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Abstract

The use of emojis affords a visual modality
to, often private, textual communication. The
task of predicting emojis however provides a
challenge for machine learning as emoji use
tends to cluster into the frequently used and
the rarely used emojis. Much of the ma-
chine learning research on emoji use has fo-
cused on high resource languages and has
conceptualised the task of predicting emojis
around traditional server-side machine learn-
ing approaches. However, traditional machine
learning approaches for private communica-
tion can introduce privacy concerns, as these
approaches require all data to be transmitted
to a central storage. In this paper, we seek to
address the dual concerns of emphasising high
resource languages for emoji prediction and
risking the privacy of people’s data. We intro-
duce a new dataset of 118k tweets (augmented
from 25k unique tweets) for emoji prediction
in Hindi,1 and propose a modification to the
federated learning algorithm, CausalFedGSD,
which aims to strike a balance between model
performance and user privacy. We show that
our approach obtains comparative scores with
more complex centralised models while reduc-
ing the amount of data required to optimise the
models and minimising risks to user privacy.

1 Introduction

Since the creation of emojis around the turn of
the millennium (Stark and Crawford, 2015; Al-
shenqeeti, 2016), they have become of a staple
of informal textual communication, expressing
emotion and intent in written text (Barbieri et al.,
2018b). This development in communication style
has prompted research into emoji analysis and pre-
diction for English (e.g. Barbieri et al., 2018a,b;
Felbo et al., 2017; Tomihira et al., 2020; Zhang

*Equal contribution.
1The dataset and code can be accessed at

https://github.com/deep1401/fedmoji

et al., 2020). Comparatively little research atten-
tion has been given to the low resource languages.

Emoji-prediction has posed a challenge for the
research community because emojis express mul-
tiple modalities, contain visual semantics and the
ability to stand in place for words (Padilla López
and Cap, 2017). The challenge is further com-
pounded by the quantity of emojis sent and the im-
balanced distribution of emoji use (Cappallo et al.,
2018; Padilla López and Cap, 2017). Machine
learning (ML) for emoji analysis and prediction
has traditionally relied on traditional server-side
architectures. However, training such models risks
leaking sensitive information that may co-occur
with emojis or be expressed through them. This
can lead to potential breaches of data privacy regu-
lation (e.g. the European General Data Protection
Regulation and the California Consumer Privacy
Act). In contrast, federated learning (FL) (McMa-
han et al., 2017) approaches the task of training
machine learning models by emphasising privacy
of data. Such privacy is ensured by training models
locally and sharing weight updates, rather than the
data, with a central server (see Figure 1). The FL
approach assumes that some client-updates may be
corrupted during transmission. FL therefore aims
to retain predictive performance while emphasising
user privacy in scenarios with potential data loss.

Motivated by prior work in privacy preserving
ML (e.g. Ramaswamy et al., 2019; Yang et al.,
2018) and emoji prediction for low resource lan-
guages (e.g. Choudhary et al., 2018b), we exam-
ine the application of FL to emoji topic predic-
tion for Hindi. Specifically, we collect an imbal-
anced dataset of 118, 030 tweets in Hindi which
contain 700 unique emojis that we classify into
10 pre-defined categories of emojis. The dataset
contains 700 unique emojis, that we classify into
10 pre-defined categories of emojis.2 We further

2These categories are obtained from the Emojis library,
available at https://github.com/alexandrevicenzi/emojis.
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Figure 1: The Federated Learning process: (A) client
devices compute weight updates on locally stored data,
(B) client weight updates are transmitted to the server
and used to update the global model, (C) the resulting
global model is redistributed to all clients.

examine the impact of two different data balanc-
ing strategies on federated and server-side, cen-
tralised model performance. Specifically, we exam-
ine: re-sampling and cost-sensitive re-weighting.
We consider 6 centralised models which form our
baselines: Bi-directional LSTM (Hochreiter and
Schmidhuber, 1997), IndicBert (Kakwani et al.,
2020), HindiBERT,3 Hindi-Electra,4 mBERT (De-
vlin et al., 2019), and XLM-R (Conneau et al.,
2020); and LSTMs trained using two FL algo-
rithms: FedProx (Li et al., 2018) and a modified
version of CausalFedGSD (Francis et al., 2021).

We show that LSTMs trained using FL perform
competitively with more complex, centralised mod-
els in spite of only using up to 50% of the data.

2 Prior work

Federated Learning Federated Learning (FL,
McMahan et al., 2017) is a training procedure that
distributes training of models onto a number of
client devices. Each client device locally computes
weight updates on the basis of local data, and trans-
mits the updated weights to a central server. In
this way, FL can help prevent computational bot-
tlenecks when training models on a large corpus
while simultaneously preserving privacy by not
transmitting raw data. This training approach has
previously been applied for on-device token predic-
tion on mobile phones for English. In a study of
the quality of mobile keyboard suggestions, Yang
et al. (2018) show that FL improves the quality
of suggested words. Addressing emoji-prediction

3https://huggingface.co/monsoon-nlp/hindi-bert
4https://huggingface.co/monsoon-nlp/hindi-tpu-electra

in English, Ramaswamy et al. (2019) use the Fed-
eratedAveraging algorithm, to improve on tradi-
tional server-based models on user devices. We di-
verge from Ramaswamy et al. (2019) by using the
CausalFedGSD and FedProx algorithms on Hindi
tweets. FedProx develops on the FederatedAverag-
ing algorithm by introducing a regularization con-
stant to it (Li et al., 2018). In related work, Choud-
hary et al. (2018b) seek to address the question of
FL for emoji prediction for low resource languages.
However, the dataset that they use, Choudhary et al.
(2018a) relies on emojis that are frequently used in
English text and therefore may not be representa-
tive of emoji use in other, low resource languages.

Centralised Training In efforts to extend emoji
prediction, Ma et al. (2020) experiment with a
BERT-based model on a new English dataset that
includes a large set of emojis for multi label pre-
diction. Addressing the issue of low resource
languages, Choudhary et al. (2018b) train a bi-
directional LSTM-based siamese network, jointly
training their model with high resource and low
resource languages. A number of studies on emoji
prediction have been conducted in lower-resourced
languages than English (e.g. Liebeskind and Liebe-
skind, 2019; Ronzano et al., 2018; Choudhary
et al., 2018a; Barbieri et al., 2018a; Duarte et al.,
2020; Tomihira et al., 2020). Common to these
approaches is the use of centralised ML models,
which increase risks of breaches of privacy. In our
experiments, we study using FL for emoji topic
classification in low resource settings.

3 Data

We collect our dataset for emoji topic prediction by
scraping ∼1M tweets. We only keep the 24, 794
tweets that are written in Hindi and contain at least
one emoji. We duplicate all tweets that contain
multiple emojis by the number of emojis contained,
assigning a single emoji to each copy, resulting
in a dataset of 118, 030 tweets with 700 unique
emojis. Due to the imbalanced distribution of
emojis in our dataset (see Figure 2), we assign
emojis into 10 coarse-grained categories. This
reduction i.e., from multi-label to multi-class and
unique emojis into categories, risks losing the
semantic meaning of emojis. Our decision is
motivated by how challenging emoji prediction is
without such reductions (Choudhary et al., 2018b).

We pre-process our data to limit the risk of over-
fitting to rare tokens and platform specific tokens.
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Figure 2: Distribution of 15 most frequently appearing
emojis in our dataset.

For instance, we lower-case all text and remove
numbers, punctuation, and retweet markers. We
replace mentions, URLs, and hashtags with specific
tokens to avoid issues of over-fitting to these.

3.1 Balancing data

This dataset exhibits a long-tail in the distribution
of emoji categories (see Figure 3), with the vast
majority of tweets belonging to the “Smileys &
Emotions” and “People & Body” categories. To
address this issue, we use two different data balanc-
ing methods: re-sampling (He and Garcia, 2009)
and cost-sensitive re-weighting (Khan et al., 2017).

Re-Sampling Re-sampling has been used widely
to address issues of class imbalances (e.g. Buda
et al., 2018; Zou et al., 2018; Geifman and El-
Yaniv, 2017; Shen et al., 2016). We balance the
training data by up-sampling the minority class
(Drumnond, 2003) and down-sampling the major-
ity class (Chawla et al., 2002), resulting in a bal-
anced dataset of 94, 420 tweets (9, 442 documents
per class). The validation and test sets are left un-
modified to ensure a fair and realistic evaluation.

Cost-Sensitive learning Another method for ad-
dressing data imbalances is cost-sensitive learn-
ing (see Zhou and Liu, 2005; Huang et al., 2016;
Ting, 2000; Sarafianos et al., 2018). In this method,
each class is assigned a weight which is used to
weigh the loss function (Lin et al., 2017). For our
models, we set the class weights to the inverse class
frequencies.

4 Experiments

We conduct experiments with PyTorch (Paszke
et al., 2019) and Transformers (Wolf et al., 2020) on

Google Colab using a Nvidia Tesla V100 GPU with
26GB of RAM. We create train, validation, and test
(80/10/10) splits of the dataset, and measure per-
formances using precision, recall, and weighted F1.
All models are trained and evaluated on the imbal-
anced data and the two data balancing methods (see
§3.1). For the FL setting, we conduct experiments
manipulating the independent and identically dis-
tributed (I.I.D.) data assumption on client nodes.

4.1 Baseline models
We use 6 centralised models as baselines for com-
parison with the federated approach. Specifically,
we use a bi-LSTM (Hochreiter and Schmidhuber,
1997) with 2 hidden layers and dropout at 0.5; two
multi-lingual models: mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020); and three mod-
els pre-trained on Indic languages: IndicBert (Kak-
wani et al., 2020), HindiBERT, and Hindi-Electra.

4.2 Federated models
For our federated learning experiments, we use the
FedProx (Li et al., 2018) algorithm and a modifi-
cation of the CausalFedGSD (Francis et al., 2021)
algorithm. FedProx trains models by considering
the dissimilarity between local gradients and adds
a proximal term to the loss function to prevent
divergence from non-I.I.D. data. CausalfedGSD
reserves 30% of the training data for initializing
client nodes. When a client node is created, it re-
ceives a random sample of the reserved data for
initialization. In our modification, we similarly re-
serve 30% of the training data, however we diverge
by using the full sample to initialize the global
model, which is then transmitted to client nodes.
This change means that (i) user data is transmitted
fewer times; (ii) modellers retain control over the
initialization of the model, e.g. to deal with class
imbalances; and (iii) models converge faster, due
to exposing client nodes to the distribution of all
classes (see Appendix A.6).

We reuse the Bi-LSTM (see Section 4.1) as
our experimental model on client devices due to
its relative low compute requirements. For our
experiments, we set the number of clients to 100
and simulate I.I.D. and non-I.I.D. settings. We
simulate an I.I.D. setting by ensuring that all client
devices receive data that is representative of the
entire dataset. For the non-I.I.D. setting, we create
severely imbalanced data splits for clients by
first grouping the data by label, then splitting the
grouped data into 200 bins and randomly assigning
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Bi-LSTM mBERT XLM-R IndicBERT hindiBERT Hindi-Electra
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 64.72 64.26 63.83 63.25 66.90 64.50 68.74 70.39 69.44 67.15 68.22 67.60 65.39 66.53 65.90 27.34 52.29 35.91
Re-sampled 64.42 55.41 58.61 62.18 53.43 56.58 67.92 60.76 63.39 68.04 62.44 64.58 62.95 55.16 57.92 64.42 57.93 60.30

Cost-Sensitive 68.41 62.27 64.46 63.99 62.73 63.30 69.79 68.33 68.87 69.54 67.98 68.66 66.97 65.32 66.06 27.34 52.29 35.91

Table 1: Centralised model performances.
c = 10% c = 30% c = 50%

IID non-IID IID non-IID IID non-IID
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 60.94 66.11 62.99 61.05 39.68 25.82 61.10 66.01 63.04 57.88 66.39 61.64 61.11 66.91 63.35 56.94 63.82 57.06
Re-sampled 60.89 46.01 50.89 60.83 22.52 23.04 60.58 46.58 51.22 57.38 35.85 37.37 60.78 47.14 51.63 53.16 36.83 41.95

Cost-Sensitive 60.45 59.50 59.50 60.47 41.24 28.92 60.91 60.99 60.47 55.76 56.77 52.69 61.56 60.39 60.48 56.51 63.41 56.80

Table 2: Results using the FedProx algorithm. c is the percentage of clients whose updates are considered.
c = 10% c = 30% c = 50%

IID non-IID IID non-IID IID non-IID
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 60.89 65.04 62.34 58.09 60.84 56.96 61.40 66.08 63.22 57.68 66.51 61.21 60.69 66.33 62.90 57.90 57.84 47.85
Re-sampled 62.14 44.95 50.27 53.31 34.01 39.69 62.46 45.39 50.67 58.21 27.61 27.61 61.86 46.00 51.15 59.84 22.57 28.83

Cost-Sensitive 61.62 61.15 60.92 56.72 65.20 60.51 62.17 61.97 61.60 56.86 65.54 60.59 60.50 61.28 60.44 59.33 60.56 54.22

Table 3: Results using the modified CausalFedGSD. c is the percentage of clients whose updates are considered.

c = 10% c = 30% c = 50%
Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 63.95 64.19 63.67 64.23 64.44 63.91 64.16 64.28 63.78
Re-sampled 63.07 51.14 55.08 62.84 52.04 55.71 62.84 51.72 55.50

Cost-Sensitive 66.72 64.96 65.38 66.66 64.84 65.27 66.78 65.08 65.47

Table 4: Results for the baseline CausalFedGSD. c is
the client fraction per round.

Approach Centralised Federated
XLM-R FedProx Modified CausalFedGSD

Imbalanced 69.44 63.35 63.22
Re-sampled 63.39 51.63 51.15
Cost-Sensitive 68.87 60.48 61.60

Table 5: An approach-wise comparison of F1 scores
for best performing models in centralized and federated
settings.

2 bins to each client. We experiment with three
different settings, in which we randomly select
10%, 30%, and 50% of all clients whose updates
are incorporated into the global model.

4.3 Analysis

Considering the results for our baseline models
(see Table 1), we find that XLM-R and IndicBERT
obtain the best performances. Further, using
cost-sensitive weighting tends to out-perform re-
sampling the dataset. In fact, the cost-sensitive
weighting performs comparatively, or out-performs,
other settings. Curiously, we see that Hindi Elec-
tra under-performs compared to all other models,
including HindiBERT which is a smaller model
trained on the same data. This discrepancy in the
performances models may be due to differences
in complexity, and thus data required to achieve
competitive performances.5 Finally, the bi-LSTM
slightly under-performs in comparison to XLM-R,
however it performs competitively with all other
well-performing models.

5The developers of Hindi Electra also note similar under-
performance on other tasks.

Turning to the performance of the federated base-
lines (see Table 2), we find an expected perfor-
mance of the models.6 Generally, we find that
the federated models achieve comparative perfor-
mances, that are slightly lower than the centralised
systems. This is due to the privacy-performance
trade-off, where the increased privacy offsets a
small performance loss. Considering the F1-scores,
we find that the optimal setting of the ratio of
clients is subject to the data being I.I.D. In con-
trast, models trained on the re-sampled data tend to
prefer data in an I.I.D. setting, but in general under-
perform in comparison with other weighting strate-
gies, including the imbalanced sample. Using our
modification of the CausalFedGSD algorithm, we
show improvements over our FL baselines when
the data is I.I.D. and variable performance for a
non-I.I.D. setting (see Table 3). Comparing the
results of the best performing settings, we find that
the FL architectures perform comparably with the
centralised models, in spite of being exposed to
less data and preserving privacy of users (see Ta-
ble 5). Table 4 refers to the results for the I.I.D.
experiments of the baseline CausalFedGSD algo-
rithm (Francis et al., 2021). We also observe a dif-
ference in optimization time for both models (see
Appendix A.6). Models trained using our modifi-
cation of CausalFedGSD converges faster than the
original CausalFedGSD, which in turn converges
much faster than FedProx. Moreover, we find indi-
cations that the original CausalFedGSD algorithm
may be prone to over-fitting, as performance stag-
nates without fluctuations, while our modification
shows fluctuations in performance that are similar
to those of the FedProx models.

6Please refer to the appendices for additional details on
model performance and training.
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5 Conclusion

Emoji topic prediction in user-generated text is a
task which can contains highly private data. It is
therefore important to consider privacy-preserving
methods for the task. Here, we presented a new
dataset for the task for Hindi and compared a
privacy preserving approach, Federated Learning,
with the centralised server-trained method. We
present a modification to the CausalFedGSD al-
gorithm, and find that it converges faster than our
other experimetnal models. In our experiments
with different data balancing methods and simula-
tions of I.I.D. and non-I.I.D. settings, we find that
using FL affords comparable performances to the
more complex fine-tuned language models that are
trained centrally, while ensuring privacy. In future
work, we plan to extend this work to multi-label
emoji topic prediction and investigate strategies for
dealing with decay of the model vocabulary.

Ethical considerations

The primary reason for using federated learning
is to ensure user-privacy. The approach can then
stand in conflict with open and reproducible sci-
ence, in terms of data sharing. We address this is-
sue by making our dataset open to the public, given
that researchers provide an Institutional Review
Board (IRB) approval and a research statement
that details the methods and goals of the research,
where IRB processes are not implemented. For
researchers who are at institutions without IRB pro-
cesses, data will only be released given a research
statement that also details potential harms to par-
ticipants. The sharing of data will follow Twitter’s
developer agreement, which allows for 50k Tweet
objects to be shared. We will further provide the
code to our 24k tweets into the full dataset of 118k.

Our modification of the CausalFedGSD model
introduces the concern of some data being used
to initialise the model. Here a concern can be
that some data will be available globally. While
this concern is justified, the use of FL affords two
things: First, FL can limit on the overall amount of
raw data that is transmitted and risks exposure. Sec-
ond, initialisation can occur using synthetic data,
created for the express purposes of model initiali-
sation. Moreover, pre-existing public, or privately
owned, datasets can be used to initialise models,
which can be further trained given weight updates
provided by the client nodes. Federated learning,
and our approach to FL thus reduce the risks of ex-

posing sensitive information about users, although
the method does not completely remove such risks.
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A Appendix

A.1 Data

The tweets were collected using an "Elevated ac-
cess" to the Twitter API v2. To collect tweets writ-
ten in the Hindi language, we use "lang:hi" query.
No other search criteria is used. The time-span of
the tweets is from 19th April, 2021 to 8th May,
2021. Figure 4 shows a sample of tweets present in
our Hindi dataset for the task of emoji prediction.

Figure 3: Category distribution of complete dataset

A.2 Server-Based Models

For traditional server-side transformer models, we
use the simple transformers library.7 We use the
default configuration options and train all the trans-
former models for 25 epochs with a learning rate
of 4e-5 and no weight decay or momentum.

All baseline models (transformer-based and oth-
ers) are trained with batch size 8, learning rate
4e− 5, and seq. length 128.

All the models were trained using deterministic
algorithms for randomness8 in PyTorch and are
easily reproducible using the same seeds.

A.3 Experiments considering only text

We run some additional experiments considering
only the actually text without applying the token
setup as described in §3 as reflected in Tables 6,
7, 8, and 9. Observing these results, we note that
except for non-I.I.D. settings, we see negligible
improvements from applying the extra tokens in
the original dataset (see §3).

7https://simpletransformers.ai/
8https://pytorch.org/docs/stable/notes/randomness.html

11957

https://www.emerald.com/insight/content/doi/10.1108/IJWIS-09-2019-0042/full/html
https://www.emerald.com/insight/content/doi/10.1108/IJWIS-09-2019-0042/full/html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://link.springer.com/chapter/10.1007/978-3-030-39442-4_65
https://link.springer.com/chapter/10.1007/978-3-030-39442-4_65


Remember that only love is blind and not your family and the colony. Spreading the word in public interest

Text Emoji LabelLang

िबलकुल सही कहा आपने भाई 

याद रखना िसर्फ प्रेम अंधा होता है घरवाले और कॉलोनी वाले नहीं जनिहत में जारी 

तुझे िकतना चाहने लगे हम 

एकदम जबरदस्त भावनात्मक मीठास शब्दों के सरसरी हवाओं में कुछ अजीब सी खुशबू। 

जन्मिदन की अनंत शुभकामनायें 

People & Body

Smileys & Emotion

Objects

Animals & Nature

Food & Drink

You are absolutely right brother

How much we love you

Some strange fragrance in the whispering winds of very emotional sweet words

Best wishes for your birthday

Hindi

English

Hindi

English

Hindi

English

Hindi

English

Hindi

English

Figure 4: Example of our Hindi dataset
c = 10% c = 30% c = 50%

IID non-IID IID non-IID IID non-IID
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 61.33 64.66 62.32 57.70 64.10 57.96 61.55 67.64 63.60 58.01 58.42 54.86 61.65 66.83 63.57 58.30 61.59 58.09
Re-sampled 61.49 46.22 51.12 56.84 30.06 34.28 60.60 43.75 49.19 57.48 35.32 41.36 60.85 47.71 52.14 56.13 41.28 45.76

Cost-Sensitive 62.14 63.35 61.99 58.08 65.86 61.25 63.72 65.25 63.78 56.39 57.76 54.36 60.36 59.99 59.57 56.68 63.22 59.36

Table 6: Results using the FedProx algorithm on the dataset as explained in A.3.
c = 10% c = 30% c = 50%

IID non-IID IID non-IID IID non-IID
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 61.83 67.24 63.87 58.96 45.88 38.34 61.62 67.11 63.41 58.95 63.80 60.58 61.66 67.38 63.70 59.46 49.39 43.88
Re-sampled 59.44 37.53 43.68 53.10 49.91 41.50 59.53 41.06 46.54 58.61 26.68 32.45 60.97 39.02 45.48 57.70 32.98 39.71

Cost-Sensitive 60.88 59.38 59.49 54.82 57.42 46.17 60.45 60.71 59.96 59.05 66.52 62.09 60.44 61.41 60.38 58.69 63.60 60.11

Table 7: Results using the modified CausalFedGSD on the dataset as explained in A.3.

c = 10% c = 30% c = 50%
Precision Recall F1 Precision Recall F1 Precision Recall F1

Imbalanced 62.93 63.37 62.68 63.01 63.48 62.73 63.21 63.60 62.90
Re-sampled 60.84 49.59 53.30 60.72 49.45 53.11 60.47 49.08 52.76

Cost-Sensitive 64.56 63.70 63.65 64.61 63.88 63.70 64.27 63.41 63.33

Table 8: Results for the baseline CausalFedGSD on the
dataset as explained in A.3.

Approach Centralised Federated
XLM-R FedProx Modified CausalFedGSD

Imbalanced 69.44 63.60 63.87
Re-sampled 63.39 52.14 46.54
Cost-Sensitive 68.87 63.78 62.09

Table 9: An approach-wise comparison of F1 scores
for best performing models in centralized and federated
settings trained on the dataset as explained in A.3.

A.4 Federated Learning Plots

This section provides detailed graphs comparing
the training loss, validation AUC, validation F1
score and validation accuracy for every dataset vari-
ation. All of these graphs were made using Weights
and Biases (Biewald, 2020).

We set the value of the proximal term to 0.01
following Li et al. (2018). We set the learning
rate as 1e − 02 for Federated models based on
hyperparameter sweeps.

A.4.1 Imbalanced Dataset (IID)
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A.4.2 Imbalanced Dataset (non-IID)

A.4.3 Balanced Dataset (IID)

A.4.4 Balanced Dataset (non-IID)
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A.4.5 Cost Sensitive Approach (IID)

A.4.6 Cost Sensitive Approach (non-IID)

A.5 Time vs GPU Usage

This section provides detailed graphs for GPU us-
age in Watts for every variation of experiments run.

A.5.1 Imbalanced Dataset

A.5.2 Balanced Dataset
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A.5.3 Cost Sensitive Approach

A.6 Performance Analysis of CausalFedGSD
vs Modified CausalFedGSD

We observe that when we run the original
CausalFedGSD and our modification on the same
hardware settings with the same number of pa-
rameters, the modified version finishes train-
ing in just 3.75 hours as opposed to the origi-
nal CausalFedGSD implementation which takes
around 47 hours to finish training. Figure 5 is a
run comparison based on the heaviest variant for
both algorithms. The highest runtime recorded for
both was for the class weight dataset c = 0.5 vari-
ant. Similar performances are recorded for all other
variants on all datasets.

Figure 5: Comparison between optimization
times for the baseline CausalFedGSD vs Modi-
fied CausalFedGSD
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