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Abstract

Recently, more and more pre-trained language
models are released as a cloud service. It
allows users who lack computing resources
to perform inference with a powerful model
by uploading data to the cloud. The plain
text may contain private information, as the
result, users prefer to do partial computations
locally and upload intermediate representa-
tions to the cloud for subsequent inference.
However, recent studies have shown that plain
text can also be recovered by intermediate
representations with reasonable accuracy, thus
the risk of privacy leakage still exists. To
address this issue, we propose TextFusion, a
novel method for preserving inference privacy.
Specifically, we train a Fusion Predictor to
dynamically fuse token representations, which
hides multiple private token representations
behind an unrecognizable one. Furthermore,
a misleading training scheme is employed
to privatize these representations. In this
way, the cloud only receives incomplete and
perturbed representations, making it diffi-
cult to accurately recover the complete plain
text. The experimental results on diverse
classification tasks show that our approach
can effectively preserve inference privacy
without substantially sacrificing performance
in different scenarios.

1 Introduction

Pre-trained language models (PLMs) achieve state-
of-the-art performance in many NLP tasks (Devlin
et al., 2018; Liu et al., 2019; Brown et al., 2020;
Qiu et al., 2020) . In industrial applications,
running full PLM locally can be very expensive
or even infeasible for most users due to the high
computation requirements. Therefore, PLMs are
usually released as cloud services, allowing users
to access these powerful models by uploading the
data to the cloud (DALE, 2015; Pais et al., 2022).
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Figure 1: Illustration of privacy attack when using cloud
services. Users upload the local representations to the
cloud server for subsequent inference. Attacks can
recover these representations to plain text, thus steal
private user information.

Though inference with cloud models is con-
venient and powerful, it brings risk to privacy
due to the sensitive nature of user data (Chi
et al., 2018). For example, plain text data
may contain private information about the user,
such as name, address, and phone number. It
is unacceptable for most users to upload such
private data directly to the cloud (Jegorova et al.,
2021). A natural way to avoid this problem is to
perform affordable computation locally to obtain
intermediate representations and upload them to
the cloud for subsequent computation (Zhang
et al., 2021), as shown in Figure 1. However,
the intermediate representation still leaks privacy
through recent text reconstruction techniques (Song
and Raghunathan, 2020; Pan et al., 2020). The
privacy leakage during the inference phase not only
prevents users from benefiting from the PLM, but
also results in disputes, penalties, and reputation
damages to service providers (Chen et al., 2022b).

Most privacy-preserving methods focus on
privatizing representation in the training phase. In
their methods, differential privacy (Hoory et al.,
2021; Yue et al., 2021), noise injection (Lyu et al.,
2020a; Plant et al., 2021) and adversarial training
(Li et al., 2018; Coavoux et al., 2018) are employed
to reduce the privacy information in representations
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during training. However, privacy attackers can
train a text reconstruction model that directly uses
privatized representations to recover raw words
because these learned representations and related
raw words are accessible to attackers in inference
phase (Song and Raghunathan, 2020; Höhmann
et al., 2021). The risk of privacy leakage still exists.

In this paper, we propose TextFusion to preserve
inference privacy. Our method directly widens
the gap between intermediate representations and
plain text in the inference phase. Specifically,
we train a fusion predictor to identify which
token representations are suitable to be fused into
one representation. For each forward inference,
we fuse these representations at the target layer
and output reorganized token representations that
cannot be aligned with the raw words in plain
text. Meanwhile, a misleading training scheme
is adopted to make both fused and unfused
representations not similar to the related words.
In this way, we break the one-to-one relationship
between token representation and raw words. The
incomplete and scrambled representation sequence
makes it difficult for an attacker to recover the
plain text. Additionally, token fusion cannot be
directly applied to token classification tasks such
as named entity recognition, because these tasks
require predictions of each token. To solve this
problem, we draw inspiration from early exiting
(Xin et al., 2020; Li et al., 2021), which gets
predictions for confident tokens in earlier layers.
We only fuse these token representations and keep
others unchanged. Thus, we can still preserve
privacy while getting predictions of all tokens.
Our codes are publicly available at https://
github.com/xzhou20/TextFusion.

Our contribution can be summarized as follows:

• We propose TextFusion, a novel method for
preserving inference privacy with dynamic
token fusion.

• We apply token fusion to both sentence
and token classification. We train a fusion
predictor to ensure token fusion does not
affect task completion.

• We conduct experiments on four classification
benchmarks. The experimental results show
that our method can protect inference privacy
without substantially sacrificing performance.

2 Background

2.1 Inference with Cloud Model

Inference of PLMs requires significant computation
resources, which is infeasible on resource-limited
devices like mobile phones and smart chips. To
make these large and powerful models benefit more
users, PLMs are usually deployed as cloud services.
Suppose a user wants to use cloud services to
analyze the sentiment of text X = [x1, x2, ..., xn].
For privacy reasons, the user does not upload plain
text X directly to the cloud but first performs
an affordable local computation to obtain the
intermediate representation H = Encc(X), where
Encc consists a few PLM layers and is deployed
on a local device, H ∈ Rn×d and d is the
dimension of representation. Then the user uploads
intermediate representation H to the cloud server
for the subsequent inference Y = Encs(H), where
Encs is the remaining PLM layers deployed on a
cloud server and Y is the prediction that will be
sent back to the user. In this scenario, the privacy
attackers are not accessible to the private plain text.
However, the intermediate representation can still
leak the privacy under text reconstruction attacks.

2.2 Text Reconstruction Attack

Text reconstruction attack uses the token represen-
tation hi to predict its original word xi. Even
in the strictest case, where the attacker can only
obtain intermediate representations, Feyisetan et al.
(2020) shows intermediate representations can be
still recovered to the original word via finding
the nearest word in the word embedding matrix.
A more critical scenario is that attackers can
obtain data representations shared by users and
have query access to the public encoder Encc.
Although attackers have no knowledge about the
architecture and parameters of Encc, they can
still exploit query feedback of Encc to carry out
reconstruction attacks (Song and Raghunathan,
2020; Höhmann et al., 2021). For instance,
attackers can generate intermediate representations
by querying Encc for many times. Then they can
build a reconstruction model Rec: H → X , where
H means the representation space and X means the
input space. Rec can be optimized by minimizing
the objective between representation and raw text:

ΘRec = argmin
ΘRec

−
n∑

i=1

logP (V (xi) |hi) (1)
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Figure 2: A comparison of token fusion in different classification tasks. For sentence classification, the fusion
predictor decides whether adjacent non-[CLS] representations can be fused. The cloud server can still make a
prediction based on [CLS]. For token classification, fusion predictors predict the label probability distribution of
each token at each layer. We collect tokens with low-uncertainty distribution and save their labels locally. Token
fusion only occurs in these confident tokens to ensure unlabeled tokens can get predictions in the cloud server. In
this way, the fusion predictors can hide private tokens without affecting task completion.

where V maps the plain text to the vocabulary
space. This attack can invalidate the privacy-
preserving methods in the training phase because
attackers can directly establish the relationship
between the privatized token representation and
its raw word.

3 Methodology

In this section, we present TextFusion, which
adopts dynamic token fusion to preserve privacy
directly in the inference phase. We use an example
to illustrate our idea. As shown in Figure 2 (b),
when processing the plain text “John lives in 3rd
street”, the local encoder equipped with TextFusion
takes five raw words as input but only outputs two
token representations (special tokens like [CLS]
are not counted). The token fusion naturally hides
the private words John and 3rd and breaks the
one-to-one relation between token representations
and raw words. Then these two privatized token
representations are shared with third parties. The
incomplete representation sequence still keeps
sufficient information for downstream tasks but
hinders privacy attackers from performing text
reconstruction attacks.

3.1 Model Overview
TextFusion keeps the basic architecture as PLM.
Differently, we train a fusion predictor to determine
which token should be fused, based on the user’s

config and token representation itself. These
suitable token representations are fused in the
privacy-preserving layer, usually the last layer
of local encoder. To further generate private
representation, we conduct misleading training to
make both fused and unfused token representations
not similar to related words. The details are shown
in the following subsections.

3.2 Token Fusion Mechanism

There are two critical points of token fusion
mechanism. First, the fusion strategy should be
dynamic and hard to be broken by an attacker.
Second, the fusion should have as little influence
as possible on the target NLP task. We first
describe how a fusion predictor works in sentence
classification and extend it to token classification.
Sentence Classification. Given a plain text X =
[x1, x2, ..., xn], the goal of sentence classification
is to assign a label y to X . Generally, PLM
prepends a special token [CLS] to the input text
and takes the final representation of [CLS] for
classification. Fusion of non-CLS token repre-
sentations will not make sentence classification
unworkable. Therefore, we apply a simple but
effective fusion strategy for sentence classification,
which fuses adjacent token representations directly.

Given the representations H = [h1, ...,hn] in
the target layer, we consider every two adjacent
representations as a region. The fusion predictor
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determines whether the region can be fused to ĥi =∑2i+1
2i hi by predicting a score:

s(ĥi) = σ(W2(Tanh(W1ĥi + b1)) + b2), (2)

where i means the i-th region in the sequence, σ(.)
is sigmoid activation function to ensure the score is
between 0 and 1, {W1,W2, b1, b2} are trainable
parameters of fusion predictor and s(.) ∈ R.
We apply the score as the weight of the fused
representation and get final fused representation
h′ = s(ĥ) ∗ ĥ for subsequent inference.
Token Classification. The goal of token classifica-
tion is to predict the labels Y = [y1,y2, ...,yn]
with the equal length n as plain text X . The
token fusion reduces the sequence length, which
makes it impossible to get predictions for fused
tokens. As the result, we cannot perform token
fusion directly in token classification tasks. To
avoid this problem, we draw inspiration from early
exiting mechanism (Xin et al., 2020; Li et al.,
2021), which assumes that the representations at
an earlier layer of PLMs are adequate to make a
correct prediction. We can only fuse the token
representations that are confident to get labels
locally, leaving unlabeled token representations
to the cloud server. In this way, token fusion is
still be done dynamically and does not affect the
completion of token classification.

In token classification, the fusion predictor aims
to predict whether the current token representation
can get a correct label. For the l-th layer of local
encoder, we calculate the entropy s

(l)
i for each

representation h
(l)
i to indicate how confident it is

to get the label:

p
(l)
i = Softmax(Wh

(l)
i ), (3)

s
(l)
i =

−p
(l)
i ∗ logp(l)

i

logC
, (4)

where W is the parameters of a fusion predictor at
l-th layer, C is the number of label set and p

(l)
i ∈

RC is the label probability distribution for the i-th
token. The smaller the s

(l)
i is, the more confident

for h(l)
i to make a correct prediction.

To collect as many predictions as possible, we
insert a fusion predictor into each layer of local
encoder and train them with golden labels:

Lfp =
1

L

L∑

l=1

n∑

i=1

CE(yi,p
(l)
i ), (5)

where L is the number of fusion predictor, CE is
the cross-entropy loss function.

We identify confident token representations with
uncertainty below a predefined threshold at each
layer and record their predictions. The confident
and adjacent token representations will be fused
into one in the target layer and other tokens can get
predictions in the cloud server. As such, we can
still preserve privacy in token classification while
getting predictions of all tokens.

3.3 Misleading Training

Achilles’ Heel of Token Fusion. With the obstacle
of token fusion, a privacy attacker cannot get
ideal training data, i.e., the one-to-one token
representation and its original word. This makes
it difficult for an attacker to train a specific text
reconstruction model for TextFusion. Despite the
privacy of the fused token being guaranteed, the
unfused token representations are still at risk of
attack. To further protect privacy, we need to
promote irrelevance in the token representation
with respect to the original word.
Misleading Loss. The representations we deal
with come from very shallow layers of the PLM
and usually represent the foundational features of
the data (Jawahar et al., 2019). A good shallow
representation is decisive for the subsequent
model inference, as the result, unconstrained
perturbations on these representations can be fatal
to performance. Therefore, we propose to mislead
the attacker by making the token representation
more predictable to a similar but different word.
Specifically, we calculate the Euclidean distance
between each representation and the embedding
matrix in the target layer, and select the word
with the closest distance and not included in
the input as the misleading word. We involve
training a secondary objective to predict the
misleading words for both fused and unfused token
representations:

Lmislead = −
m∑

i=1

1

k

k∑

j=1

P
(
xj |h′

i; θmis

)
, (6)

where xj is the misleading word, m is the sequence
length, k means that h′

i is a fusion of m token
representations (h′

i is a unfused token when k =
1). θmis is the parameters of a linear classifier,
which is initialized by embedding matrix. This
objective constrains the perturbation direction
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through the Euclidean distance, which is helpful for
performance and misleads the attacker effectively.

3.4 Training and Inference

Training consists of two stages: performance
guarantee and privacy guarantee. In the first stage,
we insert fusion predictors into the fine-tuned PLM
and train them jointly on the target task. In this
stage, we use the soft fusion trick, which fuses all-
region in sentence classification and does not fuse
tokens in token classification. The task objective
will guide fusion predictors to make decisions
beneficial to classification performance. In the
second stage, we enable the real token fusion, based
on a threshold to decide which words are fused
and which remain unchanged in the target layer.
We train the model and fusion predictor with the
task and misleading loss and set multiple fusion
thresholds to reduce the gap between training and
inference. The sandwich rule (Yu and Huang,
2019), ℓ1 regularization (Zheng et al., 2022) and
window-based uncertainty (Li et al., 2021) are used
to stabilize training.

At the inference time, the trained PLM is split
into a local encoder for a user and a cloud encoder
for a cloud service. Based on fusion predictors
and a threshold, the token representations are fused
dynamically in the last layer of the local encoder.
Then the reorganized representations with privacy
guarantee are uploaded to the cloud server.

4 Experiment Setup

4.1 Datasets

We conduct our experiments on four benchmarks,
covering three widely used text classification
tasks and two common languages. In sentence
classification, we choose SST-2 (Socher et al.,
2013), a sentiment analysis dataset for single-
sentence classification and MRPC (Dolan and
Brockett, 2005) , a paraphrase dataset for sentence-
pair classification. In token classification, we
choose two name entity recognition (NER) datasets,
including CoNLL2003 (Tjong Kim Sang and
De Meulder, 2003) for English and resume (Zhang
and Yang, 2018) for Chinese. The statistics of
datasets are shown in Appendix A.1.

4.2 Baselines

For a thorough comparison, we select three privacy-
preserving methods, including noise injection,
adversarial training and data augmentation. The

standard fine-tuning is also used to show the
privacy risk in the inference phase.

Fine-tune (Devlin et al., 2018) follows the stan-
dard fine-tuning process without privacy guarantee.

DPNR (Lyu et al., 2020b) utilizes differential
privacy to provide privacy guarantee, and masks
words via dropout to further enhance privacy.

CAPE (Plant et al., 2021) injects calibrated
Laplace noise to perturb representations and adopts
adversarial learning to reduce private variables.

SanText+ (Yue et al., 2021) replace the sensitive
words in plain text with other words in vocabulary.
The word selection is based on differential privacy
and word frequency.

4.3 Privacy Attack Methods
Three text reconstruction attack methods are used
to recover the raw words from intermediate token
representations in the inference phase.

KNN (Qu et al., 2021) assumes attackers are
only accessible to representations from users. It
computes the Euclidean distance between each
token representation and public word embedding
matrix. The word of the nearest distance is selected
as the reconstruction results.

InvBert (Höhmann et al., 2021) assumes at-
tackers have access to query the public local
encoder using plain text and get the corresponding
representations. Then they can train a text
reconstruction model to directly recover a token
representation to the raw word.

MLC (Song and Raghunathan, 2020) follows
the same access as InvBert but does not train a one-
to-one reconstruction model. It builds a multi-label
classification (MLC) model for the whole sequence,
not for each representation.

4.4 Evaluation Metrics
Privacy metrics evaluate how much information
can be recovered from representations, the higher
the metric, the more privacy is leaked. A good
approach should be high in performance metrics,
but low in privacy metrics. We list the privacy
metrics adopted in our experiments as follows and
show details in the Appendix A.3.

Token-Hit is a coarse-grained privacy metric
that measures the accuracy of recovered words. It
does not consider the word order, treats raw and
recovered words as two sets, and calculates the
percentage of recovered words in the raw words.

Rouge-L (Lin, 2004) is used as a fine-grained
privacy metric to measure the readability of the
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Dataset Methods Task ↑ KNN Attack InvBert Attack MLC Attack
Token-hit ↓ Rouge-L ↓ Ent-hit ↓ Token-hit ↓ Rouge-L ↓ Ent-hit ↓ Token-hit ↓

SST-2

Fine-tune 92.20 80.94 89.37 − 100 100 − 54.64

DPNR 89.56 2.89 0.69 − 94.66 69.74 − 53.79

CAPE 87.84 1.36 0.00 − 12.31 9.29 − 19.01
SanText+ 82.99 62.64 16.91 − 72.33 20.6 − 49.41

TextFusion 90.36 0.00 0.00 − 2.58 0.06 − 20.23

MRPC

Fine-tune 90.06 81.80 36.09 − 100 68.87 − 45.26

DPNR 82.24 2.00 0.00 − 79.80 58.32 − 18.04

CAPE 82.05 1.95 0.14 − 77.66 55.62 − 17.33

SanText+ 81.56 75.96 23.93 − 81.40 36.04 − 49.57

TextFusion 88.17 0.00 0.00 − 1.56 0.72 − 9.36

CoNLL2003

Fine-tune 91.42 87.31 95.92 95.94 100 96.92 100 44.46

DPNR 82.80 1.93 0.66 1.79 78.66 54.01 87.11 23.52

CAPE 81.08 1.27 0.00 1.48 36.16 22.27 50.72 28.54

SanText+ 63.48 67.35 14.6 13.4 76.04 13.79 16.27 59.72

TextFusion 89.78 0.01 0.00 0.01 2.05 1.09 0.00 6.07

Resume

Fine-tune 94.23 91.59 48.42 76.63 99.97 47.49 98.33 44.74

DPNR 87.86 2.97 5.64 0.00 90.97 46.53 70.45 39.76

CAPE 85.41 0.00 0.00 0.00 24.38 18.35 5.56 32.91

SanText+ 89.80 72.00 29.32 21.23 92.08 23.46 70.61 80.81

TextFusion 93.10 0.02 0.00 0.00 3.04 0.00 0.00 10.05

Table 1: Main results of TextFusion and baselines on four datasets under different text reconstruction attacks. Task
represents the metric of downstream task, accuracy for SST-2 while F1 for MRPC, CoNLL2003 and Resume,
respectively. ↑ means higher is better. Token-hit, Rouge-L and Ent-hit represent the metric of privacy leakage,
↓ means lower is better. The best results among all methods except Fine-tune are marked in bold. Ent-hit is not
support on sentence-level task, thus filled with − in SST-2 and MRPC.

recovered text. It evaluates the similarity between
the recovered text and the raw text based on the
longest common subsequence.

Ent-hit is a NER-specific privacy metric to
measure the leakage of key information such as
name and location. It achieves this by calculating
the percentage of recovered entities.

4.5 Implementation Details
To simulate cloud inference scenarios, we split bert-
base series models (Devlin et al., 2018) to local
encoder with 3 layers and server encoder with 9
layers. The final representations of local encoder
will be shared with third parties such as service
providers and thus under the risk of privacy leakage.
All the privacy-preserving (except SanText+) and
privacy attack baselines are conducted in the output
representations of local encoder. SanText+ directly
replaces the raw text. For KNN, we use the PLM
embedding without fine-tuning to calculate the
Euclidean distance. For InvBert and MLC, we
use the training set to query the local encoder and
get the representations to train a bert-base model.
Since attackers cannot train a InvBert specifically
for TextFusion, we use the InvBert trained on fine-
tuned PLM to attack TextFusion.

AdamW optimization algorithm and linear de-

caying schedule are used for all methods. We
conduct a comprehensive hyper-parameter search
to reproduce the baselines in our setting. For all
baselines, we save the model with the best perfor-
mance on the validation set. More details about
hyper-parameters of baselines and TextFusion are
shown in the Appendix A.2.

5 Results and Analysis

5.1 Main Results

Overall Comparison. We demonstrate the ex-
perimental results of TextFusion and the baselines
across 4 datasets in Table 1. From the table, we
can observe that (1) The proposed TextFusion
substantially outperforms most baselines in task
performance and privacy metrics under different
attacks. (2) The privacy-preserving baselines
effectively protect privacy under the KNN attack,
but cannot defend InvBert attack as effectively
as TextFusion. This is not surprising, since they
do not privatize token representations during
inference. An attacker can still train a powerful
text reconstruction model to recover the raw
text. Our method hides the token representation
dynamically during inference, which hinders the
training of text reconstruction model. (3) The task
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performance of privacy-preserving baselines drops
substantially. We speculate that this is due to the
vulnerability of the shallow representation. Take
adversarial training as an example, we perform
adversarial training for all token representations
in the 3rd layer, while supervising the main task
with the first token representation from the 12th
layer for sentence classification tasks. The huge
gap between these two objectives makes it difficult
to achieve a balance, which eventually leads to
the destruction of the shallow representation and
thus affects the task performance. TextFusion uses
misleading training to mitigate this problem and
achieves better performance.

Detailed Comparison. From Table 1 we can
find that: (1) Equipped with adversarial training,
CAPE generally achieved better results under
InvBert’s attack than DPNR which only injects
noise. This indicates that adversarial training can
provide a certain degree of resistance to InvBert’s
attack. (2) From the unsatisfactory results of
SanText+, we speculate that even if we replace
the original words with perturbated ones, they
may still be recovered by the attacker from the
intermediate representation since the one-to-one
relation still exist between the replaced words
and the original ones. (3) MLC takes the entire
representation sequence as input and performs
multilabel classification to identify the raw words
contained in the sequence, which does not require
one-to-one token representation and original word
as training data. But experimental results show
that TextFusion can still protect privacy under
such attack, which indicates that incomplete
representation sequences can impede attackers
to train a powerful reconstruction model.

5.2 Ablation Study

In this section, we conduct a series of experiments
to verify the effectiveness of the two major
components of TextFusion.

How does token fusion affect the results? First,
we demonstrate the privacy-preserving capability
of the token fusion mechanism. We attack
our model before the misleading training stage
under different token fusion ratios. Results in
Figure 3 show that the proposed token fusion
mechanism can substantially reduce the Token-hit
rate with the increase of the token fusion ratio,
suggesting that the fusion operation is effective in
preserving privacy. Note that the task performance
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Figure 3: Privacy and performance under different
token fusion ratio. The task metrics for SST-2 and
CoNLL2003 are accuracy and F1, respectively. The
lower Token-hit is, the more privacy is protected.

is unaffected even if we increase the fusion ratio in
text classification. However, in token classification,
the fusion rate has a greater impact on the
performance because the early exiting mechanism
makes unconfident tokens exit at shallow layers,
leading to wrong predictions.

Is misleading training necessary? Another
question is whether misleading training plays
a dominant role in privacy protection rather
than token fusion. We emphasize that a major
effect of token fusion hinders the training of the
reconstruction model. Without token fusion, the
attacker can get ideal data to train a powerful text
reconstruction model. To verify this, we apply
the misleading training to the standard fine-tuning
and use InvBert to attack this model. We also use
the InvBert, trained on misleading data, to attack
the complete TextFusion model. From the results
in Table 2, we find that neither can misleading
training alone defend against InvBert attack, nor
can token fusion protects unfused tokens. Only
when combined with both two components, our
proposed TextFusion can defend against all attacks.

Dataset Method Task KNN InvBert

SST-2

Fine-tune 92.20 80.94 100
+ Misleading 92.02 00.00 100
+ Token fusion 91.97 39.29 19.02
+ TextFusion 90.36 00.00 02.58

Table 2: Ablation Study on TextFusion. Task’s metric is
accuracy, KNN and InvBert’s metric is Token-hit.

5.3 Case Study
We take one example from SST-2 to show the
attack results of KNN and InvBert on the fine-tuned
model and TextFusion. As shown in Figure 4, we
can observe that the recovered words are basically
irrelevant to the input text, indicating that our
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Original Text:

KNN:

InvBert:

[CLS] It ’  as charming and often affecting journey [SEP]

[CLS] It s charming and often affecting journey [SEP]

##im

[CLS] It charming and often affecting journey [SEP]

KNN:

InvBert:

and and and and

do codes codes

[CLS]

[CLS]

[CLS] [CLS]

’  as

Fine-tuneRecovered Text

Recovered Text TextFusion

Figure 4: Illustration of privacy attack results on TextFusion for a input example from SST-2. The input-related
words are highlighted as red.

method can effectively remove privacy attributes.
Besides, TextFusion reduces the sequence length,
as a result, even if an attacker could recover the
original word, its position cannot be aligned with
the original input because word fusion occurs,
which not only makes the text less readable, but
also makes it difficult for attackers to obtain high-
quality training data.

5.4 Privacy in Different Layers

In our experiments, the local encoder consists of 3
transformer layers. However, different users have
different computing resources, so it is necessary
to verify the effectiveness of our method in the
lower layer. We extend TextFusion to the first
and second layer and show the results of all three
layers. Experimental restults in Table 3 show
that the TextFusion can still protect privacy at
shallower layers. However, fusing and misleading
representations at these layers inevitably degrade
performance, there is a trade-off between the
degree of privacy protection and performance.

Method Layer Task KNN InvBert

Fine-tune
layer 1 93.47 100
layer 2 92.20 85.69 100
layer 3 80.94 100

TextFusion
layer 1 89.22 2.19 2.45
layer 2 90.02 0.00 2.08
layer 3 90.36 0.00 2.58

Table 3: Task performance and privacy using TextFusion
at different layers on the SST-2.

6 Related Work

Cloud-based PLM inference enables users who lack
computing resources to benefit from large models
(Pais et al., 2022) by uploading data to the cloud.

Many efforts have been made to keep this process
from leaking user privacy from uploaded data. A
kind of method reduce the private information in
representation during training, such as differential
privacy (Habernal, 2021; Hoory et al., 2021), noise
injection (Xu et al., 2020; Ponomareva et al., 2022)
and adversarial training (Coavoux et al., 2018;
Plant et al., 2021). These methods do not fully
protect the privacy under the text reconstruction
attack during inference(Song and Raghunathan,
2020) . Homomorphic encryption (Feng et al.,
2020; Chen et al., 2022a) encrypts the computation
of the model, it introduces time-consuming compu-
tation and additional computational cost, which
is contrary to our low computational resource
scenario, and is not considered by us. Yue et al.
(2021); Xu et al. (2020) propose to replace the
sensitive words in text, but the reasonableness
of the replaced words is difficult to guarantee,
especially in token classification. These methods
cannot preserve inference privacy effectively and
efficiently.

Token reduction is similar to token fusion but
with different motivations. These works use at-
tention (Goyal et al., 2020), gradients (Modarressi
et al., 2022) and reinforcement learning (Ye et al.,
2021) to remove redundant representations to
accelerate inference. We leave the combination
of token fusion and token reduction to future work.

7 Conclusion

In this paper, we propose TextFusion, a privacy-
preserving approach for on-cloud pre-trained
model inference. The key idea of TextFusion
is to fuse the token representations during
local inference and shares incomplete and
perturbed token representations to the third
parties. These reorganized representations make
it hard for privacy attackers to recover the token
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representations back to raw words that contain the
private user information. To this end, we train a
fusion predictor to fuse token dynamically and
employ the misleading training to mislead the
attacker in both fused and unfused representations.
The experimental results on four sentence and
token classification datasets show that our method
can protect privacy effectively while achieving the
comparable performance with fine-tuning.

8 Limitations

Although the proposed token fusion strategy is
simple and effective, it’s better to propose a
unified fusion method for both token and sentence
classification tasks. Besides, token fusion relies on
getting the predictions for confident representations
on early layer for token classification. It will limit
the applications of TextFusion when a very large
fusion ratio is required. These two problems will
be explored in our future work.
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A Appendix

A.1 Dataset Statistic

We follow the official dataset split for CoNLL2003
and resume. The test sets for SST-2 and MRPC
are not publicly available, so we use the original
validation set directly as the test set. The statistics
of four datasets used in our experiments is shown
in Table 4.

Category Dataset #Train #Test Labels

Single-sentence SST-2 67k 0.9k 2
Sentence-pair MRPC 3.7k 0.4k 3

Token CoNLL2003 51.5k 46.7k 9
Token resume 124.1k 15.1k 17

Table 4: Statistics of the datasets. For SST-2 and MRPC,
# means the number of sentences. For CoNLL2003 and
resume, # means the number of tokens.

A.2 Hyperparameters

In this section, we show the hyperparameters used
for the baselines and how we search these hyper-
parameters. As for TextFusion, we search the
learning rate from 1e-5 and 5e-5, the misleading
loss weights is 0.05. In the second stage, the
thresholds were randomly selected from [0.1, 0.2,
0.3] for the token classification task and from
[0,0.5,1] for the sentence classification task. For all
privacy-preserving baselines, we train 10 epochs
and search the learning rate from [1e-3, 1e-4, 1e-5,
1e-6]. For CAPE (Plant et al., 2021), we search the
adversarial training weights λ from [0.001, 0.01,
0.1, 1, 5] and noise rate ϵ from [0.01, 0.1, 0.5,
1, 5]. For DPNR (Lyu et al., 2020b), we search
the noise rate ϵ from [0.01, 0.1, 0.5, 1, 5] and the
word dropout rate µ from [0,0.1, 0.3, 0.5]. For
SanText+(Yue et al., 2021), we set the privacy
parameter ϵ as 12 to maximize privacy protection
performance. As for the InvBert and MLC, we
search the learning rate from [1e-4, 1e-5, 1e-6]. We
take the closest word as the attack result of KNN,
the predicted word with the highest probability
as the attack result of InvBert (Höhmann et al.,
2021), and the word with prediction probability
greater than 0.5 as the prediction result of MLC
(Song and Raghunathan, 2020). Our experiments
are conducted on NVIDIA GeForce RTX 2080 TI.

A.3 Privacy Metrics
As stated in Section 4.4, we adapt three metrics
to evaluate degree of privacy leakage: Token-hit,
Ent-hit and Rouge-L. The Rouge-L (Lin, 2004) is
a widely used text generation metric, so we do not
describe it here. We focus on Token-hit and Ent-hit
and give a formulaic form to them.

Token-hit is a common privacy metric that
measures the accuracy of recovered words. Given
a original input text Xori = [xori1 , ..., xorinori

]
with length nori, we convert it to a set Sori =
{sori1 , ..., sorimori

} with mori different words. The
attacker use the intermediate representations to get
recovered text Xrec = [xrec1 , ..., xrecnrec

], we also
convert it to a set Srec = {xrec1 , ..., xrecmrec

} with
mrec different words. The Token-hit calculate the
percentage of words in set Srec to the words in set
Sori, which can be formulated as follow:

Token-hit =
|Srec ∩ Sori|

|Sori| , (7)

where |.| means the length of the set. Suppose the
|Srec ∩ Sori| is k, where k < min{|Srec|, |Sori|},
the Token-hit for input text X and recovered
text Xrec is k

mori
. The advantage of Token-

hit is its universality. This metric is task-
independent and word order-independent, and
therefore applicable to all tasks, attacks and
privacy-preserving methods.

Ent-hit is a NER-specifically task metric that
counts how many entities in the input text are
accurately recovered. Given a original input text
Xori and its labels Y = [y1, ..., yn]. We take
the entity words based the Y to get a entitiy set
E = e1, ..., em where m is the number of entities.
The entity may contain more than one word, only
when the recovered text Xrec contains each word
in the entity and the word order is correct can it be
counted as one hit. We formulate this process as:

Ent-hit =
∑m

i=1 I(ei;X
ori)

m
(8)

where I(ei;X
ori) → {0, 1} is the indicator

function indicating whether each word of entity ei
is in Xori in order. Our settings are strict because
we believe that small changes in the entities may
point to others and thus mislead the privacy attacker
instead, and thus do not reflect the true privacy
leakage.
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