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Abstract

Augmentation of task-oriented dialogues has
followed standard methods used for plain-text
such as back-translation, word-level manipu-
lation, and paraphrasing despite its richly an-
notated structure. In this work, we introduce
an augmentation framework that utilizes belief
state annotations to match turns from various
dialogues and form new synthetic dialogues in
a bottom-up manner. Unlike other augmenta-
tion strategies, it operates with as few as five
examples. Our augmentation strategy yields
significant improvements when both adapting
a DST model to a new domain, and when
adapting a language model to the DST task,
on evaluations with TRADE and TOD-BERT
models. Further analysis shows that our model
performs better on seen values during train-
ing, and it is also more robust to unseen val-
ues. We conclude that exploiting belief state
annotations enhances dialogue augmentation
and results in improved models in n-shot train-
ing scenarios.

1 Introduction

Task-oriented dialogue (TOD) agents are the next-
generation user interface and are slated to replace
browsing static websites. However, a key bottle-
neck in fielding such agents practically concerns
adapting to new domains with few available data.
In the light of this dependency in ample amounts
of annotated data, data augmentation is growing
in importance (Feng et al., 2021). Most augmenta-
tion methods in natural language processing (NLP)
target written forms of text — passages, news arti-
cles, etc. — which operate with word- or sentence-
level permutations of the original text data, syn-
thesizing new text (Liu et al., 2020; Wei and Zou,
2019; Yu et al., 2018; Xie et al., 2017; Kobayashi,
2018). These methods do not exploit the structure
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Figure 1: Scenario with two dialogues from train booking
domain. Dialogue snippets, SA&SB , have the same dialogue
function and the new dialogue created by replacing them and
inserting proper slot values is still coherent end to end.

of conversational data in its entirety. We study aug-
menting task-oriented dialogues, a specific form of
conversational data.

A TOD is a form of conversation where the aim
is to accomplish a task through exchanges between
a user and an agent, accounting for the user’s pref-
erences.

Within TOD, dialogue state tracking (DST) is
a fundamental task, which aims to detect these
preferences in a given dialogue. For this task, each
pair of utterances in a dialogue is annotated with
slot-label and slot-value pairs (cf. Figure 1: train-
destination: “Cambridge”) and a belief state. Here,
a belief state can be equated as an attribute–value
store that gives the final values of each slot label
(attribute) after an utterance.

There have been several attempts to augment
conversational data in the literature. Quan and
Xiong (2019) up-sample the data through word or
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sentence level modifications, following standard
text augmentation techniques in NLP such as syn-
onym substitution, back-translation, or paraphras-
ing. Kurata et al. (2016) perturb embeddings of
single utterances and decode similarly functioned
synthetic utterances. Gao et al. (2020) create an
end-to-end pipeline that finds the utterances with
similar dialogue functions and trains a paraphrasing
model. CoCo (Li et al., 2021) trains a conditional
user–utterance generation model, then generates
synthetic turns by modifying belief states using a
rule-based system and conditioning the model on
the modified belief state. Gritta et al. (2021) create
a working graph of TOD datasets where each edge
is a dialogue act and create synthetic dialogues by
traversing alternative paths; however, their frame-
work requires user acts to work with. Critically,
none of the above techniques exploit the belief state
annotations of TODs within an n-shot scenario.

In contrast, dialogue belief state annotations
guide our approach to an effective n-shot augmen-
tation method. We observe that the belief state
identifies the specific slots that each turn-pair dis-
cusses. As such, belief states can be used as a
proxy to represent dialogue function. For example,
after exchanging two turn-pairs that serve the same
dialogue function in separate dialogues, coherency
in both dialogues should be preserved, if discount-
ing necessary changes to slot values (Figure 1).
Motivated by this, we delexicalize and store each
turn-pair with their dialogue function to effectively

construct new dialogues from scratch.

We evaluate our framework with MultiWOZ,
a multi-domain dialogue dataset (Budzianowski
et al., 2018). Each of its 10,000 dialogues is an-
notated with its turn belief states, system acts, and
turn slots.

We experiment using both the previous state-of-
the-art (SOTA) recurrent TRADE (Wu et al., 2019)
model and the transformer-based TOD-BERT (Wu
et al., 2020b) model. Our framework significantly
increases n-shot performance,

both when adapting a DST model to a new do-
main and when adapting a language model to the
DST task. A fine-grained analysis of evaluation
results reveals that models finetuned on synthetic
data become robust to previously unseen slot val-
ues, and recognize seen values better. The latter
aspect accounts for the majority of the performance
gain.

2 Related Work

2.1 Dialogue State Tracking

Previous DST models cumulatively keep track of
utterances to obtain dialogue states (Williams and
Young, 2007; Thomson and Young, 2010; Wang
and Lemon, 2013). Lei et al. (2018) introduced
Sequicity to generate belief spans as an interme-
diate process and improve the performance on the
end task. Zhong et al. (2018) proposed to use a
unique module for each slot, which improves the
tracking of unseen slot values. The majority of
these systems relied on an in-domain vocabulary
and they were all evaluated on a single domain.
Ramadan et al. (2018) proposed to jointly train the
domain and state tracker using multiple bi-LSTMs
and allowed the learned parameters to be shared
across domains; whereas Rastogi et al. (2017) used
a multi-domain approach using bi-GRU where the
dialogue states are defined as distributions over a
candidate set derived from dialogue history.

We use two base models in this paper. The first
one, TRADE, was proposed by Wu et al. (2019). It
implements an encoder–decoder architecture and
applies a copy mechanism that helps to overcome
out of vocabulary (OOV) challenges. The second
one, TOD-BERT (Wu et al., 2020b), is a task-
oriented dialogue model following the transformer
paradigm. It is pretrained using 9 TOD datasets
with a contrastive objective function.

2.2 Few-shot Dialogue State Tracking

Many papers focus on the low-resource scenario
in the DST field aiming to generate comparable
results between low- and rich-resource settings.
These invariably categorize into two approaches to
address the low-resource challenge: (1) optimiza-
tion functions aimed to exploit the smaller amounts
of data, or (2) augmentation of the target data.

Few-shot Models and Techniques. Some ap-
proaches in the first class of solutions benefit
from the recent transformer trend. One such
study finetunes the GPT-2 model and reports n-
shot slot-filling and intent recognition results on
the SNIPS dataset (Madotto et al., 2020). They
achieve promising results compared to baselines
with fewer shots. TOD-BERT reports results on
four downstream tasks in the full- and low-resource
settings (Wu et al., 2020b). Another line of research
tries to address the problem without transformers.
Span-ConverRT re-defines the slot-filling problem
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as turn-based span extraction that helps greatly in
the few-shot setting (Coope et al., 2020). Huang
et al. (2020) use the model agnostic meta-learning
(MAML) algorithm to adapt to new domains and
show that it can outperform traditional methods
with fewer data. Coach (Liu et al., 2020), on the
other hand, breaks the slot-filling task into two com-
ponents: a first slot entity detection task, followed
by an entity type prediction task.

Data Augmentation for the Few-shot Setting.
Other studies, like our approach, focus on aug-
mentation to improve few-shot performance. Quan
and Xiong (2019) adopt four techniques for aug-
mentation: synonym substitution, stop-word dele-
tion, translation, and paraphrasing at the sentence
level. Kurata et al. (2016) start by pretraining a
dialogue encoder–decoder, and then perturb the
dialogue representations to back-decode synthetic
dialogues. Another study by Jalalvand et al. (2018)
trains a logistic regression model on the small tar-
get data to detect the most informative n-grams and
then find related samples from an out-of-domain
corpus. Yin et al. (2020) propose a reinforcement
learning setting, alternating learning between a gen-
erator and a state tracker to discover augmentation
policies that benefit the end task. Two separate
studies try to solve the OOV problem by enrich-
ing dialogue slot values with other values (Song
et al., 2020; Summerville et al., 2020). Liu et al.
(2019) train a TOD comprehension model using
a synthetic data generator that simulates human-
human dialogues. The transformations within the
generation process are on the turn-level which lim-
its the information flow to the rest of the dialogue.
Aksu et al. (2021) on the other hand take whole
dialogues states into consideration during synthetic
generation, however, their augmentation method
requires manual annotation for each new domain.

Campagna et al. (2020) create an abstract dia-
logue model by defining domain templates through
manual observations and then generates augmented
data using these templates. Their model improves
the zero-shot performance but requires manual
work for each new domain.

Three studies use dialogue annotations during
the augmentation process. PARG matches turns of
a task-oriented dialogue by their dialogue state to
create pairs for paraphrase generation (Gao et al.,
2020), they then jointly train the paraphrase genera-
tor with the end task outperforming other dialogue
augmentation baselines. The low-resource setting

defined by PARG is still required to be large enough
to train a neural paraphrase model from scratch,
thus limiting its applicability to emerging domains
with little data. Moreover, they do not model the
interaction of a turn-pair with the next turn-pairs;
as such a paraphrased utterance may be noisy, re-
peating a slot on the next turn. Gritta et al. (2021)
create graph representations of dialogue datasets
where each edge corresponds to a dialogue act by
the user or system. They then extract alternative
dialogues. However, they experiment only using
full data settings. Additionally, their framework
presumes the dialogue states are specific to each ut-
terance, but for MultiWOZ (among other datasets)
dialogue states harbor information from a pair of
system–user utterances. Lastly, Li et al. (2021)
train a conditional user-utterance generation model
on a large dataset, then generate synthetic dialogues
by mutating the belief states through a rule-based
system. This method is also limited as it requires
enough data to train a conditional generation model,
an unrealistic requirement for few-shot training.

3 Method

Our method leverages a simple hypothesis, visual-
ized in Figure 1: that the function of a pair of turns
in a dialogue can be defined by its slots, and its
interactions with its previous and next turn-pairs.
The example has two turn-pairs: Sa from Dialogue
A and Sb from Dialogue B. The turn-pair belief
states that precede both Sa and Sb are composed of
the same set of slot labels. The same holds for the
belief states of turn-pairs following Sa and Sb.

Thus Sa and Sb have the same function in the
dialogue. We hypothesize the interchange of these
pairs of turns (after changing the values according
to the parent dialogue state) maintains a coherent di-
alogue. Our observations on the MultiWOZ dataset
showed that this is true to a large extent for task-
oriented dialogues because the belief state history
represents the ongoing topic, and slot labels of the
next turn give hints about the system acts.

Our framework implements this hypothesis in
three steps. In Step 1 (§ 3.1), we create turn-pair
templates by delexicalizing each pair (replacing
slot values with their respective slot label),

then storing each template with the previous,
current, and next pair’s belief states (cf. Figure 2).
We also mine a dictionary of possible slot label–
value pairs to be used in filling generated templates.
In Step 2 (§ 3.2) we create dialogue templates by
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Figure 2: Sample turn-pair template (bottom, pink) and the
original dialogue it is extracted from (top, green). The subject
template is composed of four elements: 1) delexicalized turn
utterances, and the belief state of 2) current, 3) past, and 4)
next turns in the original dialogue.

combining these pairs constrained such that two
consecutive pairs’ dialogue functions do not break
coherency. We do this combination in a breadth-
first manner, best visualized as a tree where each
node is a turn-pair template, and every string of
nodes from root to leaf is a dialogue template (cf.
Figure 3). Finally in Step 3 (§ 3.3), we create final
synthetic dialogues by filling the slot labels in the
dialogue templates (cf. Figure 4) using the mined
dictionary.

3.1 Step 1: Turn-pair Template Generation

Figure 2 depicts a sample turn-pair template that
our framework generates. Each turn-pair template
in our framework consists of a pair of turns: a
system turn and a user turn. Our templates con-
sist of pairs of turns, simply because consecutive
turns (system–user) share the same dialogue state
annotation. Each turn-pair template consists of a
delexicalized pair of turns and a dialogue function
formed as the combination of the previous, current,
and next turn belief states.

During delexicalization we follow (Hou et al.,
2018) to replace each slot value with “[slot-name]”.
Since MultiWOZ 2.1 does not provide indices for
slot values, we manually find each value by search-
ing in the turn-pair. This brings up several prob-
lems where two slots might have the same value or
where some categorical values might not show up

Figure 3: In our framework, dialogue templates are generated
through adding proper turn-pair templates in a chain structure.
The chains form a tree, which covers every possible dialogue
template as a path from root to a leaf node.

in the text (e.g. hotel-internet: {“dontcare”, “yes”,
“no”}). We filter out templates with the same val-
ues for different labels and leave the values for the
categorical labels the same, assuming that they are
independent of changes in other values. However,
unlike non-categorical ones, we are limited from
enriching the values of such slot types through sur-
face realization when we fill in our templates. Each
dialogue in MultiWOZ usually starts with a salu-
tation and ends with a farewell. To distinguish
these starting–ending pairs, we define two excep-
tion cases: (1) If a template’s turn-pair comes from
the beginning of a dialogue, we set its previous
belief state as null (start state), (2) if it comes from
the ending of a dialogue we set its next belief state
as null (end state). We use these two cases later in
template generation to generate coherent dialogues
from start to end.

3.2 Step 2: Dialogue Template Generation

We generate each dialogue template by combining
a set of turn-pair templates. We form our dialogue
templates using a tree structure where each node
corresponds to a turn-pair template, and a chain
of nodes starting from a root and ending with a
leaf is a dialogue template (Figure 3). We start
by defining a root node and setting its belief state
as null. Initially, we ignore the next belief state
condition and add every template whose previous
belief state is null — such turns are legitimate con-
versation starters (roots). At each level, we mark
every newly-added node as an active node. Then
after each level, we iterate through active nodes
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Figure 4: The last step in our framework, surface realization,
utilizes the dictionary of slot label and slot values obtained
from the original dialogues in Step 1, populating the templates
with every permutation of possible values of each slot.

and expand each node with the set of eligible tem-
plates. Two conditions need to be met to append
Template B to the tail of Template A: (1) B’s belief
state slots should be met by A’s next belief state
slots and (2) A’s belief state slots should be met by
B’s past belief state slots. We continue adding tem-
plates until there are no active nodes. Eventually,
we end up with a tree structure where each con-
nected node represents a turn-pair and each path
from the root to a leaf node is a unique dialogue
template. We discard paths whose leaf nodes do
not have null as the next belief state. This ensures
that the dialogue template has a valid ending.

3.3 Step 3: Surface Realization

We now fill in the delexicalized dialogue templates.
Using the slot–value dictionary extracted in Step 1,
we fill each dialogue with every possible slot value
combination thus effectively sourcing synthetic
augmented dialogues (Figure 4). This final step
returns a set of task-oriented dialogues, suitable
for training (or fine-tuning) a learning system (cf.
Appendix A for sample dialogues).

4 Experiments

4.1 Dataset, Models and Evaluation

We conduct experiments on MultiWOZ, a well-
known dataset in the DST field. When compared
to its counterparts like WOZ (Wen et al., 2017),

DSTC2 (Henderson et al., 2014) and Restaurant-
8k (Coope et al., 2020), MultiWOZ is the richest,
combining several domains with a variety of slot
labels and values. MultiWOZ is a multi-domain
dialogue dataset that covers 10,000 dialogues be-
tween clerks and tourists, each annotated with turn
belief states, system acts, and turn slots. Following
prior works (Wu et al., 2019, 2020a) we conduct
our experiments on 5 of 7 domains leaving hospital
and police domains out as their validation and test
sets sample quantity is very low.

We wish to assess how fine-tuning with our aug-
mented data affects model performance. We ex-
periment with the TRADE and TOD-BERT mod-
els (Wu et al., 2020a, 2019) to assess whether their
base performance can be improved using our aug-
mentation framework.For both models, we follow
the fine-tuning experiments done by (Wu et al.,
2019): we train a base model on four domains and
then fine-tune this model with small sets of ran-
domly sampled data from the remaining left-out
target domain (5- or 10-shots). We compare this
against the scenario where we apply our augmenta-
tion framework on the small set before fine-tuning.

Due to space limitations, we present results only
for the subset of the restaurant, taxi, and hotel do-
mains in TOD-BERT. These three domains cover
almost every unique slot in the MultiWOZ dataset,
and is thus representative. We conduct an addi-
tional experiment for TOD-BERT, training/testing
with data from all domains in several few shot set-
tings (20-, 40-, and 80-shot).

We evaluate TRADE using the metrics proposed
by Wu et al. (2019): Slot Accuracy and Joint Accu-
racy. Slot Accuracy measures the proportion of cor-
rectly predicted slot values; while Joint Accuracy
is more coarse-grained, measuring the correctly
predicted turn dialogue states. To predict a turn
dialogue state correctly means that all its contained
slot values are predicted correctly. Also, when a
slot is not mentioned in the utterance the ground
truth for that slot becomes None. This results in
utterances having ground truth slot values which
mostly consist of the value None. We observe that
in our few-shot experiments, unlike TRADE, TOD-
BERT model returns predictions consisting only
of None values. We believe that the discrepancy is
attributable to TRADE’s copy mechanism, which
the TOD-BERT model lacks. To better assess the
contribution of our augmentation approach, we use
Active Slot Accuracy (Dingliwal et al., 2021) for
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Hotel Taxi Restaurant Attraction Train
Joint Slot Joint Slot Joint Slot Joint Slot Joint Slot

1. Base Model (BM) trained on other 4 domains 0.12 0.64 0.60 0.73 0.12 0.54 0.18 0.54 0.22 0.49
2. BM fine tuned with 1% data ( 84 samples) 0.21 0.76 0.61 0.75 0.21 0.77 0.43 0.74 0.61 0.91

5-Shot Augmentation on Target Domain
3. BM fine-tuned with 5 samples 0.12 0.65 0.59 0.75 0.12 0.58 0.25 0.59 0.25 0.66
4. BM fine-tuned with augmented samples 0.12 0.67* 0.58 0.75 0.13 0.62* 0.26 0.61 0.31* 0.77*

10-Shot Augmentation on Target Domain
5. BM fine-tuned with 10 samples 0.14 0.68 0.60 0.76 0.13 0.63 0.30 0.63 0.37 0.81
6. BM fine-tuned with augmented samples 0.15 0.69 0.60 0.76 0.16* 0.70* 0.32* 0.66* 0.39 0.83

Table 1: Evaluation results of TRADE model. The first row shows the zero shot results; the second row, the finetuning with 1%
data ( 80 dialogues) for comparison with n-shot results. Each figure is an average of 10 runs. Bolded numbers in each section
shows the best performance within that section. “*” indicates statistically significant results with 95% confidence.

Active Slot F1 Restaurant Taxi Hotel
5-Shot

3’. Original 0.16 0.0065 0.20
4’. Augmented 0.19* 0.0078 0.22*

10-Shot
5’. Original 0.20 0.010 0.18
6’. Augmented 0.22* 0.013* 0.23*

Table 2: TOD-BERT evaluation results over the individual
restaurant, taxi and hotel domains, averaged over 10 runs.Best
performance within each shot level are bolded; statistical
significance (p ≥ 95%) is starred.

Active Slot F1 20-shot 40-shot 80-shot
Original samples 0.10 0.16 0.21

Our augmented samples 0.16* 0.21* 0.24*

Table 3: TOD-BERT evaluation results over all domains,
averaging 10 runs. Best performance within each shot level
are bolded; statistical significance (p ≥ 95%) is starred.

the TOD-BERT experiments, which is the accuracy
of slot value predictions for all non-None values.

4.2 Implementation and Training Settings

We adjust our training settings to facilitate a fair
comparison among the models trained on differ-
ent data sizes (original versus augmented). For
the TRADE model, we use the default hyperpa-
rameter settings reported in the original paper. For
TOD-BERT, we change the training batch size to
4 and the evaluation batch size to 8, the develop-
ment set evaluation frequency to 1 evaluation per
200 steps, set the terminating condition to early
stopping bounded by a maximum number of steps.
For our augmented fine-tuning model training, we
fine-tune the base model on synthetic data for N /2
steps, followed by fine-tuning on the mixture of
original and synthetic data for another N /2 steps.
We perform this mixing of original samples in the
latter part of fine-tuning to ensure that the model
is exposed to a diverse set of samples, while not
significantly deviating from the original distribu-

tion. This is conceptually similar to the notion of
experience replay in reinforcement learning.

4.3 Results
TRADE Experiments (Table 1). We report the
significance of results with 95% confidence along
with averages over 10 runs. Our framework can
sustain the model performance in all five domains
and significantly improves over baseline (Row 1) in
either the 5- (Row 4) or 10-shot (Row 6) scenarios
in four of the five domains, where most results are
statistically significant at the p ≥ 0.95 level. These
results also greatly improve over fine-tuning using
just 5 or 10 target domain samples (compare Row
3 against 4, and Row 5 against 6). Overall, apply-
ing our augmentation framework yields a macro-
averaged improvement of 3.2% slot accuracy and
1.5% joint accuracy. As a pseudo-upper bound,
we compare our method against fine-tuning over
80 shots (roughly 1% of the target domain data,
represented by Row 2), and see that our approach
significantly closes this performance gap.

The exception is the taxi domain where the aug-
mented data does not result in significant change.
We believe this is due to taxi domain slots hav-
ing a higher variety in values than in other domain
slots. This results in many OOV values in the test
set. The TRADE model thanks to its copy mech-
anism, adapts well to these OOV with fewer data.
The fact that the performance of the base model
fine-tuned with 1% of data is already reached by
fine-tuning the same model within a 5-shot sce-
nario (compare Row 2 and Row 1’s taxi column)
supports our claim.

TOD-BERT Experiments (Tables 2 and 3).
With TOD-BERT, we examine our framework’s
effect on both domain and task adaptation.
· Table 2 shows results for domain adaptation, and
the figures are comparable to those in Table 1 for
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Figure 5: Effects of the augmentation ratio on TRADE model by domain. The dashed blue line represents the performance of
fine-tuning with 1% of full data (∼80 dialogues) for comparison as a pseudo upper bound [Note y-axis scales differ per chart].

Recall Unseen Values Seen Values
All-domains

Original 0.1 e-3 0.24
Augmented 0.2 e-3 0.28
Restaurant

Original 1.5 e-3 0.20
Augmented 2.3 e-3 0.26

Taxi
Original 6.3 e-3 0.16

Augmented 6.8 e-3 0.21
Hotel

Original 0.5 e-3 0.30
Augmented 1.0 e-3 0.32

Table 4: TOD-BERT evaluation results, subdivided between
on seen and unseen values, averaged over 10 runs, with best
results per section in bold.

TRADE. We number the rows with primes (′) to
imply the corresponding results from the TRADE
experiments. We follow the same setting as above
for TRADE (train on 4 other domains, test on target
domain). We observe uniformly improved results
over the few shot fine-tuning, as we did for TRADE,
proving the agnostic feature of our framework.
· Table 3 shows results for task adaptation. Here,
the TOD-BERT model has no familiarity with the
DST task at all, thus fine-tuning is an adaptation to
the task itself. This is a more challenging scenario.
Again, we see uniform improvement, especially for
the lower-shot scenarios (20- and 40-).

The results for both are consistent and in favor of
our framework. Our framework helps in both cases:
(1) LM adaptation to a new task (e.g. DST), and
(2) LM adaptation to a new task-oriented dialogue
domain (e.g. restaurant).

4.4 How Does Augmentation Improve
Performance?

To study the reason behind the performance gain by
augmentation, we dispart our test set samples into
two groups: samples with unique values that do not
show up during training, and samples with values
seen during training. We then evaluate the TOD-
BERT model trained with original and synthetic

Error type Original Synthetic
restaurant-food 2,041 1,675

restaurant-pricerange 1,210 603
restaurant-name 1,133 1,061
restaurant-area 853 480

restaurant-book day 743 335
restaurant-book people 740 212
restaurant-book time 1,119 347

Table 5: Fine-grained restaurant domain errors, for the origi-
nal and augmented TRADE model, classified by slot type.

data on these two separate groups, cf. Table 4.
The results suggest that although, augmentation in-
creases robustness to unseen values in all domains,
the largest part of the contribution is on seen val-
ues. This is expected since our framework uses the
same set of values as in small original dialogue set
during surface realization.

Note that for the “All-domains” section in the
table the improvement on unseen values is smaller
compared to domain-specific sections (Restaurant,
Taxi, Hotel), this is because, in the former, the
model learns DST task from scratch thus exploiting
seen-values to learn the task overweighs to gener-
alizing over unseen values. Whereas for the latter,
robustness to unseen values gets higher learning
priority since the model is already familiar with the
DST task from training on other 4 domains.

This analysis shows that our framework helps
the model to exploit slots that have a bounded value
pool with less unique values while also making it
robust to unseen values for slots with broader value
pools.

4.5 Effect of Augmentation Ratio

We run our framework with several different aug-
mentation ratios in both the 5 and 10 shot cases
to inspect if the synthetic data amount affects the
results proportionally. Figure 5 shows the results
for the TRADE model in all 5 domains. Our frame-
work outperforms base fine-tuning steadily, and the
amount of synthetic data affects the results propor-
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Hotel Taxi Restaurant Attraction Train
Joint Slot Joint Slot Joint Slot Joint Slot Joint Slot

5 Shot Augmentation on Target Domain
BM fine-tuned with CoCo 0.12 0.66 0.60 0.75 0.13 0.62 0.24 0.58 0.27 0.69

BM fine-tuned with our framework 0.12 0.67 0.58 0.75 0.13 0.62 0.26 0.61 0.31 0.77
10 Shot Augmentation on Target Domain

BM fine-tuned with CoCo 0.15 0.68 0.61 0.75 0.16 0.67 0.31 0.64 0.39 0.82
BM fine-tuned with our framework 0.15 0.69 0.60 0.76 0.16 0.70 0.32 0.66 0.39 0.83

Table 6: Evaluation results of TRADE model comparing our augmentation framework to the upperbound CoCo model pre-trained
on full training data (including target domain).

Active Slot F1 Restaurant Taxi Hotel
5 Shot
CoCo 0.17 0.0047 0.21
Ours 0.19 0.0078 0.22

10 Shot
CoCo 0.22 0.0114 0.21
Ours 0.22 0.0132 0.23

Table 7: Evaluation results of TOD-BERT model comparing
our augmentation framework to the upperbound CoCo model
pre-trained on full training data (including target domain).

tionally in every case except the taxi domain as
explained before (cf. Section 4.3).

4.6 Fine-grained Error Analysis

4.6.1 Slot-type Errors

Apart from performance in evaluation metrics we
also analyze the error rates of the TRADE model in
each specific slot type in the restaurant domain and
compare results with and without our framework.
Table 5 shows the results. Our framework consis-
tently reduces error rates in every single slot type.
The drop in the error rate is least remarkable for the
name and food slots, we believe this is because the
challenge in these slots is most largely unknown
vocabulary words. Our framework enriches the di-
alogue templates with values from the original set.
Thus it is less helpful for those slots suffering from
the unknown slot value problem and shows more
significant improvements on slots with arguably
more isolated vocabulary (e.g. Book-day: 1, 2, 3,
etc. or price range: cheap, moderate, expensive).

To support the significance of results on fine-
grained slot error types, we use McNemar’s test
(α = 0.01) upon creating the confusion matrix
between our framework and original fine-tuning.
The results suggest that synthetic data fine-tuning
shows statistically significant improvements over
the original data fine-tuning, with p < α.

4.7 Comparison against CoCo Model

To better locate the position of our framework
in the literature we repeat target domain ex-
periments using another dialogue augmentation
method: CoCo (Li et al., 2021). However, CoCo
is a learning-based approach that requires rich
amounts of data, so it is unfair to expect it to learn
from only a few shots (5/10). Instead, we use the
pretrained weights that are provided by the original
CoCo paper and treat it as an upper bound because
it is trained on the full training data (including
the target domain for leave-one-out experiments)
whereas our framework uses only the provided few
dialogues during augmentation.

Tables 6 and 7 give the results for TRADE and
TOD-BERT, respectively. Despite the advanta-
geous standing of CoCo, our framework outper-
forms CoCo in all domains for the TOD-BERT
model and shows either superior or comparable
results on TRADE.

4.8 Effect of Template Generation

We conduct an ablation study to see the effect of di-
alogue template generation by re-running the TOD-
BERT target domain experiments for hotel and
restaurant domains with a simpler baseline, where
we use only the original n dialogues as templates
and perform surface realization.

The results in Table 8 show that template gener-
ation improves results compared only surface real-
ization in most of the cases. Our template genera-
tion strategy offers higher diversity to the samples
but it might bring up noisy samples along, whereas
only surface realization is less noisy but lacks the
diversity that novel templates contribute.

5 Conclusion

Our framework showcases a distinct approach to
dialogue augmentation, where, unlike other studies,
we apply the modification not on a datum/sample
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Active Slot F1 Restaurant Hotel
5 Shot

Full pipeline 0.183 0.255
Only SR 0.157 0.250
10 Shot

Full pipeline 0.198 0.258
Only SR 0.237 0.243

Table 8: TOD-BERT target domain experiments comparing
full pipeline (first row) against only surface realization (second
row). Each number corresponds to an average of 3 runs.

level (i.e modifying utterances or words in an ut-
terance) but on the data level exchanging infor-
mation among different samples. We apply this
concept within TODs as their dialogue states are
like blueprints detailing each dialogue separately
which can be used to partition and reconstruct new
dialogue samples from scratch.

Experiments on MultiWOZ dataset using both
the TRADE and TOD-BERT models suggest that
our framework consistently improves the perfor-
mance of the base-model it is applied to. This is
true both when adapting the model to the DST task
from scratch and also when adapting a model pre-
trained on DST task to a new domain. The perfor-
mance boost behind our augmentation framework
comes mostly from performance increase on seen
values during training although it also makes the
model more robust to unseen values. Showing that
our framework consistently improves the few-shot
performance over the DST task we believe it can
open doors for many other TOD tasks in limited
data scenarios.

6 Acknowledgements

This research was supported by the SINGA schol-
arship from A*STAR and by the National Research
Foundation, Prime Minister’s Office, Singapore un-
der its Campus for Research Excellence and Tech-
nological Enterprise (CREATE) programme. We
would like to thank anonymous reviewers for their
insightful feedback on how to improve the paper.

1667



References
Ibrahim Taha Aksu, Zhengyuan Liu, Min-Yen Kan, and

Nancy Chen. 2021. Velocidapter: Task-oriented di-
alogue comprehension modeling pairing synthetic
text generation with domain adaptation. In Proceed-
ings of the 22nd Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 133–
143, Singapore and Online. Association for Compu-
tational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a
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A Sample Synthetic Dialogues

Speaker Turn
User

I am coming to town and looking for a good Spanish restau-
rant to try near the town center. Do you have any suggestions
?

Agent
The Spanish restaurant near center is Wagamama. The ad-
dress is 36 saint Andrews street .

User
I’ll be needing a table for 4 at 5p.m. this next Monday , can
you help ?

Agent
Here is your reference number 6huyuygs is there anything
else I can do for you?

User
Yes I need to find a train to Cambridge from Kings Lynn.

Agent
When would you like to travel ?

User
Tuesday morning at 9 am

Agent
train tr3447 leaves Kings Lynn at 09:11. Would you like to
reserve a ticket ?

User
Yes please. Make a booking for the same number of people .

Agent
Okay, the booking was successful , the total fee is 58.8 gbp
payable at the station . reference number is : fz6dqhqt. Any-
thing else i can help you with?

User
That is all i needed today.

Speaker Turn
User

I am looking for a train to Cambridge that departs after 10:45.
Agent

What day would you like to travel?
User

I’ll be travelling on a Wednesday.
Agent

Where would you be departing from?
User

I will be leaving Norwich.
Agent

On what day will you be leaving?
User

I will be leaving on Wednesday.
Agent

It is 18.88 pounds per ticket. How many tickets would you
like to purchase?

User
Just 2 tickets please and thank you.

Agent
Your ticket has been reserved . Total fee is 18.88 gbp, payable
at the station. Reference number zm5k0a4q. Can i help you
with anything else today?

User
Can you book Acorn guest house for 7 people starting on
Wednesday for 4 nights, please ?

Agent
Thank you so much for reserving my train ticket. I have the
information for Acorn guest house you requested.

Would you like me to reserve it for you ?
User

Yes. I need the reference number.
Agent

The booking was successful. your reference number is
dtkw11yu

User
That is all I needed today, thank you for your help.

Table 9: Sample synthetic dialogues generated by our frame-
work. (T) Dialogue in restaurant domain generated by 2
different original dialogues. (B) Dialogue in train domain
generated by 3 different original dialogues.

We showcase two synthetic dialogues generated
with our framework, cf. Table 9, by merging tem-
plates from 2 and 3 different dialogues respec-
tively. Our framework can generate multi-domain
dialogues following the original dialogues’ belief
state. For instance, the first half of the first dialogue

includes slots from the restaurant domain, while
the second half has slots from the train domain.
The second dialogue on the other hand combines
slots from domains: train (from two different di-
alogues) and hotel (from another third dialogue).
Although both dialogues seem coherent in shape,
the latter has a redundancy where the system re-
quest the day information after the user already
stated it. This is because of a missing annotation
where the train-day slot in the belief state of the
third turn is missing. These kinds of annotations
are unavoidable but negligible because it recaptures
a misunderstanding by the agent which is observed
in real dialogues frequently.
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