
Findings of the Association for Computational Linguistics: ACL 2022, pages 1694 - 1707
May 22-27, 2022 c©2022 Association for Computational Linguistics

Towards Adversarially Robust Text Classifiers by
Learning to Reweight Clean Examples

Jianhan Xu1,2∗, Cenyuan Zhang1,2∗, Xiaoqing Zheng1,2, Linyang Li1,2,
Cho-Jui Hsieh3, Kai-Wei Chang3, Xuanjing Huang1,2

1School of Computer Science, Fudan University, Shanghai, China
2Shanghai Key Laboratory of Intelligent Information Processing

3Department of Computer Science, University of California, Los Angeles, USA
{jianhanxu20,cenyuanzhang17,zhengxq}@fudan.edu.cn

{chohsieh,kwchang}@cs.ucla.edu

Abstract

Most of the existing defense methods improve
the adversarial robustness by making the mod-
els adapt to the training set augmented with
some adversarial examples. However, the aug-
mented adversarial examples may not be natu-
ral, which might distort the training distribution,
resulting in inferior performance both in clean
accuracy and adversarial robustness. In this
study, we explore the feasibility of introduc-
ing a reweighting mechanism to calibrate the
training distribution to obtain robust models.
We propose to train text classifiers by a sam-
ple reweighting method in which the example
weights are learned to minimize the loss of a
validation set mixed with the clean examples
and their adversarial ones in an online learn-
ing manner. Through extensive experiments,
we show that there exists a reweighting mecha-
nism to make the models more robust against
adversarial attacks without the need to craft the
adversarial examples for the entire training set.

1 Introduction

Even though deep neural networks have achieved
impressive performance on many natural language
processing (NLP) tasks, they are vulnerable to ad-
versarial examples intentionally crafted under cer-
tain semantic and syntactic constraints (Jia and
Liang, 2017; Ebrahimi et al., 2017; Gao et al.,
2018a; Zhao et al., 2018; Cheng et al., 2019; Zheng
et al., 2020). The existence and pervasiveness
of adversarial examples raise serious concerns,
especially when deploying such NLP models to
security-sensitive applications.

Recently, many methods have been proposed to
defend against adversarial attacks for neural NLP
models (Miyato et al., 2017a; Sato et al., 2018a;
Jiang et al., 2020; Li and Qiu, 2020; Zhu et al.,
2020; Zhou et al., 2021; Dong et al., 2021; Si et al.,
2021). Existing defense methods usually augment

∗Equal contribution

the clean training examples with the adversarial
ones in one way or another in the training stage and
fit the models on the augmented training set. How-
ever, the introduced adversarial examples may not
be natural, which may even hurt the distribution
of original training examples, resulting in lower
performance on both clean and adversarial test sets.
Besides, these methods usually need to generate
the adversarial examples for an entire training set,
which is computationally intensive. We hypothe-
size that one of the reasons that NLP models are not
robust is because they overfit to training data biases
(Bras et al., 2020) — the training data is biased to-
wards a certain distribution, so the resulting model
can be broken under some perturbations. Despite
augmenting training set by adversarial examples
can partially mitigate this problem, are there bet-
ter and more direct ways to calibrate the training
distribution without introducing additional training
samples? This motivates us to investigate whether
there exists a reweighting mechanism to calibrate
the training distribution and lead to robust models.

We propose to train adversarially robust text clas-
sifiers by a sample reweighting method, named
WETAR (Weighting Examples Towards Adversar-
ial Robustness), in which the example weights are
learned to minimize the loss of a validation set
mixed with the clean examples and their corre-
sponding adversarial ones. We explore two ways
to add adversarial samples to a validation set. A
static way is to generate the adversarial examples
from the clean data in the validation set before the
training begins, and the generated examples remain
unchanged throughout the entire training process.
The other way is to dynamically craft adversarial
examples at every iteration to test the robustness of
models against test-time attacks.

Compared with exiting defense methods, our ap-
proach can achieve competitive performance with-
out the need to perturb the training set. We show
that there indeed exists a reweighting mechanism to

1694



make the models robust without enlarging the clean
training set with any adversarial examples. We de-
termine the example weights of the current batch
at every training iteration by an online reweighting
method that performs validation at an additional
small size. This study is among the first ones to
improve the adversarial robustness of NLP neu-
ral models by reweighing training examples under
the guidance of a relatively small validation set.
Through extensive experiments on three different
text classification benchmark datasets, we show
that our method can significantly increase the ro-
bustness to adversarial examples crafted by three
representative adversarial attack algorithms.

2 Related Work

2.1 Text Adversarial Defense

The goal of adversarial defenses is to learn a model
capable of achieving high test accuracy on both
clean and adversarial examples. Recently, many
defense methods have been proposed to defend
against text adversarial attacks which can roughly
be divided into two categories: empirical (Miyato
et al., 2017b; Sato et al., 2018b; Zhou et al., 2021;
Dong et al., 2021) and certified (Jia et al., 2019;
Huang et al., 2019; Ye et al., 2020) methods.

Adversarial data augmentation is one of the most
effective empirical defenses (Ren et al., 2019a; Jin
et al., 2020; Li et al., 2020) for NLP models. Dur-
ing the training time, they replace a word with one
of its synonyms to create adversarial examples. By
augmenting these adversarial examples with the
original training data, the model is robust to such
perturbations. Zhou et al. (2021) and Dong et al.
(2021) relax a set of discrete points (a word and its
synonyms) to a convex hull spanned by the word
embeddings of all these points, and use a convex
hull formed by a word and its synonyms to capture
word substitutions. Adversarial training (Miyato
et al., 2017b; Zhu et al., 2020) is another one of
the most successful empirical defense methods by
adding norm-bounded adversarial perturbations to
word embeddings and minimizes the resultant ad-
versarial loss. The downside of existing empirical
methods is that failure to discover an adversarial
example does not mean that another more sophis-
ticated attack could not find one. To address this
problem, some certified defenses (Jia et al., 2019;
Huang et al., 2019; Ye et al., 2020) have been intro-
duced to guarantee the robustness to certain specific
types of attacks. However, the existing certified de-

fense methods make an unrealistic assumption that
the defenders can access the synonyms used by
the adversaries. They would be broken by more
sophisticated attacks by using synonym sets with
large sizes (Jin et al., 2020) or generating synonyms
dynamically with BERT (Li et al., 2020).

Most of the existing defense methods improve
the robustness by making the models adapt to the
training set augmented with adversarial examples
crafted by adding adversarial perturbations to dis-
crete tokens or distributed embeddings. In contrast,
our method does not need to generate adversar-
ial examples for the entire training set and only
requires a relatively small validation set to be aug-
mented with the adversarial instances. Besides, we
improve the adversarial robustness by learning to
assign weights to training examples based on the
loss estimated on a validation set instead of expos-
ing the models to certain perturbations during the
training process.

2.2 Weighting Examples towards Robustness

Various methods of weighting examples have been
proposed to train robust models against training set
bias including class imbalance (Lin et al., 2017; Cui
et al., 2019) or noisy data (Shin et al., 2020; Wang
et al., 2021) or both (Ren et al., 2018). In response
to these problems, different weights are assigned
to examples in order to match one distribution to
another, and the models are trained to optimize
the weighted training loss encouraging learning the
examples with more weights.

Recently, incorporating the weighting method
to improve the robustness against adversaries also
have been investigated in the image domain. How-
ever, they all use the weighting method to assign
weights to the adversarial examples instead of the
clean examples. Wang et al. (2020) weight training
examples in order to reduce the KL-divergence be-
tween the predicted logits of each clean example
and that of the adversarial one. Zhang et al. (2021)
take into account the geometric distance from data
points to the decision boundary and reweight train-
ing data based on the difficulty of attacking these
data points. To better defend against targeted ad-
versarial attacks, Kim et al. (2021) proposed to
reweight training examples based on the entropies
of their class softmax probabilities and suggested
giving more weights to the examples with higher
entropies whose labels could be easily flipped.

Different from existing reweighting methods, we

1695



argue that in order to train a model that performs
well in both clean accuracy and adversarial robust-
ness, it only needs to construct a small validation
set augmented with adversarial examples to guide
training. In addition, we show that the adversarial
examples can be added to the original validation set
in a static or dynamic way. The constructed valida-
tion also can be used for the model selection. This
study is among the first ones to improve the adver-
sarial robustness of neural models by reweighing
training examples in the language domain.

3 Method

We design a weighting method to improve the ad-
versarial robustness of text classifiers by learning
to reweight examples, partly inspired by the meta-
learning algorithm proposed by Ren et al. (2018)
from the image domain. In particular, we con-
sider both clean accuracy and adversarial robust-
ness by reweighting the training examples accord-
ing to their similarity to the gradient descent of
the validation loss, where the validation set is aug-
mented with the adversarial examples. During the
training, we ensure that a clean example and its
corresponding adversary are present in the same
mini-batch, which teaches the models how to bal-
ance the two training objectives. We also show
how to make model selection based on the learned
weight distribution over the training examples.

For text classification, a neural network-based
classifier f(x) with a set of learnable parameters
θ maps an input text x ∈ X to a label y ∈ Y .
Given a training set D = {(xi, yi)}Ni=1, we assume
there is a validation set Dv = {(xvi , yvi )}Mi=1 that
consists of two parts: a set of clean examples Dc,
and a set of adversarial examples Da generated by
a certain attack algorithm fromDc. The adversarial
validation set Da can be generated for Dc statically
or dynamically (see Subsection 3.2). We consider
a loss function Lθ(x, y), and the goal of regular
training is to find a solution of θ that minimizes the
expected loss 1

N

∑N
i=1 Lθ(xi, yi) for the training

set, where each instance is equally weighted.

3.1 Learning to Reweight Examples

In this study, we guide the training by a relatively
small validation set Dv mixed with clean and ad-
versarial examples through a weighted loss. Thus,
each training example xi would be assigned with a
weight wi, and we learn to reweight the examples

by minimizing the following weighted loss:

θ∗(w) = argmin
θ

N∑
i=1

wiLθ(xi, yi), (1)

where w = {wi}Ni=1 can be viewed as training
hyperparameters whose values are unknown from
the beginning and can be optimized based on the
validation set Dv:

w∗ = argmin
wi≥0

1

M

M∑
i=1

Lθ∗(w)(x
v
i , y

v
i ), (2)

where we use superscript v to denote validation set
and subscript i to denote the i-th example.

Determining the optimal w∗ is a special case of
the bilevel optimization problem where one prob-
lem is nested within another, and every single opti-
mization can be very expensive. It could be worse
when the adversarial validation set is created in a
dynamic way, which is necessary to enhance the
models in their ability to defend against test-time
attacks. We use an online meta-learning algorithm
(Ren et al., 2018) for reweighting training examples.
At every training step, a mini-batch {xi, yi}ni=1 is
sampled from the training set D, and n is the mini-
batch size (n ≪ N). At the same time, another
mini-batch {xvi , yvi }mi=1 is also sampled from the
validation setDv. We examine the gradient descent
of n sampled training examples on the loss surface
and reweight them according to their similarity to
the descent direction of m validation data.

We need to determine the importance of each
training sample (xi, yi) at every training step for
a mini-batch sampled from Dv. Following (Koh
and Liang, 2017), we assume the weight of each
training sample (xi, yi) is perturbed by ϵi, and cor-
respondingly the parameters are updated to θ′

t ac-
cording to the descent direction of the loss on the
mini-batch at step t as follows:

θ′
t = θt − τ∇θt

n∑
i=1

ϵiLθt(xi, yi), (3)

where τ is the learning rate. To get a cheap estimate
of wi at step t, we calculate the gradient gϵi of ϵi
by taking a single gradient descent step on a mini-
batch of validation samples 1 :

gϵi =
∂

∂ϵi

1

m

m∑
i=j

Lθ′
t
(xv

j , y
v
j )|ϵi=0. (4)

1We use a meta-learning paradigm in this step to calculate
the gradient gϵi for each ϵi. Specifically, we use the higher
library (Grefenstette et al., 2019) released by Facebook.

1696



We then estimate that the importance value w̃i of
sample (xi, yi) at step t by comparing the opposite
direction of gradient gϵi accumulated at ϵi when
take adversarial validation mini-batch {xvi , yvi }mi=1

into account:

w̃i = max(−gϵi , 0),

wi =
w̃i∑

i w̃i + δ
.

(5)

where δ = 1 if
∑

i w̃i = 0, and δ = 0 otherwise.
We consider normalizing the weights of all training
examples in a mini-batch so that they sum up to
one unless all of them are 0. Once each training
example is assigned with a weight under the guid-
ance of the gradients calculated on the validation
samples, we can update the parameters with the
gradient accumulated through the reweighted loss
at step t as follows:

θt+1 = θt − τ∇θt

n∑
i=1

wiLθt(xi, yi). (6)

We refer to Algorithm 1 in Appendix A for details.

3.2 Adversarial Validation Set Construction

We here describe two ways to construct a validation
set whose subset of adversarial examples can be
generated in a static or dynamic manner. If a clean
example (xci , y

c
i ) is sampled to be included in a

validation mini-batch, we would add into the same
mini-batch its adversarial example (xai , y

a
i ), where

yci = yai , crafted by some attack algorithms .
In the static construction method, for every clean

example in the validation set, its corresponding ad-
versarial one is generated before the training begins,
and the generated adversarial examples remain un-
changed throughout the training process. If a clean
example is randomly selected to appear in a mini-
batch, its adversary generated in advance will be
retrieved and included in the same mini-batch.

Although generating the adversarial examples in
a static way can speed up the training process, it
is questionable whether the resulting models can
still perform well under test-time attacks since they
should be evaluated on the adversarial examples
crafted on the fly against the robustly trained mod-
els rather than the original ones. Therefore, we
propose to use another dynamic strategy to gen-
erate adversarial examples, in which we apply an
attack algorithm to craft the adversarial examples
for randomly selected clean ones against the current
model at every iteration. In practice, we generate

all required adversarial examples every one or two
epochs to reduce the computational cost.

Some previous studies show that the models tend
to overfit the adversarial examples, and their per-
formance on the clean data will drop if too many
adversarial examples are used. Therefore, we use a
similar training strategy. In a mini-batch, we ran-
domly select ρ percent (say 50%) of the clean data
in the validation set and generate their adversarial
examples from them using a certain attack algo-
rithm. We then merge these adversarial examples
with the clean ones to form a final validation set.

If the static method is used to construct the vali-
dation set, the weight distribution of training exam-
ples will stabilize to some equilibrium distribution
as the number of training epochs increases. Such a
weight distribution is calculated for each epoch by
accumulating the weights assigned to the sampled
examples in every mini-batch and then normaliz-
ing the weights of all training examples to sum up
to one. To compute the difference between two
weight distributions before and after an epoch, we
use the Wasserstein distance instead of the popular
KL-divergence since the weights of many train-
ing examples will be assigned to zeros and the
former is more suitable for this situation than the
latter. As the training progresses, we can obtain a
series of weight distributions and their differences.
If such a difference does not reduce significantly
for multiple epochs, we say that the distribution
has stabilized. The first model obtained with its
weight distribution stabilized is chosen as the final
model. When the dynamic construction method
is used, there will be a “spear-and-shield” battle
between defender and attacker. Although the differ-
ence in weight distribution fluctuates more with the
dynamic construction method than the static one,
the trend of the overall decline in the distribution
difference still can be used for model selection.

4 Experiments

In the following, we first evaluate the proposed
method of WETAR by comparing it to four baseline
methods both in clean accuracy and adversarial
robustness on three text classification benchmarks.
Then, we would like to study how the choice of an
attack algorithm to construct the validation sets at
the training stage impact the adversarial robustness
of resulting models under different attacks. Finally,
we investigate whether our method combined with
adversarial data augmentation can further improve

1697



Datasets Methods Clean% TextFooler BERT-Attack TextBugger
Aua% Suc% #Query Aua% Suc% #Query Aua% Suc% #Query

SST-2

Base 93.2 5.6 94.0 89.2 6.2 93.3 111.7 27.9 69.8 47.5
FreeLB 93.9 8.5 91.4 95.4 9.2 90.2 118.6 32.0 65.9 49.5
FreeLB++ 92.9 14.2 84.8 117.6 11.7 87.4 139.6 36.7 60.5 51.9
ADA 89.5 17.8 80.0 80.0 13.8 84.5 141.4 30.7 65.5 53.6
WETAR-S 92.9 26.2 71.7 145.3 24.3 73.5 183.9 51.7 44.1 56.6
WETAR-D 93.4 29.6 68.2 153.2 31.4 66.2 207.2 55.3 40.6 57.1

AGNEWS

Base 94.3 19.6 79.3 329.3 22.9 75.9 432.3 41.4 56.3 186.8
FreeLB 94.9 28.0 70.4 380.3 29.0 69.4 479.8 47.9 49.4 196.4
FreeLB++ 95.1 32.0 66.6 412.9 29.9 68.8 487.9 53.1 44.4 193.2
ADA 94.6 41.1 56.5 424.4 32.6 65.5 508.7 52.0 45.1 220.8
WETAR-S 94.1 47.7 49.4 464.0 56.4 40.1 602.3 68.5 27.2 242.9
WETAR-D 94.2 54.4 42.5 472.0 57.5 39.2 595.0 68.8 27.2 235.7

MR

Base 87.2 8.3 90.5 107.9 9.9 88.7 141.7 29.9 65.7 53.6
FreeLB 88.0 8.4 90.5 111.0 9.2 89.6 139.6 31.8 63.9 54.4
FreeLB++ 88.3 11.9 86.6 122.4 11.0 87.6 153.4 34.2 61.3 56.2
ADA 85.1 14.3 83.1 128.2 11.3 86.7 148.3 34.0 60.0 57.8
WETAR-S 86.6 30.4 64.9 156.6 31.7 63.4 206.9 48.1 44.6 63.7
WETAR-D 86.2 24.9 71.2 151.9 28.4 67.1 203.4 48.7 43.6 62.9

Table 1: The experimental results of our WETAR and baselines on SST-2, AGNEWS, and MR datasets. We use
WETAR-S to denote the setting where the adversarial examples are constructed by the static method and WETAR-D
to that by the dynamic method. The best results are highlighted in bold font.

the robustness of text classifiers.
We conducted experiments on two different tasks

on three widely-used datasets: Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013), AG-News
corpus (AGNEWS) (Zhang et al., 2015) and Movie
Reviews (MR) (Pang and Lee, 2005). SST-2 con-
sists about 67, 000 training sentences for binary
classification and MR contains about 9, 000 movie
reviews for training. AGNEWS has four categories
pertaining about 30, 000 new articles. For each
dataset, we randomly select one-tenth examples
from the training set to form a validation set from
which the adversarial examples will be generated
to guide the training and select the model. In Sec-
tion 4, all experimental results are obtained over
three runs with different initialization. We refer to
Appendix B for more implementation details.

4.1 Attack Algorithms

The following three adversarial attack methods are
used to evaluate the robustness of models, reimple-
mented by TextAttack toolkit (Morris et al., 2020).
TextFooler (Jin et al., 2020) uses a greedy search-
ing method, ranking the words in an input sequence
based on the predicted changes before and after
deleting them. Counter-fitted embeddings are used
to find synonyms to replace the selected words.
BERT-Attack (Li et al., 2020) uses a BERT-based
model to estimate an importance score of each sub-
word for the prediction, and generate the top-K can-
didate sub-words by the masked language model

to replace the word with the highest score.
TextBugger (Li et al., 2019) locates the vulnerable
words by calculating the changes in predictions be-
fore and after removing them from a text. Different
from TextFooler and BERT-Attack, both character-
level perturbation and word-level perturbation will
be applied to generate adversarial examples.

When investigating how the choice of an attack
algorithm to construct the validation set impact the
performance of models, we also take two other at-
tack methods of PWWS (Ren et al., 2019b) and
DeepWordBug (Gao et al., 2018b) into considera-
tion for comprehensive assessment.

Following (Li et al., 2021), four different met-
rics are used to evaluate the generation and robust-
ness of the models: (1) Clean accuracy, denoted
as Clean%, is defined as the model’s classification
accuracy on a clean test set; (2) Accuracy under
attacks, denoted as Aua%, is the model’s accuracy
under some adversarial attack; (3) Attack success
rate, denoted as Suc%, is calculated as the number
of texts successfully perturbed by an attack algo-
rithm divided by the number of all texts attempted;
(4) The number of queries, denoted as Query%, is
the average number of times the attacker queries
the model to form a successful attack.

4.2 Baseline methods

We evaluate the proposed method by comparing it
with several representative methods. We primar-
ily compare with the following recently proposed

1698



defense methods,
Base fine-tunes a pre-trained BERT on a training
set consisting of clean examples.
FreeLB (Zhu et al., 2020) adds norm-bounded ad-
versarial perturbations to the input’s word embed-
dings using a gradient-based method, and enlarges
the batch size with diversified adversarial samples
under such norm constraints.
FreeLB++ is a variant of FreeLB, which increases
the number of ascent steps to further improve the
adversarial robustness of models (Li et al., 2021).
They demonstrated through extensive experiments
that FreeLB and its variant of FreeLB++ outper-
forms other defense methods including TAVAT (Li
and Qiu, 2020) and DNE (Zhou et al., 2021). There-
fore, we only report the results produced by FreeLB
and FreeLB++ for comparison.
Adversarial Data Augmentation (ADA) is one
of the widely used methods (Dong et al., 2021; Si
et al., 2021; Zhou et al., 2021). During the train-
ing, they replace a word with one of its synonyms
that maximizes the prediction loss. By augmenting
these adversarial examples with the original train-
ing data, the model is robust to such perturbations.

4.3 Results

Table 1 shows the clean accuracy and adversarial
robustness achieved by different defense methods
under three attack algorithms. We use TextFoolor
as the attack algorithm to generate the adversarial
examples for validation set construction because
it was reported that TextFoolor can generate high-
quality, semantics-preserved adversarial examples
(Hauser et al., 2021). For a fair comparison, ADA
also use TextFoolor to craft the adversarial exam-
ples for data augmentation. Unless otherwise spec-
ified, we set to 50% the percent of the clean data
in the validation set from which the corresponding
adversarial examples will be generated. We use
WETAR-S to denote the setting where the adversar-
ial examples are constructed by the static method
and WETAR-D to that by the dynamic method.

From these numbers, a handful of trends are read-
ily apparent: (1) The proposed WETAR achieved
the highest robustness across three text classifi-
cation datasets under different adversarial attacks
over all the baseline methods while suffering little
to no performance drop on the clean input data;
(2) The models trained with FreeLB++ achieved
the better performance than others in clean accu-
racy. However, the improvement in adversarial ro-

bustness is relatively small compared to WETAR;
(3) The models trained with ADA method outper-
formed those trained with other baseline methods
in adversarial robustness, but they suffer a signif-
icant drop in clean accuracy, especially on SST-2
and MR datasets2.

WETAR-D performed better than WETAR-S on
SST-2 and AGNEWS datasets while the latter out-
performed the former on MR dataset. One possible
explanation is that the size of MR training set is
much smaller than those of SST-2 and AGNEWS.
For a given maximum number of training epochs,
the number of mini-batches is relatively small when
the models are trained on MR dataset. It would be
hard for WETAR-D to tune the models sufficiently
within a limited number of epochs since WETAR-
D introduces the dynamics into the training process
and requires more training epochs to converge.

4.4 Impact of the Types of Augmented
Adversarial Examples

To better understand the impact of different attack
algorithms used to construct the adversarial vali-
dation examples on the performance, we report in
Table 2 accuracy achieved by WETAR and ADA
methods under different attacks on the MR dataset.
We found that both WETAR-D and WETAR-S per-
form better than ADA under almost all attack al-
gorithms. Besides, WETAR is not sensitive to the
choice of the attack algorithm used to construct
validation set at the training stage, whereas ADA
shows to be more sensitive to the type of attack
algorithm applied to generate adversarial examples
for data augmentation. Although the choice of at-
tack algorithm has little impact on the adversarial
robustness, the models trained by WETAR inte-
grated with BERT-Attack achieved slightly better
performance on MR dataset.

4.5 Impact of the Proportion of Adversarial
Examples in the Validation Set

We conducted some experiments on SST-2 dataset
to investigate the impact of different proportions
of adversarial examples in the validation set. Fig-
ure 1 shows the clean accuracy and accuracy under
attack of our WETAR where BERT-Attack was
used to generate adversarial examples for valida-
tion set construction. We evaluated the adversarial
robustness of the resulting models with TextFooler.

2In our experiments, we found our implemented ADA can
achieve higher robustness than that reported in Li et al. (2021).

1699



Method Clean TFL BTA TBG PWWS DWB
ADA-TFL 85.1 14.3 11.3 34.0 34.1 23.9
ADA-BTA 84.0 8.6 24.1 23.7 24.0 19.7
ADA-TBG 87.0 8.7 10.9 29.4 26.3 14.5
Generating Adversarial Examples Statically
WETAR-S-TFL 86.6 30.4 31.7 48.1 39.8 43.3
WETAR-S-BTA 86.3 32.1 32.4 48.1 41.4 43.4
WETAR-S-TBG 86.0 22.6 27.0 43.3 35.2 36.8
Generating Adversarial Examples Dynamically
WETAR-D-TFL 86.2 24.9 28.4 48.7 38.9 39.2
WETAR-D-BTA 86.6 26.0 28.0 45.6 38.2 38.6
WETAR-D-TBG 86.5 29.8 32.1 48.3 40.8 41.2

Table 2: Accuracy achieved with various training meth-
ods under different attacks on the MR dataset. Those
listed in the rows are training methods, and those in the
columns are attacking algorithms. “Clean” denotes the
clean accuracy. “TFL”, “BTA”, “TBG”, and “DWB” de-
notes TextFooler, BERT-Attack, TextBugger and Deep-
WordBug respectively.

As shown in Figure 1, we found that WETAR in
general can provide a great increase in robustness
only with little sacrifice in clean accuracy. WETAR
is also insensitive to the proportions of adversar-
ial examples that are added into the validation set.
However, adding too many adversarial examples
to the validation set will hurt the performance of
models in both clean accuracy and adversarial ro-
bustness. We do get surprised that our method
using a validation set that only contains clean ex-
amples can make the models more robust against
the word substitution-based attacks. We believe
that our training method can prevent the models
from overfitting to a pre-defined training set, which
leads to more robust models.

0 10 20 30 40 50
Percentage of Adversarial Samples (%)

90

91

92

93

94

95

Cl
ea

n 
Ac

cu
ra

cy
 (%

)

(a)

0 10 20 30 40 50
Percentage of Adversarial Samples (%)

10

20

30

40

50

Ac
cu

ra
cy

 u
nd

er
 A

tta
ck

 (%
)

(b)

WETAR S test
WETAR S valid
WETAR D test
WETAR D valid

Figure 1: The impact of the proportion of adversar-
ial samples in the validation set on MR dataset. (a)
clean accuracy versus various proportions of adversarial
samples. (b) the accuracy under attack versus various
proportions of adversarial samples.

4.6 Combined Approach

We carried out some experiments to study whether
the robustness of models can be further improved
by combining WETAR with the data augmentation

method. In this combination approach, we add
some adversarial examples to the training set as the
adversarial data augmentation. During the training
process, WETAR will assign the weights to both
the clean and adversarial examples based on the
gradient direction of a small validation set.

MR SST-2 AGNEWS
(a)

0

10

20

30

40

50

60

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

 (%
)

ADA
WETAR-S
WETAR-S+ADA

33.3
36.4

55.5

30.4
26.2

47.7

14.3
17.8

41.1

MR SST-2 AGNEWS
(b)

0

10

20

30

40

50

60

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

 (%
)

ADA
WETAR-D
WETAR-D+ADA

25.9

49.4

58.4

24.9
29.6

54.4

14.3
17.8

41.1

Figure 2: The robustness results achieved by WETAR
combined with adversarial data augmentation. (a) WE-
TAR with the static construction method. (b) WETAR
with the dynamic construction method.

We show in Figure 2 the experimental results
achieved by WETAR with validation set gener-
ated statically and dynamically under TextFooler
attack on three datasets. Augmenting the training
set with adversarial examples can further improve
the robustness of models no matter WETAR-S or
WETAR-D is used for training. Like the results
reported in Section 4.3, WETAR-D outperformed
WETAR-S on SST-2 and AGNEWS while the latter
performed better than the former on MR dataset.

5 Analysis

We in this section give some analyses on the in-
terpretability of the proposed reweighting method.
First, we experimentally analyze the changes in
the weight distributions over the training samples
produced by our reweighting method. Base on
this analysis, we propose an empirical method for
model selection. Second, we visualize the weights
obtained by the proposed method.

5.1 Weight Distribution
To better understand the changes in the weight dis-
tributions over the training examples, we show in
Figure 3 the weight distributions produced by WE-
TAR at different epochs. Those weight distribu-
tions are obtained by normalizing the weights of all
training samples at each epoch. To show whether
and how those weight distributions will converge to
some distribution, we use the Wasserstein distance
to compute the difference between two weight dis-
tributions before and after each epoch. We remove
all examples with zeros weights when visualizing
the distributions.

1700



(a) Epoch 2 (b) Epoch 5 (c) Epoch 8 (d) WETAR-S

(e) Epoch 2 (f) Epoch 5 (g) Epoch 8 (h) WETAR-D

Figure 3: The weight distributions produced by WETAR-S and WETAR-D on MR datasets. Sub-figures (a), (b),
and (c) show the weight distributions produced by WETAR-S at epoch 2, 5, and 8 respectively. Sub-figures (e), (f),
and (g) give the same distributions produced by WETAR-D at epoch 2, 5, and 8. Sub-figures (d) and (h) plot the
curves of accuracy under attack and the Wasserstein distance between two weight distributions at every two epochs
yielded by WETAR-S and WETAR-D respectively.

As shown in Figure 3, we found that the perfor-
mance of robustness generally increases when the
differences in the weight distributions shrink as the
number of epochs grows. For examples, the weight
distribution starts to converge after 8 epochs when
WETAR-S is used to train the model. Therefore, we
select the model as the final one when the distance
between two weight distributions is small (e.g., less
than a given threshold). When WETAR-D is ap-
plied, there are some drops at the end of training
process in adversarial robustness. One possible
explanation is that after a long “spear-and-shield”
battle, it is hard for any attack algorithm to gener-
ate good adversarial examples for a robust model,
and the generated adversarial examples after that
will go too far from the original ones, which hurts
the decision boundary of the model and results in
inferior performance in robustness. We give more
experimental results about the weight distributions
on AGNEWS and SST-2 in Appendix C.

5.2 Visualization

Learning to reweight scheme assigns different
weights to examples in a mini-batch under the guid-
ance of the adversarial validation set during the
training phase. We illustrate the proposed reweight-
ing process in Figure 4 to provide a better under-
standing of our method.

In the Figure 4, we plot the representations us-
ing t-SNE visualization by analyzing the final hid-
den states corresponding to [CLS] token of the
model in the last training epoch. Visualization of

more epochs are provided in Appendix D. In the
t-SNE analysis, we use the average weights of data
points during training as a measure of its impor-
tance. We normalized the average weights by the
maximum weight this weight distribution could
achieve. In Figure 4, the darker the color, the more
larger weight this sample point is calculated into
the loss function during training, and the more im-
portant it is in the training process.

Figure 4: t-SNE visualization of the final hidden states
corresponding to [CLS] token of SST-2 training exam-
ples produced by the model in trained via WETAR.

We found that the samples distributed in one cat-
egory, while close to the other one have greater non-
zero weight values, which indicates they are rela-
tively more important than the others, coinciding
with the finding mentioned by Zhang et al. (2021);
Kim et al. (2021). We can also observe that more
weights will be given to some samples during the
training process, making the whole weight distribu-
tion sparse. Through the analysis of visualization,
we found the proposed mechanism can prevent the

1701



model from being overfitted to some training sam-
ples by assigning small weights to them. Guiding
the training process via these sparse weight distri-
butions leads to a significant increase in adversarial
robustness with no or little drop in clean accuracy.

6 Conclusion

In this study, we propose a defense method against
text adversarial attacks by reweighting examples
automatically. The algorithm learns to weight train-
ing examples in proportion to their contributions to
minimize the loss evaluated on a validation set aug-
mented with adversarial examples. The proposed
method can directly be applied to any deep learning
architecture without any additional hyperparameter
search. We showed through extensive experiments
that there indeed exists a reweighting mechanism
to make the model robust without generating ad-
versarial examples for the entire training set, and
our reweighting algorithm performs better than ex-
isting defense methods across three different text
classification datasets.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their valuable comments. This work
was supported by National Science Foundation
of China (No. 62076068), Shanghai Munici-
pal Science and Technology Major Project (No.
2021SHZDZX0103), and Zhangjiang Lab. Chang
is supported in part by Cisco and Sloan fellowship.
Hsieh is supported in part by NSF IIS-2008173 and
IIS-2048280.

References

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew Peters, Ashish
Sabharwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 1078–1088. PMLR.

Minhao Cheng, Wei Wei, and Cho-Jui Hsieh. 2019.
Evaluating and enhancing the robustness of dialogue
systems: A case study on a negotiation agent. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3325–3335,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and
Serge Belongie. 2019. Class-balanced loss based
on effective number of samples. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong
Liu. 2021. Towards robustness against natural lan-
guage word substitutions. In International Confer-
ence on Learning Representations.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial examples
for text classification. Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018a. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018b. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56. IEEE.

Edward Grefenstette, Brandon Amos, Denis Yarats,
Phu Mon Htut, Artem Molchanov, Franziska Meier,
Douwe Kiela, Kyunghyun Cho, and Soumith Chin-
tala. 2019. Generalized inner loop meta-learning.

Jens Hauser, Zhao Meng, Damián Pascual, and Roger
Wattenhofer. 2021. Bert is robust! a case against
synonym-based adversarial examples in text classifi-
cation.

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris
Dyer, Dani Yogatama, Sven Gowal, Krishnamurthy
Dvijotham, and Pushmeet Kohli. 2019. Achieving
verified robustness to symbol substitutions via in-
terval bound propagation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4083–4093, Hong Kong,
China. Association for Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy
Liang. 2019. Certified robustness to adversarial word
substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4129–4142, Hong Kong, China. Association
for Computational Linguistics.

1702

https://proceedings.mlr.press/v119/bras20a.html
https://proceedings.mlr.press/v119/bras20a.html
https://doi.org/10.18653/v1/N19-1336
https://doi.org/10.18653/v1/N19-1336
https://openreview.net/forum?id=ks5nebunVn_
https://openreview.net/forum?id=ks5nebunVn_
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
http://arxiv.org/abs/1910.01727
http://arxiv.org/abs/2109.07403
http://arxiv.org/abs/2109.07403
http://arxiv.org/abs/2109.07403
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.18653/v1/D19-1423


Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, Online. Association for Computational
Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? a strong
baseline for natural language attack on text classi-
fication and entailment. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):8018–
8025.

Minseon Kim, Jihoon Tack, Jinwoo Shin, and Sung Ju
Hwang. 2021. Entropy weighted adversarial training.
In ICML 2021 Workshop on Adversarial Machine
Learning.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1885–1894.
PMLR.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial text
against real-world applications. Proceedings 2019
Network and Distributed System Security Symposium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Linyang Li and Xipeng Qiu. 2020. Tavat: Token-aware
virtual adversarial training for language understand-
ing. arXiv preprint arXiv:2004.14543.

Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiao-
qing Zheng, Qi Zhang, Kai-Wei Chang, and Cho-Jui
Hsieh. 2021. Searching for an effective defender:
Benchmarking defense against adversarial word sub-
stitution. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3137–3147, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Takeru Miyato, Andrew M. Dai, and Ian Goodfel-
low. 2017a. Adversarial training methods for semi-
supervised text classification.

Takeru Miyato, Andrew M. Dai, and Ian J. Goodfel-
low. 2017b. Adversarial training methods for semi-
supervised text classification. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 115–124, Ann
Arbor, Michigan. Association for Computational Lin-
guistics.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pages 4334–4343. PMLR.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019a. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1085–
1097, Florence, Italy. Association for Computational
Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019b. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th annual meeting of the as-
sociation for computational linguistics, pages 1085–
1097.

Motoki Sato, Jun Suzuki, Hiroyuki Shindo, and Yuji
Matsumoto. 2018a. Interpretable adversarial pertur-
bation in input embedding space for text. In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, pages
4323–4330. International Joint Conferences on Arti-
ficial Intelligence Organization.

Motoki Sato, Jun Suzuki, Hiroyuki Shindo, and Yuji
Matsumoto. 2018b. Interpretable adversarial pertur-
bation in input embedding space for text. In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, pages 4323–4330.
ijcai.org.

Wonyoung Shin, Jung-Woo Ha, Shengzhe Li, Yong-
woo Cho, Hoyean Song, and Sunyoung Kwon. 2020.
Which strategies matter for noisy label classification?
insight into loss and uncertainty.

1703

https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://openreview.net/forum?id=VLdqHdp4j1H
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.mlr.press/v70/koh17a.html
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://aclanthology.org/2021.emnlp-main.251
https://aclanthology.org/2021.emnlp-main.251
https://aclanthology.org/2021.emnlp-main.251
http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/1605.07725
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://proceedings.mlr.press/v80/ren18a.html
https://proceedings.mlr.press/v80/ren18a.html
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.24963/ijcai.2018/601
https://doi.org/10.24963/ijcai.2018/601
https://doi.org/10.24963/ijcai.2018/601
https://doi.org/10.24963/ijcai.2018/601
http://arxiv.org/abs/2008.06218
http://arxiv.org/abs/2008.06218


Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan
Liu, Yasheng Wang, Qun Liu, and Maosong Sun.
2021. Better robustness by more coverage: Ad-
versarial and mixup data augmentation for robust
finetuning. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1569–1576, Online. Association for Computational
Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie,
and Tat-Seng Chua. 2021. Denoising implicit feed-
back for recommendation. Proceedings of the 14th
ACM International Conference on Web Search and
Data Mining.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey,
Xingjun Ma, and Quanquan Gu. 2020. Improving ad-
versarial robustness requires revisiting misclassified
examples. In International Conference on Learning
Representations.

Mao Ye, Chengyue Gong, and Qiang Liu. 2020.
SAFER: A structure-free approach for certified ro-
bustness to adversarial word substitutions. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3465–
3475, Online. Association for Computational Lin-
guistics.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han,
Masashi Sugiyama, and Mohan Kankanhalli. 2021.
Geometry-aware instance-reweighted adversarial
training. In International Conference on Learning
Representations.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In Interna-
tional Conference on Learning Representations.

Xiaoqing Zheng, Jiehang Zeng, Yi Zhou, Cho-Jui Hsieh,
Minhao Cheng, and Xuanjing Huang. 2020. Evaluat-
ing and enhancing the robustness of neural network-
based dependency parsing models with adversarial
examples. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6600–6610, Online. Association for Computa-
tional Linguistics.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei
Chang, and Xuanjing Huang. 2021. Defense against
synonym substitution-based adversarial attacks via

Dirichlet neighborhood ensemble. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5482–5492, Online.
Association for Computational Linguistics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. FreeLB: Enhanced ad-
versarial training for natural language understanding.
In International Conference on Learning Representa-
tions.

1704

https://doi.org/10.18653/v1/2021.findings-acl.137
https://doi.org/10.18653/v1/2021.findings-acl.137
https://doi.org/10.18653/v1/2021.findings-acl.137
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.1145/3437963.3441800
https://doi.org/10.1145/3437963.3441800
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
https://doi.org/10.18653/v1/2020.acl-main.317
https://doi.org/10.18653/v1/2020.acl-main.317
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://openreview.net/forum?id=H1BLjgZCb
https://doi.org/10.18653/v1/2020.acl-main.590
https://doi.org/10.18653/v1/2020.acl-main.590
https://doi.org/10.18653/v1/2020.acl-main.590
https://doi.org/10.18653/v1/2020.acl-main.590
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB


A Algorithm

Algorithm 1 Weighting Examples Towards Adver-
sarial Robustness Algorithm
Input: D:training dataset {(xi, yi)}Ni=1,Dv: adver-
sarial validation set {(xvi , yvi )}Mi=1, θ:model param-
eters, τ :learning rate, ϵ: weights for perturbation,
w: weights for updating
Output:θ:model weights

1: Initialize θ
2: for Iterative step t = 1, ..., T do
3: for minibatch {xi, yi}ni=1 ⊂ D do
4: // Initialize ϵ and minibatch from Dv

5: Sample minibatch {xvi , yvi }mi=1 ⊂ Dv

6: ϵ← 0
7: // Calculate∇θ′

t and update meta model
8: gθ′

t
← ∇θt

∑n
i=1 ϵiLθt(xi, yi)

9: θ′
t = θt − τgθ′

t

10: // Calculate gϵ and weights w
11: gϵ ← ∇ϵ

1
m

∑m
j=1 Lθ′

t
(xv

j , y
v
j )

12: w̃ ← max(−gϵ,0)
13: w ← w̃j∑

j w̃j+δ(wj)

14: // Update model with reweighted exam-
ples

15: ∇θt ← ∇θt

∑n
i=1wiLθt(xi, yi)

16: θt+1 ← θt − τ∇θt

17: end for
18: end for
19: return θ

In this section, we provide the algorithm for
training process of METAR and describe the whole
algorithm process in detail. We would construct
an adversarial validation set first and then proceed
to the next step of training. In case of METAR-D
method, we reconstruct our adversarial validation
set after every 1-2 epochs.

As shown in Algorithm 1, we sample a mini-
batch from the adversarial validation set and ini-
tialize weight perturbation ϵ in line 5-6. In line
8-9, we calculate θ′

t in order to obtain the gradi-
ent gϵ of ϵ by meta-learning algorithm in line 11.
We obtain the relative importance w̃ of samples
by comparing the magnitude of −gϵ. Note that
we use the opposite direction of gϵ to evaluate the
relative importance because we do a gradient de-
scent operation in line 9. We then normalize this
importance weight w̃ to w and use w to weight
training samples in the regular training. In gen-
eral, the theoretical computational complexity of
our algorithm is about three times greater than the

regular training method.

B Implementation Details

Table B shows the implementation details about the
hyper-parameters we used to train models. “Adver-
sarial Learning Rate” is the parameter setting for
standard adversarial training methods. “Proportion
ρ for WETAR” means that there are 50% of sam-
ples are clean samples in validation batch in each
training iteration. In order to make the guidance
function of adversarial validation set more obvi-
ous, we use relatively larger adversarial validation
batch.

Hyper-parameters SST-2 AGNEWS MR
Learning Rate 2× 10−5 2× 10−5 2× 10−5

Weight Decay 1× 10−6 1× 10−6 1× 10−6

Batch Size 32 32 8
Epochs 10 10 10
Adversarial Learning Rate 0.03 0.06 0.03
FreeLB Ascent Step 2 3 3
FreeLB++ Ascent Step 10 10 10
Proportion ρ for WETAR 50% 50% 50%
Validation Batch Size 256 256 64

Table 3: The training hyperparameters we selected to
train models across three datasets in Table 1.

C Weight Distribution

In the section, we first provide the experimental
basis for our empirical model selection method
with respect to the Wasserstein distance of weight
distribution at every two epochs. We also provide
detailed weight distributions in this section.

Figure 5 shows the weight distribution of
WETAR-D on AGNEWS and SST-2 datasets. We
can draw the similar conclusion that our empiri-
cal model selection method based on Wasserstein
distance could select a relatively robust model.

We provide more weight distributions in this sec-
tion in addition to the above distributions. Figure
6 and 7 show the weight distribution provided by
WETAR-D on AGNEWS dataset and SST-2 dataset
respectively. Figure 10 and 9 show the weight dis-
tribution on MR dataset provided by WETAR-D
and WETAR-S respectively.

D Visualization

Figure 8 shows t-SNE results of training examples
in the SST-2 dataset. For each sub-figure, the dots
are outputs of the last layer of the model for the
corresponding epoch, and the relative importance
of dots is calculated by the average weights.

1705



10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pr

ob
ab

ilit
y

1e 2

Epoch
2

(a) Epoch 2

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
5

(b) Epoch 5

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
8

(c) Epoch 8

2 4 6 8 10
Epochs

35

40

45

50

55

Ac
cu

ra
cy

 u
nd

er
 A

tta
ck

 (%
)

1

2

3

4

5

W
as

se
rs

te
in

 D
ist

an
ce

1e 7

Test Rob
Validation Rob
W-Distance

(d) WETAR-D

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
2

(e) Epoch 2

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
5

(f) Epoch 5

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
8

(g) Epoch 8

2 4 6 8 10
Epochs

5

10

15

20

25

30

Ac
cu

ra
cy

 u
nd

er
 A

tta
ck

 (%
)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

W
as

se
rs

te
in

 D
ist

an
ce

1e 6

Test Rob
Validation Rob
W-Distance

(h) WETAR-D
Figure 5: The weight distributions produced by WETAR-D on AGNEWS and SST-2 datasets. Sub-figures (a),
(b), and (c) show the weight distributions produced by WETAR-D at epoch 2, 5, and 8 on AGNEWS respectively.
Sub-figures (e), (f), and (g) give the same distributions produced by WETAR-D at epoch 2, 5, and 8 on SST-2.
Sub-figures (d) and (h) plot the curves of accuracy under attack and the Wasserstein distance between two weight
distributions at every two epochs respectively.

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
3

(a) Epoch 3

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
4

(b) Epoch 4

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
5

(c) Epoch 5

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
6

(d) Epoch 6

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
7

(e) Epoch 7

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
8

(f) Epoch 8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
9

(g) Epoch 9

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
10

(h) Epoch 10

Figure 6: Weight distribution provided by WETAR-D
on AGNEWS dataset.

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
3

(a) Epoch 3

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
4

(b) Epoch 4

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
5

(c) Epoch 5

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
6

(d) Epoch 6

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
7

(e) Epoch 7

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
8

(f) Epoch 8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
9

(g) Epoch 9

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

1e 2

Epoch
10

(h) Epoch 10

Figure 7: Weight distribution provided by WETAR-D
on SST-2 dataset.

1706



(a) Epoch 7 (b) Epoch 8 (c) Epoch 9 (d) Epoch 10

Figure 8: t-SNE visualization of the representations of SST-2 training examples produced by the model trained via
WETAR.

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
3

(a) Epoch 3

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
4

(b) Epoch 4

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
5

(c) Epoch 5

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
6

(d) Epoch 6

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
7

(e) Epoch 7

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
8

(f) Epoch 8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
9

(g) Epoch 9

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
10

(h) Epoch 10

Figure 9: Weight distribution provided by WETAR-S
on MR dataset.

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
3

(a) Epoch 3

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
4

(b) Epoch 4

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
5

(c) Epoch 5

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
6

(d) Epoch 6

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
7

(e) Epoch 7

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
8

(f) Epoch 8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
9

(g) Epoch 9

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y

1e 2

Epoch
10

(h) Epoch 10

Figure 10: Weight distribution provided by WETAR-D
on MR dataset.

1707


