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1 Tutorial Introduction

Autoregressive (AR) models have achieved great
success in various sequence generation tasks (Bah-
danau et al., 2015; Vaswani et al., 2017). How-
ever, AR models can only generate the target se-
quence word-by-word due to the AR mechanism
and hence suffer from slow inference. Recently,
non-autoregressive (NAR) models, which generate
all the tokens in parallel by removing the sequential
dependencies within the target sequence, have re-
ceived increasing attention in sequence generation
tasks such as neural machine translation (NMT, Gu
et al., 2018), automatic speech recognition (ASR,
Salazar et al., 2019), and text to speech (TTS, Ren
et al., 2019).

Recently, non-autoregressive (NAR) models
have received much attention in various sequence
generation tasks, which generate all tokens in par-
allel by ignoring the sequential dependency within
the target sequence. Gu et al. (2018) proposed
the first NAR translation model for the efficient
inference of neural machine translation, and NAR
generation has subsequently been applied to a wide
range of sequence generation tasks, where the two
most successful application scenarios are ASR and
TTS. The major challenge faced by NAR genera-
tion is the multi-modality problem: there may exist
multiple correct outputs for the same source input,
but the naive NAR model is unable to capture the
multi-modal data distribution. Therefore, the direct
application of NAR generation will usually lead to
significant performance degradation compared to
the autoregressive counterpart.

In this tutorial, we will provide a comprehen-
sive introduction to non-autoregressive sequence
generation. First, we start with the background of
sequence generation, giving the motivation of NAR
generation and the challenge faced by NAR models.
We will briefly introduce the autoregressive gen-
eration mechanism and autoregressive sequence

models that evolve from recurrent neural networks
(Schuster and Paliwal, 1997) to self-attention net-
works (Vaswani et al., 2017). We point out their
problems caused by the autoregressive mechanism,
including exposure bias (Ranzato et al., 2016), er-
ror propagation, fixed generation direction, causal
attention, and most importantly, the high inference
latency. We will then introduce the NAR model
that solves the above-mentioned problems by gen-
erating all target tokens in parallel, and point out
the multi-modality challenge faced by NAR models
(Gu et al., 2018).

Second, we will introduce research work that
aims to improve the performance of NAR genera-
tion, mainly focusing on non-autoregressive trans-
lation in this part. The involved work covers ef-
forts over knowledge distillation (Kim and Rush,
2016; Zhou et al., 2020; Sun and Yang, 2020; Ding
et al., 2021; Shao et al., 2022b), better training ob-
jectives (Shao et al., 2019, 2020; Ghazvininejad
et al., 2020; Du et al., 2021, 2022; Tu et al., 2020;
Shao et al., 2021; Shao and Feng, 2022; Li et al.,
2022b; Anonymous, 2023), latent modeling (Gu
et al., 2018; Kaiser et al., 2018; Ma et al., 2019;
Ran et al., 2021; Song et al., 2021; Shu et al., 2020;
Bao et al., 2021, 2022), more expressive NAR mod-
els (Wang et al., 2017; Libovický and Helcl, 2018;
Sun et al., 2019; Huang et al., 2022), improved
decoding approaches (Lee et al., 2018; Ghazvinine-
jad et al., 2019; Gu et al., 2019; Ran et al., 2020;
Saharia et al., 2020; Deng and Rush, 2020; Geng
et al., 2021; Stern et al., 2018, 2019; Xia et al.,
2022; Shao et al., 2022a), etc.

Third, we will introduce NAR models on other
sequence generation tasks, where the two most suc-
cessful application scenarios are ASR and TTS.
The idea of NAR generation was first pervading in
ASR, where Graves et al. (2006) proposed the CTC
network which predicts outputs independently, but
the recurrent network architecture prevents it from
parallel decoding. With the emergence of paralleliz-
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able self-attention network (Vaswani et al., 2017),
CTC-based NAR models soon became a promis-
ing direction in ASR (Higuchi et al., 2020; Chen
et al., 2020). In TTS, parallel generation is partic-
ularly necessary due to the extremely large length
of output sequence. The first attempt is Parallel
WaveNet (Oord et al., 2018) which keeps the au-
toregressive mechanism but enables parallel gen-
eration with inverse autoregressive flow (Kingma
et al., 2016). NAR models are subsequently pro-
posed for TTS (Ren et al., 2019, 2020a; Prenger
et al., 2019), which caught up with AR models
in a short time and soon became the mainstream
method for TTS.

We will also introduce other applications of
NAR models like language modeling (Huang et al.,
2021; Li et al., 2022a), image/video captioning
(Gao et al., 2019; Yang et al., 2021), dialogue gen-
eration (Wu et al., 2020; Le et al., 2020), and even
object detection (Carion et al., 2020). It is observed
that NAR models perform well on some tasks but
suffer from performance degradation on other tasks.
This phenomenon can be explained from the per-
spective of multi-modality (Gu et al., 2018) or tar-
get token dependency (Ren et al., 2020b).

Finally, we will conclude this tutorial by summa-
rizing the strengths and challenges of NAR models
and discussing current concerns and future direc-
tions of NAR generation.

2 Type of Tutorial

The type of tutorial is cutting-edge. Non-
autoregressive generation is a newly emerging
topic, which has attracted increasing attention from
researchers and achieved remarkable advancement
in the past several years. This is the second tuto-
rial on this topic in the history of ACL, EMNLP,
NAACL, EACL, COLING, and AACL (Gu and
Tan, 2022).

3 Tutorial Outline

Part I: Introduction (20 min)
• Autoregressive sequence generation
• Problems of AR generation

– High inference latency
– Exposure bias
– Error propagation

• Non-autoregressive generation
• Multi-modality challenge

Part II: Non-Autoregressive Machine Transla-
tion (80 min)

• Knowledge distillation
• Training objectives

– Token-level
– Ngram-level
– Sequence-level

• Latent modeling
– Variational autoencoder
– Vector quantization
– Word alignment

• Expressive NAR models
– CTC
– DA-Transformer

• Decoding approaches
– Iterative decoding
– Semi-autoregressive decoding
– Speculative decoding

Part III: Non-Autoregressive Sequence Gener-
ation (60 min)

• Non-autoregressive ASR
• Non-autoregressive TTS
• Other generation tasks

– language modeling
– Image/video captioning
– Dialogue generation
– Object detection

• What kind of tasks are NAR models good at?
– Multi-modality
– Target token dependency

Part IV: Conclusion (20 min)

4 Breadth

This tutorial will provide a comprehensive intro-
duction to non-autoregressive sequence generation.
We anticipate that at least 90% of the tutorial will
cover work by other researchers.

5 Diversity

In the past, NAR sequence generation usually in-
volves one or two languages. Recently, some re-
searchers have found that NAR models are good at
multilingual translation (Song et al., 2022), which
may stimulate the progress of NAR generation in
multilingual scenarios.

Yang Feng is a senior instructor and Chenze
Shao is a junior instructor.
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6 Prerequisites

The attendees have to understand the basics of
neural networks and the sequence-to-sequence
framework, including word embeddings, encoder-
decoder models, and the Transformer architecture.

7 Reading List

We recommend attendees to read the following
papers before the tutorial:

• Vaswani et al. (2017): the parallelizable Trans-
former network based on attention mecha-
nisms.

• Gu et al. (2018): first propose non-
autoregressive generation for parallel decod-
ing and point out the multi-modality problem.

• Kim and Rush (2016): train the student model
with the teacher output, alleviating the multi-
modality by reducing data complexity.

• Shao et al. (2021): train NAR models with
sequence-level objectives, which evaluate
model outputs as a whole and optimize the
overall translation quality.

• Shu et al. (2020): use latent variables to model
the non-determinism in the translation pro-
cess.

• Ghazvininejad et al. (2019): iteratively refine
model outputs by repeatedly masking out and
regenerating partial target tokens.

• Graves et al. (2006): the early exploration of
non-autoregressive generation, and the pro-
posed CTC loss is widely used in recent NAR
models.

• Ren et al. (2019): non-autoregressive text-to-
speech model, which matches autoregressive
models in terms of speech quality.

• Ren et al. (2020b): a study on NAR models
that analyzes the difficulty of NAR generation
on different generation tasks

8 Tutorial Presenters

Yang Feng is a professor in Institute of Comput-
ing Technology, Chinese Academy of Sciences
(ICT/CAS). She got her PhD degree in ICT/CAS

and then worked in University of Sheffield and In-
formation Sciences Institute, University of South-
ern California, and now leads the natural language
processing group in ICT/CAS. Her research inter-
ests are natural language process, mainly focus-
ing on machine translation and dialogue. She was
the recipient of the Best Long Paper Award of
ACL 2019. She served as a senior area chair of
EMNLP 2021 and area chairs of ACL, EMNLP,
COLING etc., and she is serving as an Action Edi-
tor of ACL Roling Review and an editorial board
member of the Northern European Journal of Lan-
guage Technology. She has given a tutorial in
the 10th CCF International Conference on Natu-
ral Language Processing and Chinese Computing
(NLPCC2021) and has been invited to give talks
in NLPCC, CCL(China National Conference on
Computational Linguistics) etc.

Chenze Shao is a fifth-year PhD student in Insti-
tute of Computing Technology, Chinese Academy
of Sciences. His research interests are natural lan-
guage processing and neural machine translation.
His recent research topic is non-autoregressive
(NAR) sequence generation. He has published pa-
pers on NAR generation in CL, ACL, EMNLP,
NAACL, AAAI and NeurIPS.

9 Other Information

Technical Requirements This tutorial does not
have special requirements for technical equipment.

Ethics Statement The technique of non-
autoregressive generation improves the efficiency
of text generation and may reduce the cost of
generating malicious text.

Open Access. All of our tutorial materials can be
shared in the ACL Anthology.
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