours is called Modality-
Specific Early Stopping (MSES) (Fujimori et al.,
2019). They stated the issue in multimodal learning
as “overfitting in some modalities,” and attributed it
to “the convergence rate and generalization perfor-
mance differ among modalities,” which is similar
to our claims and observations. However, they
did not explore the cause of this overfitting, and
proposed to solve the problem by applying early
stopping for the modalities that have appeared to be
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converged regarding the validation performances.
Their method does not actually assign different
step-sizes for different modalities and still chooses
a global learning rate instead. In contrast, we in-
vestigate the layer conductance of the model and
observe that the overfitting in certain modalities
is because the global learning rate is beyond the
numerical range where the model structure for that
modality can work regularly. While one modality
receives a vanishing gradient, the unimodal per-
formance no longer improves and appears to over-
fit. Thus, we directly modify the initial learning
rates according to the knowledge on learning rates
achieved from unimodal fine-tuning. Our method
is able to delay the overfitting to some extent, in-
stead of simply choosing the best saved parameters
for the overfit modalities and stopping training.

2.3.2 Gradient Blending

Another related work is Gradient Blending (Wang
et al., 2020), which also states the difficulty of joint
training as overfitting. Unlike MSES (Fujimori
et al., 2019), they directly modifies the gradient
descent process by substituting the total loss with
a weighted sum of multiple unimodal loss, and
the weight is computed based on a “overfitting-
to-generalization ratio” (OGRs) that describes the
overfitting conditions for each modality. However,
the computation of OGRs relies on training each
unimodal model for the first several epochs, while
the initial learning rate for each modality is still
chosen globally and does not guarantee the training
behavior of these initial steps. As a result, if a
model does not receive gradient at all when the
training starts (which is possible in some of our
experiments), the initial OGRs can be ill-formed,
limiting the usage of Gradient Blending.

Besides, the tasks and situations they deal with
are different from ours: in most of their cases, the
joint training underperforms unimodal training, but
in our tasks, a joint training with global learning
rate can already outperform the unimodal results,
and our method can bring further improvement.
Also, the performance of Gradient Blending on the
textual modality is not explored, while our method
works well with both textual-visual and textual-
audio data, as shown in our experiments.

Input Embedding

N × Multi-headed 
Self-attention Blocks

Linear

OpenSmile

4-layer 
Perceptrons

Linear

Softmax

Transcripts Audio

BERT Pre-trained

Figure 1: Late-fusion architecture for MuSE stress de-
tection.

3 Modality-Specific Learning Rates

3.1 Learning Rates

The best learning rate for a model depends both on
its structure and the optimization algorithm. The
models structure further depends significantly on
the modality of inputs, i.e., a transformer is effec-
tive for the textual modality, CNN for local image
parts, and MLP is enough for a single hand-crafted
feature vector. As a result, the best range for learn-
ing rates can be largely different across modalities.

For different optimizers, the default learning rate
range also has large variation from less than 1e-3
(Adam-like) to 1.0 (Adadelta, (Zeiler, 2012)).

We propose to use modality specific learning
rates, and include different learning rate assigment
strategies to keep the models that work for each
single modality still work in multimodal training,
as described in the following three subsections. To
focus on analysing the influence of modality, we
use an AdamW optimizer (Loshchilov and Hutter,
2017) for all of our models. In this setting, the term
“learning rate” stands for the step size α. Step size
is a hyper-parameter independent of the cumulated
first moment mt and second moment vt in each
step of gradient descent. Please refer to (Kingma
and Ba, 2014; Loshchilov and Hutter, 2017) for
more details. In our strategies, we either choose a
fixed α value for each modality or adjust α dynam-
ically based on unimodal performance, which is
still independent of the first and second moments.
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Figure 2: Late-fusion architecture for MELD sentiment analysis.

Table 1: Overlap and Confusion matrix for MSLR-Keep and Joint-global, compared to Audio-only.

Metrics Overlap 1-1 0-0 1-0 0-1
Audio-only vs. Joint-global 0.86 0.46 0.39 0.09 0.05
Audio-only vs. Keep-ep20 0.81 0.47 0.34 0.09 0.11
Audio-only vs. Keep-ep100 0.65 0.39 0.26 0.16 0.18
Text-only vs. Joint-global 0.62 0.37 0.25 0.24 0.14
Text-only vs. Keep-ep20 0.70 0.44 0.25 0.17 0.13
Text-only vs. Keep-ep100 0.73 0.46 0.27 0.15 0.11
Text-only vs. Audio-only 0.62 0.40 0.23 0.22 0.16
Joint-global vs. Keep-ep20 0.84 0.47 0.38 0.11 0.04
Joint-global vs. Keep-ep100 0.62 0.37 0.25 0.24 0.14

3.2 The “Keep” Strategy

The most straight-forward MSLR strategy is keep-
ing the best fine-tuned unimodal learning rate for
different modalities while training the late-fusion
model. This strategy is expected to ensure that each
unimodal sub-part still has effective gradients.

3.3 The “Smooth” Strategy

The “Smooth” strategy compromises different
learning rates by shifting the learning rate for differ-
ent modalities to be closer to the average learning
rate of all modalities, resulting in smaller margins.
This is supposed to lead to more stable training and
yields better results when all the modalities work
in relatively close learning rate ranges.

3.4 The “Dynamic” Strategy

Motivated by the dynamic sampling strategies (Guo
et al., 2018; Gottumukkala et al., 2020; Yao et al.,
2021) in multi-task learning, we leverage the vali-
dation set to measure how fast the model is learning

each of its unimodal sub-parts. We start from the
“Keep” strategy in the first epoch, and update the
step-size for modality N after each epoch based on
the performance of the unimodal prediction fN (n)
on the validation set. Specifically, for epoch t and
modality N , we update the step-size by:

αt,N = α0,N ∗ rvalt,N , (2)

where rvalt,N is the ratio of the unimodal performance
on the validation set in epoch t to the average per-
formance of the previous 5∼10 epochs, which is
usually slightly larger or smaller than 1.0. We name
this as the “Dynamic” strategy. The motivation for
this strategy is that if the unimodal performance of
a modality is significantly improved in an epoch,
the learning rate for this modality should be in-
creased to make full use of the current gradient
direction; otherwise, if there is no significant dif-
ference with respect to previous epochs, we should
maintain the current learning rate to keep it in the
effective range for this modality.
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Figure 3: Late-fusion architecture for MM-IMDb Movie
Genre Classification.

3.5 Computational Cost

A common concern of our methods might be the
computational cost: all the MSLR strategies rely
on searching for a best unimodal learning rate
for each modality before the multimodal training
starts. However, it is worth noticing that every
model structure has its best learning rate range,
which is sometimes unknown. Thus, it is necessary
to do this search for newly-designed models and
previously-unseen tasks. In other cases where the
unimodal model structure and task is well-studied
(i.e., BERT for textual classification), the best uni-
modal learning rate can also be directly determined
based on one’s experience.

In the worst case, existing methods train K
times if there are K candidate learning rate values,
while MSLR trains for additional K times for each
modality involved, which grows only linearly with
respect to the number of modalities. Besides, the
unimodal models trained in these steps are not sim-
ply discarded: they can be used to make unimodal
predictions while data from the other modalities
are missing, which is often the case in real-world
applications.

4 Tasks and Models

4.1 MuSE Stress Detection

Multimodal Stressed Emotion (MuSE) (Jaiswal
et al., 2019, 2020) is a multimodal dataset for emo-
tion recognition and stress detection, which is col-
lected from student monologue sessions recorded

before or after their final exams. The topic and
content of each monologue is directed by random
emotion-eliciting questions such as “tell me about
an unhappy experience in your life.” Monologue
sentence clips are annotated with binary stress la-
bels: “stressed” for monologues recorded right be-
fore final exams, and “non-stressed” for those after
exams. For each sample, we make predictions us-
ing the audio utterance of a sentence in the mono-
logue session, as well as its textual transcription.
We use 1853, 200, and 273 samples for training,
validation, and testing, respectively.

For the model structure, shown in Figure 1, we
use a Transformer pre-trained with BERT (Devlin
et al., 2019) as our textual encoder for the tran-
scripts. For the audio inputs, we extract an 88-
dimensional acoustic feature using OpenSmile (Ey-
ben et al., 2010) with eGeMaps (Eyben et al., 2015)
configuration for each sentence, and pass it through
a 4-layer 256-dimensional MLP. The top-level 256-
dimensional representations from both modalities
are concatenated and projected into the output log-
its by a linear layer, which is equivalent to an addi-
tive late-fusion.

4.2 MELD Sentiment Analysis

The Multimodal Emotion Lines Dataset (MELD)
(Poria et al., 2019) is an expansion of the Emo-
tion Lines multi-party conversation dataset (Chen
et al., 2018) and contains the audios and transcrips
for the dialogues from the TV-series Friends, in
which each sentence is annotated with emotion and
sentiment labels. For the multimodal sentiment
analysis task, there are three classes: positive, neg-
ative, and neutral, and two modalities: audio and
textual. We use 1038, 114, and 280 dialogues for
training, validation, and test, respectively.

For preprocessing, we follow (Poria et al., 2019)
to apply feature selection on the 6373 dimensional
acoustic features from OpenSmile, resulting in a
1422 dimensional dense audio representation for
each sentence. We consider the dialogue as a
sequence of sentences, regardless of the specific
speaker. The maximum dialogue length is 33.

Our sentiment analysis model (Figure 2) con-
tains a textual encoder and an audio encoder. The
textual encoder has a word-level 2d Convolutional
Neural Network (Zhang and Wallace, 2017) that
outputs a 512-dimensional sentence embedding
from the word embeddings. For the sentence
embedding, we apply one step of masked self-
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Table 2: Evaluation metrics for MuSE stress detection. “lr” stands for learning rate.

Model Textual lr Audio lr Accuracy Precision Recall F-score
Text-only 2e-5 - 0.69 0.77 0.74 0.75
Audio-only - 5e-3 0.82 0.83 0.82 0.83
Joint-global 3e-4 3e-4 0.82 0.83 0.83 0.83
MSES (Fujimori et al., 2019) 3e-4 3e-4 0.80 0.79 0.85 0.82
MSLR: Keep 2e-5 5e-3 0.83 0.85 0.81 0.83
MSLR: Smooth 1e-4 1e-3 0.81 0.84 0.81 0.82
MSLR: Dynamic - - 0.84 0.86 0.83 0.84

Table 3: Evaluation metrics for MELD Sentiment Analysis.

F-score (%) Textual lr Audio lr Neutral Positive Negative Average
Text-only 1e-4 - 76.32 56.03 59.71 66.97
Audio-only - 1e-3 64.40 12.94 42.38 47.10
Joint-global 5e-4 5e-4 76.58 53.97 57.32 65.92
MSES(Fujimori et al., 2019) 5e-4 5e-4 76.41 53.41 57.79 65.87
MSLR: Keep 1e-4 1e-3 75.61 55.40 59.31 66.37
MSLR: Smooth 2.5e-4 7.5e-4 76.44 56.34 60.10 67.21
MSLR: Dynamic - - 77.14 52.73 56.41 65.65

attention (Vaswani et al., 2017) on the sentence
sequence in the same dialogue, resulting in a se-
quence of 512-dimensional textual hidden states.
For the audio encoder, we use a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) which
takes the audio features for each utterance as in-
put, and outputs 300 dimensional hidden states.
For each time step (sentence), the output of self-
attention layer and audio LSTM are concatenated
and projected by a 512-dimensional linear layer to
predict its sentiment class (additive late-fusion).

4.3 MM-IMDb Movie Genre Classification
The Multimodal IMDb (MM-IMDb) (Ovalle et al.,
2017) dataset is built with 25,959 IMDb movies
with their plots and posters; each movie is la-
beled with more than one genre, making it a multi-
label classification task. There are two modali-
ties: plot (textual) and poster (visual). We use a
training/validation/test split of 15552/2608/7799
movies, respectively.

As for preprocessing, following related work
(Ovalle et al., 2017) and (Fujimori et al., 2019),
we use the VGG Neural Network (Simonyan and
Zisserman, 2014) pre-trained on ImageNet (Deng
et al., 2009) which produces 4096-dimensional vi-
sual features for the posters, and 300-dimensional
Word2Vec 1 embeddings for the textual plots.

1https://code.google.com/archive/p/

We implement the same model structure as de-
scribed by (Fujimori et al., 2019), which is a linear
layer with 2048 hidden states and ReLU activa-
tion, followed by a 512-dimensional linear layer
as the classifier, for both modalities (Figure 3).
There are 23 output neurons corresponding to the
23 genre classes. Each neuron has a sigmoid ac-
tivation instead of softmax for multi-label classi-
fication. The motivation of using a Multi-layer
Perceptrons (MLP) structure on both modality is to
test the efficiency of our MSLR strategies while dif-
ferent modalities have similar computational flows,
as well as to have a comparison with the related
MSES method (Fujimori et al., 2019).

5 Experimental Results

5.1 General Settings

For all our experiments with the “Dynamic” strat-
egy, we compute the ratio r with respect to the
previous 5 epochs. All the MSES methods used for
comparison are based on our implementation. The
best unimodal and global learning rates for each
task, as well as all the other hyperparameters, are
found by a linear search based on the metrics on
the validation sets. All our experiments are imple-
mented with Pytorch2 and ran on 1 GeForce RTX

word2vec/
2https://pytorch.org/
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Table 4: Evaluation metrics for MM-IMDb Movie Genre Classification.

F-score Textual lr Audio lr Micro Macro Weighted Sample
Text-only 1e-2 - 0.582 0.470 0.562 0.577
Visual-only - 1e-4 0.419 0.243 0.377 0.409
Joint-global 1e-3 1e-3 0.588 0.441 0.562 0.578
MSES(Fujimori et al., 2019) 5e-4 5e-4 0.579 0.486 0.567 0.571
MSLR: Keep 1e-2 1e-4 0.587 0.443 0.557 0.582
MSLR: Smooth 3e-3 3e-4 0.579 0.448 0.566 0.570
MSLR: Dynamic - - 0.592 0.518 0.587 0.581

2080 super GPU and Intel i7 9700k processor.

5.2 MuSE Stress Detection

For the MuSE stress detection task and late-fusion
structure with a Transformer + MLP structure, we
use a batch size of 32. A learning rate of 2e-5 works
the best for the textual modality, while 5e-3 works
best for the audio modality. The late-fusion model
works the best with a global learning rate of 3e-4.
We name these models “Text-only”, “Audio-only”,
and “Joint-global”, respectively.

5.2.1 Conductance Analysis
Layer Conductance (Sundararajan et al., 2017;
Shrikumar et al., 2018) evaluates the importance
of each neuron to the final prediction. It is worth
noticing that the conductance value itself is not di-
rectly related to the training gradients with respect
to this specific neuron. However, we compute the
average Layer Conductance of all the neurons in
the textual/visual/audio representations, and fur-
ther averaged over all the samples in the dataset.
The result stands for the importance of each single
modality as a whole. If the Layer Conductance of a
modality is close to 0, it is reasonable to claim that
this modality is not effectively trained at all and
has vanishing gradients in the training procedure.

We analyse the Layer Conductance for the out-
puts of the textual and acoustic encoder, separately,
using the Captum (Kokhlikyan et al., 2020) pack-
age. The layer conductance result for MuSE Stress
Detection is averaged among all the 256 neurons
of the linear layer for each modality and shown in
Table 5.

We observe in Table 5 that with a joint-global
learning rate (3e-4), the textual Transformer works
beyond its comfort zone (around 2e-5) and has
vanished gradients (conductance close to 0). This
indicates that the model’s multimodal performance
is limited because it can not effectively learn the

Table 5: Layer conductance for different models on
the textual and audio modality for the MuSE Stress
Detection task.

Modality Textual Audio
Text-only 0.002 -
Audio-only - 0.25
Joint-global 1e-8 0.01
MSLR: Keep - epoch 20 0.005 0.014
MSLR: Keep - epoch 100 0.007 0.015

textual modality while using a global learning rate.
In contrast, we observe that using the MSLR “Keep”
strategy solves this issue.

5.2.2 Prediction Similarity
Another approach of exploring how different are
the learned models with MSLR and global learning
rates is to directly analyse the predictions on the
test set. If the language encoder has vanished gra-
dients, the multimodal predicative behavior should
be close to the unimodal audio model. In Table 1,
we show the overlap rate (the ratio of the two mod-
els making the same prediction for a sample) for
different model pairs, as well as the full confusion
matrix for the stressed (1) and non-stressed (0) la-
bels. We choose the joint model at the 20-th epoch
(Keep-ep20, when the training is on-going) and
the 100-th epoch (Keep-ep100, when the training
is converged) for comparison with the Audio-only
and Text-only models. We highlight the joint model
that is less similar to the audio model and more
similar to the textual model, since going closer to
the textual model indicates a valid gradient for the
textual modality.

We observe that without MSLR, the joint-global
model has 0.86 overlap with the Audio-only model
and only 0.62 with the Text-only model. However,
if MSLR is applied, as the training goes on (from
epoch 20 to 100), MSLR gets away from the Audio-
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only model and becomes closer to the Text-only
model, which is consistent with Table 5 showing
that the textual part is receiving gradients. Besides,
after 100 epochs, MSLR results in a very different
model from all the joint and unimodal models.

5.2.3 Evaluation Metrics
The evaluation metrics we use for the MuSE Stress
Detection task include the total accuracy and the
precision, recall and F-score for the “stressed” la-
bel (Table 2). We observe that the “Keep” strategy
achieves competitive scores with the best global
learning rate model while the model’s predicative
behavior is very different as shown by the previous
subsection. Additionally, the “Dynamic” strategy
significantly outperforms both the global learning
rate and the Multimodal Early Stopping (MSES)
method (p < 0.05, t-test). We believe that start-
ing from “Keep” enables the model to learn both
modalities with valid gradients, and the “Dynamic”
strategy helps adjust the learning rate according to
the validation performance of the unimodal models,
which brings further improvements.

5.3 MELD Sentiment Analysis

For the MELD Sentiment Analysis dataset, we use
a batch size of 10; the best learning rate for Text-
only, Audio-only and Joint-global is 1e-4, 1e-3 and
5e-4, respectively. For the “Smooth” strategy, we
use a learning rate of 2.5e-4 for textual modality
and 7.5e-4 for audio.

5.3.1 Conductance Analysis
We apply Layer Conductance analysis on the 512
neurons of the top linear layer for each modality, as
we did in the MuSE Stress Detection. The results
are in Table 6. In this case, since the gap between
the suitable learning rate for the two modalities
is smaller than the MuSE task, we observe non-
zero layer conductance for both modalities for the
global learning rate method. The MSLR method,
on the other hand, still achieves higher value of
conductance as the training goes on.

5.3.2 Evaluation Metrics
Following (Poria et al., 2019), the MELD Senti-
ment Analysis task is evaluated with the F-scores
for each class and their weighted average (Table 3).

We observe that the “Smooth” strategy works
slightly better than the “Keep” strategy in this case.
This is potentially because the smaller learning rate
gap makes 5e-4 an acceptable learning rate for both

Table 6: Layer conductance for different models on the
textual and audio modality for the MELD Sentiment
Analysis task.

Modality Textual Audio
Text-only 0.011 -
Audio-only - 0.024
Joint-global 0.011 0.006
MSLR: Keep - epoch 20 0.034 0.027
MSLR: Keep - epoch 100 0.041 0.033

modalities with valid gradient flows. The “Keep”
strategy maintains the large gap, which makes the
training less stable compared to the “Smooth” strat-
egy which can be considered as a reconcile with
the global learning rate. The “Smooth” strategy
also outperforms the “Dynamic” strategy since the
latter starts from the same initial learning rates with
a large gap as in the “Keep” strategy.

5.4 MM-IMDb Movie Genre Classification
For the MM-IMDB dataset, we use a batch size
of 128. We name the unimodal model using only
the plot the “Text-only” model, and the model us-
ing only the poster the “Visual-only” model. The
best fine-tuned learning rates for Text-only, Visual-
only and Joint-global models are 1e-2, 1e-4, and
1e-3, respectively. It is worth noticing that although
we have similar MLP structures for both modali-
ties, the best learning rates can still have a 100-
time gap between the two modalities. This is per-
haps because of the numerical properties of the
features from different modalities, as well as the
pre-processing methods. For the “Smooth” strat-
egy, we use a learning rate of 3e-3 for the textual
modality and 3e-4 for the visual modality.

5.4.1 Conductance Analysis
We apply the same Layer Conductance analysis as
the other two datasets on the 512 hidden units of
the top-level linear layer for each modality. The
results are in Table 7.

We observe that the textual representation has
relatively low average conductance compared to the
visual one when the model converges with a global
learning rate. The MSLR strategy helps alleviate
this issue and makes the training more efficient.

Based on the gradient analysis on all the three
tasks, we conclude that choosing an initial learn-
ing rate according to unimodal results is a simple
and effective approach to help with the vanishing
gradient problem in certain cases.
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Table 7: Layer conductance for different models on the
textual and audio modality for the IMDb Movie Genre
classification task.

Modality Textual Audio
Text-only 0.010 -
Visual-only - 0.007
Joint-global 0.002 0.019
MSLR: Keep - epoch 20 0.006 0.007
MSLR: Keep - epoch 100 0.011 0.031

5.4.2 Evaluation Metrics
Following (Ovalle et al., 2017), the performance of
genre classification is evaluated by F-scores com-
puted by four different averaging algorithms: mi-
cro, macro, weighted, and samples. The results
are shown in Table 4. We reach the same conclu-
sion as in the MuSE Stress Detection task: when
the best learning rates are extremely different, the
“Keep” and “Dynamic” strategies work better than
“Smooth” and all the other baselines.

6 Lessons Learned

In this work, we proposed modality-specific learn-
ing rates (MSLR) for training multimodal late-
fusion models built up with unimodal encoders.
To summarize, we have the following findings:

Firstly, we showed that learning multimodal late-
fusion models can be difficult if the best learning
rate for each modality is significantly different. A
global learning rate may not work for all the modal-
ities according to our Layer Conductance analysis
for the representations from different modalities.

Secondly, we tried solving this problem using
MSLR. According to both the conductance analy-
sis and the predicative performance with the “Keep”
Strategy, we conclude that it helps prevent the van-
ishing gradient, and when the training converges, it
results in a model that is different compard to the
global learning rates.

Thirdly, we evaluated three different MSLR
strategies on three different multimodal tasks with
various model structures. We observed that MSLR
generally achieves competitive or better scores on
most of the commonly-used evaluation metrics as
compared to baselines using a global learning rate
or related modality-specific learning methods.

Specifically, the experimental results on the
MELD Sentiment Analysis task indicated that
when different modalities have close ranges of best
learning rates, the model with a global learning rate

is a strong baseline, while MSLR achieves com-
petitive performance with the “Smooth” strategy
performing the best. Otherwise, in the MuSE and
MM-IMDb tasks where the learning rate gaps are
large, the “Keep” and “Dynamic” strategies outper-
form the global learning rate model because they
ensure a valid gradient on all the modalities.

A potential disadvantage of MSLR is the un-
stable training process, which can be the topic of
future work. We also hope that our work inspires
more research on new learning strategies for multi-
modal interactive models and generative tasks.
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