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Abstract
Pre-training language models have achieved
thriving success in numerous natural language
understanding and autoregressive generation
tasks, but non-autoregressive generation in
applications such as machine translation has
not sufficiently benefited from the pre-training
paradigm. In this work, we establish the
connection between a pre-trained masked lan-
guage model (MLM) and non-autoregressive
generation on machine translation. From this
perspective, we present XLM-D, which seam-
lessly transforms an off-the-shelf cross-lingual
pre-training model into a non-autoregressive
translation (NAT) model with a lightweight
yet effective decorator. Specifically, the dec-
orator ensures the representation consistency
of the pre-trained model and brings only one
additional trainable parameter. Extensive ex-
periments on typical translation datasets show
that our models obtain state-of-the-art perfor-
mance while realizing the inference speed-
up by 19.9×. One striking result is that on
WMT14 En⇒De, our XLM-D obtains 29.80
BLEU points with multiple iterations, which
outperforms the previous mask-predict model
by 2.77 points.

1 Introduction

As a dominant pre-training paradigm in natural lan-
guage processing (NLP), masked language models
such as BERT and its variants (Devlin et al., 2019;
Liu et al., 2019), were initially proposed and have
achieved state-of-the-art performance on various
natural language understanding tasks. For gener-
ation tasks, previous studies either leverage the
pre-trained BERT as an external component for
representation fusing (Zhu et al., 2019) or simply
initialize the generation models with a pre-trained
model (Ma et al., 2020). Although straightforward,
these methods suffer from either heavy compu-
tation costs during inference or only supporting
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autoregressive generation with sequential depen-
dency. Additionally, these approaches result in
inconsistency from two perspectives: 1) mismatch
of architectures between pre-trained models and
the generation model; 2) disagreement of training
objectives between pre-training and autoregressive
generation tasks.

Different from previous studies, we reexamine
the problem from another point of view. We find
that the training objective in pre-trained MLM can
align well with the one in non-autoregressive gen-
eration, which is an emergent generation paradigm
due to its excellent inference speed-up (Gu et al.,
2018; Lee et al., 2018). Intuitively, both train-
ing objectives are formalized as a series of inde-
pendent token predictions in the output sequence.
Based on this observation, we incorporate a pre-
trained MLM into the non-autoregressive genera-
tion. Specifically, in this work, we focus on the
classic non-autoregressive machine translation task.
Albeit studied for ages, NAT models have not per-
formed very well, lagging behind the autoregres-
sive translation counterpart.

We propose to adapt the cross-lingual pre-
training model (XLMR) into NAT models with
a lightweight, effective and user-configurable dec-
orator. Following Occam’s razor principle and to
better leverage the capability of pre-training mod-
els, we design the decorator component based on
two key criteria: 1) involve additional trainable pa-
rameters as few as possible, e.g., parameter-free; 2)
keep the model intermediate representation consis-
tent after using the decorator. Guided by the two
criteria, the decorator consists of a distance-based
latent transformation module and a position-wise
add and scale module, which contains only one
trainable scalar parameter. Moreover, the decorator
can be flexibly incorporated into a user-specified
layer of XLMR to balance the translation perfor-
mance and inference speed. We use the connec-
tionist temporal classification (CTC) (Graves et al.,
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2006) loss as the training objective.
To validate the effectiveness of our approach,

we systematically conduct the evaluation on sev-
eral widely-used translation datasets. Extensive
experiments demonstrate that our proposed model
significantly and consistently improves the trans-
lation performance and achieves new state-of-the-
art results in both single-step and iterative NAT
models. Results show that our single-step XLM-
D model achieves 27.46/34.70 BLEU points on
WMT14 En⇒De and WMT16 En⇒Ro transla-
tion tasks with 19.9× speed-up. Encouragingly,
our iterative XLM-D model obtains 29.80/35.65
points on both tasks and outperforms previous well-
performed models (CMLM) (Ghazvininejad et al.,
2019) by a large margin, i.e., 2.77/2.57 points. Fur-
ther analyses reveal that our approach enhances the
capability in long sentence translation and can be
user-configured to balance the trade-off between
the translation quality and inference speed.

2 Approach

2.1 Problem Formulation
A common part of the masked language model
(MLM) and non-autoregressive generation is that
the prediction of each output token is made inde-
pendently. In this section, we compare the train-
ing objective in pre-training MLM with the one
in non-autoregressive generation and identify their
inherent yet unnoticed connections.

Masked Language Model Given an input sen-
tence x = {x1, . . . , xI}, a masked language model
randomly masks out this sequence by replacing
words with a special token [MASK]. Conditioned
on the manipulated sequence, the model predicts
the masked tokens in parallel. Formally, we de-
note xmask as a set of output tokens and xobs =
x \ xmask as the input sentence. The minimized
training objective can be formulated as:

LMLM(θ′) = −
N∑

n=1

logP (xn
mask|xn

obs; θ
′) (1)

= −
N∑

n=1

I∑

i=1

1(xni = [MASK]) logP (xni |xn
obs; θ

′),

where N is the number of training examples and θ′

is a set of trainable parameters in pre-training mod-
els. The training objective has been successfully
applied to the state-of-the-art pre-training BERT
model and its variants (Devlin et al., 2019; Liu

et al., 2019). In particular, Conneau et al. (2020)
extends this to monolingual data with one hundred
languages for cross-lingual understanding, which
attributes pre-training MLM models with cross-
lingual properties of word, syntax and semantics.

Non-Autoregressive Machine Translation Re-
cently, non-autoregressive models, which predict
the target sentence in parallel conditioned on the in-
put sentence, have obtained considerable attention
in machine translation. Specifically, given an input
sentence x = {x1, . . . , xI} and an output sentence
y = {y1, . . . , yJ}, a standard non-autoregressive
framework (Gu et al., 2018) breaks the probabilistic
factorization with a product of independent proba-
bility for each output token:

LNAT(θ) = −
N∑

n=1

logP (yn|xn; θ)

= −
N∑

n=1

J∑

j=1

logP (ynj |xn; θ), (2)

where θ is a set of trainable parameters. Typically,
NAT models have an auxiliary length predictor,
which is used to determine the translation length J .

From equation (1) and (2), we observe that
although the output sequences are different in
MLM and NAT models, the output tokens are
independently predicted. In essence, we find
that a masked language model could be endowed
with non-autoregressive generation inherently. To
utilize available pre-training models effectively,
we propose to decorate the existing cross-lingual
pre-training model (XLMR) as non-autoregressive
machine translation. Specifically, we present a
lightweight and effective approach by reducing the
incorporation of additional learnable parameters
and maintaining the consistency of representations
in pre-training models.

2.2 XLM-D

In this section, we introduce the proposed approach
of decorating XLMR as non-autoregressive ma-
chine translation, termed as XLM-D, which is
shown in Figure 1. First of all, we use the latent
alignment loss as the training objective. Mean-
while, we augment the standard XLMR model
with a distance-based latent transformation mod-
ule, which transforms the hidden states of a source
sentence into the representations with extended
length. Besides, we incorporate a position-wise
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A decomposable view of XLM-R XLM-Decorator Figure 1: An illustration of the proposed approach, which decorates the pre-training XLMR model as a NAT model.
The left figure shows a decomposable view of XLMR, and the right figure presents our proposed architecture.
“Decorator” (in the gray background) denotes the incorporated modules while all other components derive directly
from pre-trained XLMR. “M” indicates the user-configurable layer where we insert our decorator. For simplicity,
we omit some model details, including residual connections and layer normalization.

add and scale component into our model to equip
the presented approach with iterative refinement.

Latent Alignment as Training Objective In
this work, we train the model with the connec-
tionist temporal classification (CTC) (Graves et al.,
2006; Chan et al., 2020) loss, a.k.a. latent align-
ment. The benefits are twofold. Firstly, utilizing
latent alignment is effective in dealing with the to-
ken repetition problem (Libovickỳ and Helcl, 2018;
Ghazvininejad et al., 2020; Saharia et al., 2020) in
the output sentence. In addition, CTC loss does not
need the prediction of target length. Specifically,
the predicted output has the length s× I , where s
is the predefined factor and I is the source length.
Formally, let a denote an aligned sequence, we de-
fine the collapsing function Γ−1(a) as collapsing
consecutive repeated tokens and removing blank
tokens. Given the conditional independence as-
sumption, CTC models the alignment distribution
and marginalizes the following log-likelihood:

logP (y|x; θ) = log
∑

a∈Γ(y)

P (a|x; θ). (3)

Distance-based Latent Transformation Sup-
pose the source sentence of length I has hidden
states hM

1:I = {hM
1 , . . . ,hM

I } and the predicted
output is of length s× I . To bridge the length gap,
we transform the hidden states into s× I vectors.
Inspired from the attention mechanism (Bahdanau
et al., 2015), we employ a monotonic distance-
based attention (Shu et al., 2020) to produce the

transformed latent variables. We denote the result-
ing vectors of latent transformation as z1:s×I =
{z1, ..., zs×I}. Each output vector is calculated
with a weighted sum of the hidden states hM

1:I :

zj =

I∑

i=1

wj
ih

M
i , wj

i =
exp(αj

i )∑I
i′=1 exp(αj

i′)
,

αj
i′ = − 1

2σ2
(i′ − I

s× I j)
2,

where the weight is calculated with a softmax func-
tion over a set of relative distances to the source
sentence. In this distance-based attention mecha-
nism, the variance σ is the only trainable parameter.

Position-Wise Add and Scale To support iter-
ative refinement, we introduce the conditional
masked strategy (Ghazvininejad et al., 2019) into
our model, which selects a subset of tokens to
mask and then predicts them in parallel, by us-
ing a position-wise add and scale component. Let
ε ∈ R|V |×d denote the word embeddings borrowed
from pre-trained XLMR, which does not intro-
duce additional trainable parameters. The input
alignment a = {a1, . . . , as×I} is represented as
e1:s×I = {e1, . . . , es×I} = {ε[a1], . . . , ε[as×I ]}.
Inspired by previous works (Dou et al., 2018;
Bapna and Firat, 2019), we propose to combine the
transformed latent variables with alignment repre-
sentations. Specifically, we employ the position-
wise add and scale component to generate the latent
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representations:

z′i = (zi + ei)× γ + pi, (4)

where pi is a positional embedding and we nor-
malize the output by a factor γ to maintain the
consistency of representations with the pre-trained
XLMR model.

2.3 Training and Inference

Algorithm 1 Training for XLM-D

1: Input: (1) Parallel translation data {Dn}Nn=1, (2) User-
specified layer M .

2: procedure TRAINING({Dn}Nn=1, M )
3: while not convergence do
4: a′ ← {[MASK], ..., [MASK]} . a′ =
5: {a′1, ..., a′s×I}
6: a← arg maxa∈Γ(y) P (a|x,a′; θ) . using
7: Viterbi algorithm
8: ā← mask(a) . masked alignment ā is
9: obtained with a mask policy

10: θ ← arg maxP (y|x, ā; θ) . update θ using x
11: and masked alignment ā
12: end while
13: end procedure

In this section, we describe the overall train-
ing algorithm. As shown in Algorithm 1, we
provide the model with masked alignments dur-
ing training in XLM-D by using Viterbi algo-
rithm to produce the best alignment, namely
a = arg maxa∈Γ(y) P (a|x,a′; θ). For the masked
alignment, we use a block-wise mask policy.
Specifically, we divide the sequence into blocks
with equal length B and mask the tokens within
each block randomly. For the loss computation,
we force the output in non-masked positions of
alignment a to be the tokens of input alignment ā,
termed as constrained CTC loss. For efficiency con-
sideration, we implement the Viterbi algorithm and
constrained CTC loss computation using CUDA
programming with C++ language extension.

During inference, the translation is produced
with a constant number of generative steps. Specif-
ically, we initialize the equal-size blocks with all
masked-out tokens. Then, we obtain a new align-
ment output of the model by selecting the tokens
with the largest predicted probability, and merging
the alignment output with the previous one. We
iteratively update the translation for each block by
masking the tokens with low predicted probability.

2.4 Configurability
Considering that the introduced decorator is tied
to neither a specific layer nor a specific type of

masked language model, our approach is flexible
and user-configurable. Moreover, M controls the
trade-off between the translation performance and
inference speed. Intuitively, a larger M will lead
to fewer layers accumulatively that a translation
iteration needs during inference. In the analyses,
we will explore the influence of M on translation
performance and decoding speed. In the above il-
lustration, we mainly elaborate our approach in an
iterative scenario. In fact, our model can be sim-
plified to a single-step NAT model by removing
the position-wise add and scale component. Dur-
ing training in our single-step XLM-D model, we
eliminate the block-wise mask policy and only use
vanilla CTC loss to train the model.

3 Experiments

3.1 Setup

Datasets We evaluate the effectiveness of our ap-
proach on two widely adopted benchmark datasets:
WMT14 English-German (En-De)1 and WMT16
English-Romanian (En-Ro)2, which consist of
4.0M and 610K sentence pairs respectively. We
also show the generality of our approach on four
other datasets, including WMT14 English-French
(En-Fr) and WMT20 Japanese-English (Ja-En) and
IWSLT17 Korean/Arabic-English (Ko/Ar-En). For
the WMT14 En-De task, newstest2013 and new-
stest2014 are used as the validation and test set
respectively. For the WMT16 En-Ro task, we use
newsdev2016 and newstest2016 as the validation
and test set. We follow the dataset configurations
of previous works (Gu et al., 2018; Lee et al., 2018)
strictly. For our model, we segment each word
into tokens with a sentencepiece model (Kudo and
Richardson, 2018), learned on the full CC-100 data,
that includes 250K subword tokens in XLMR (Con-
neau et al., 2020). To keep a consistent compar-
ison with previous researches, we apply the sen-
tencepiece model to the preprocessed data directly.
For evaluation, we report tokenized case-sensitive
BLEU scores (Papineni et al., 2002) for En-De,
En-Ro and En-Fr, while using SacreBLEU (Post,
2018) for Ja-En, Ko-En and Ar-En.

Model Configuration For model hyper-
parameters, we mainly follow the XLMR-base
configurations in (Conneau et al., 2020). Specif-
ically, for all translation tasks, we use the

1https://www.statmt.org/wmt14/translation-task
2https://www.statmt.org/wmt16/translation-task
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Model Iter. Speed WMT14 WMT16
En⇒De De⇒En En⇒Ro Ro⇒En

Autoregressive Models

Transformer (Vaswani et al., 2017) N 1.0× 27.74 31.09 34.28 33.99

Iterative Non-Autoregressive Models

LaNMT (Shu et al., 2020) 4 5.7× 26.30 – – 29.10
Iter-NAT (Lee et al., 2018) 10 1.5× 21.61 25.48 29.32 30.19
LevT (Gu et al., 2019) Adv. 4.0× 27.27 – – 33.26
DisCO (Kasai et al., 2020) Adv. 3.5× 27.34 31.31 33.22 33.25
CMLM (Ghazvininejad et al., 2019) 10 1.7× 27.03 30.53 33.08 33.31
CMLM-LFR (Ding et al., 2021b) 10 1.5× 27.80 – – 33.90

Our Work

XLM-D (M=0)
2 10.5× 28.69 32.08 35.15 35.10
4 5.4× 29.41 32.73 35.47 35.52
8 2.8× 29.80 32.88 35.34 35.50

XLM-D (M=6)
2 12.5× 28.91 32.59 35.38 35.37
4 7.6× 29.37 32.99 35.65 35.63
8 4.1× 29.59 33.28 35.65 35.84

Table 1: Evaluation of translation performance on the test sets of WMT14 En-De and WMT16 En-Ro with iterative
decoding models. The speed-up is measured on the WMT14 En-De test set. “Iter.” indicates the number of
iterations at inference time. “–” means not reported and “Adv.” means adaptive.

hyper-parameters (dmodel = 768, dhidden = 3072,
nlayer = 12, nhead = 12, pdropout = 0.1). We
employ twarmup = 10000 as the warm-up learn-
ing rate schedule. In our implementation, the
upsampling ratio (s) of the distance-based latent
transformation module and the scale factor (γ) of
the position-wise add and scale module are set to
2 and 0.5 respectively. We use weight decay 0.01
and learning rate 0.0002. For more implementation
details, please refer to Appendix A.1.

Knowledge Distillation As a key component in
NAT models, knowledge distillation (KD) (Zhou
et al., 2020) has been proven to effectively reduce
the complexity of target data, which is beneficial to
the training in NAT models. We strictly follow pre-
vious work (Gu et al., 2018) and utilize sequence-
level knowledge distillation (Kim and Rush, 2016)
to produce the training data. Specifically, for each
sentence pair in the training corpus, we replace the
target sentence with the translation generated by a
pre-trained autoregressive model.

3.2 Results

Table 1 and 2 show the translation quality and
inference speed of our approach and baselines on
WMT14 En-De and WMT16 En-Ro datasets. For
a fair comparison, we divide the results into two
types (including iterative and single-step NAT mod-
els) based on the number of iterations.

Iterative NAT Models Table 1 shows that
CMLM (Ghazvininejad et al., 2019) achieves
comparable translation performance with the au-
toregressive Transformer-base models while the
inference speed-up is still unsatisfactory. As
seen, our iterative models outperform the baseline
model (CMLM) by 2.77 and 2.75 BLEU points on
WMT14 En⇒De and De⇒En respectively, while
maintaining a faster inference speed. Besides, our
models achieve significant improvements by up to
2.57/2.53 points on both WMT16 En-Ro tasks. In
particular, our approach outperforms the autore-
gressive Transformer-base models by a very large
margin. Specifically, on WMT14 En⇒De, our best
model achieves 29.80 BLEU points with 2.8× in-
ference speed-up. These results clearly indicate the
tremendous potential of our approach.

Single-step NAT Models As presented in Ta-
ble 2, our approach achieves significant and
consistent improvements over all previous base-
lines across all translation tasks. Specifically,
on WMT14 En⇒De and De⇒En, our single-
step models outperform the strong baseline
model (GLAT) by 2.25 and 0.84 BLEU points re-
spectively. In addition, on the WMT16 En⇒Ro
translation task, our model achieves a significant
improvement by up to 3.51 BLEU points. Encour-
agingly, our approach outperforms the Transformer-
base models by 0.42/0.33 BLEU points on the
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Model Iter. Speed WMT14 WMT16
En⇒De De⇒En En⇒Ro Ro⇒En

Autoregressive Models

Transformer (Vaswani et al., 2017) N 1.0× 27.74 31.09 34.28 33.99

Single-step Non-Autoregressive Models

Vanilla-NAT (Gu et al., 2018) 1 15.6× 17.69 21.47 27.29 29.06
FCL-NAT (Guo et al., 2020a) 1 16.0× 25.75 29.50 – –
ReorderNAT (Ran et al., 2021) 1 16.1× 22.79 27.28 29.30 29.50
Flowseq (Ma et al., 2019) 1 1.1× 23.72 28.39 29.73 30.72
AXE (Ghazvininejad et al., 2020) 1 15.3× 23.53 27.90 30.75 31.54
Bag-of-ngrams (Shao et al., 2020) 1 10.0× 20.90 24.60 28.30 29.30
GLAT (Qian et al., 2021) 1 15.3× 25.21 29.84 31.19 32.04
CNAT (Bao et al., 2021) 1 10.4× 25.56 29.36 – –
latent-GLAT (Bao et al., 2022) 1 11.3× 26.64 29.93 – –

Our Work

XLM-D (M=0) 1 19.5× 26.91 30.34 33.90 34.11
XLM-D (M=6) 1 19.6× 27.01 30.62 34.23 34.32
XLM-D with LT only 1 19.9× 27.46 30.68 34.70 34.29

Table 2: Evaluation of translation performance on the test sets of WMT14 En-De and WMT16 En-Ro with single-
step decoding models. “XLM-D with LT only” means that we only use the distance-based latent transformation
component by removing the position-wise add and scale module.

WMT16 En-Ro dataset. We attribute this to the
incorporation of additional language knowledge
benefited from the pre-training model. These re-
sults clearly demonstrate the effectiveness of dec-
orating cross-lingual pre-training models as non-
autoregressive machine translation.

Inference Speed To evaluate the decoding speed
of our approach, we run all models with one sen-
tence at a time on a single GPU and calculate the
inference speed-up on the WMT14 En-De task (for
more computation details, please refer to Appendix
A.2). As demonstrated in Table 2, our single-step
NAT models achieve 19.9× inference speed over
the Transformer-base counterpart and exceed all
previous single-step models. We credit this to
removing the overhead caused by cross-attention
modules in the conventional encoder-decoder ar-
chitecture. Moreover, our iterative models also
achieve a good acceleration as the number of itera-
tions increases, especially for M = 6. The results
reveal that our model is lightweight and efficient.

Translation Quality on Different Datasets Ta-
ble 3 shows results on four other datasets: WMT14
En⇒Fr, WMT20 Ja⇒En, IWSLT17 Ko⇒En and
IWSLT17 Ar⇒En, covering large-scale and small-
scale training data (i.e. 35.8M, 16.8M, 0.23M and
0.23M). We follow the widely used translation di-
rections (Vaswani et al., 2017; Liu et al., 2020; Gu
and Kong, 2021). As seen, the superiority of our

Model Iter. En⇒Fr Ja⇒En Ko⇒En Ar⇒En
(35.8M) (16.8M) (0.23M) (0.23M)

Transformer N 41.23 19.38 15.15 32.54

CMLM
4 39.26 16.47 12.96 28.45
10 39.69 18.53 13.91 29.46

XLM-D
(M=0)

2 40.06 17.46 15.46 34.35
4 40.97 19.01 16.18 34.79
8 41.11 19.29 16.17 34.97

Table 3: Evaluation of translation quality on different
datasets varied in language pair and size.

approach holds across different language pairs and
data sizes, demonstrating the universality of the
proposed approach. In addition, the results in Ta-
ble 3, show that the gains of our approach on small-
scale data (Ko⇒En and Ar⇒En) are more signifi-
cant than on large-scale data (En⇒Fr and Ja⇒En).
This observation suggests that low-resource lan-
guage pairs benefit more from pre-training models,
which is also verified by Liu et al. (2020).

3.3 Analyses

In this section, we perform extensive analyses on
the WMT14 En-De task to better demonstrate the
effectiveness of our model in terms of: 1) transla-
tion quality on original data, 2) effects of upsam-
pling ratio, 3) effects of different M , 4) effects of
pre-training, and 5) effects of the sentence length.
For more analyses, please refer to Appendix A.3.
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Model Iter. Speed Original Distill

Transformer N 1.0× 27.74 27.86
CMLM 10 1.7× 24.61 27.03

XLM-D (M=0)

1 19.5× 20.28 26.91
2 10.5× 25.26 28.69
4 5.4× 26.95 29.41
8 2.8× 27.49 29.80

Table 4: Translation performance on WMT14 En⇒De
with original training data and distilled data.

Translation Quality on Original Data Previ-
ous works (Gu et al., 2018; Lee et al., 2018) re-
ported that it was necessary to train NAT mod-
els on distillation data, which is generated with
a well-trained autoregressive model. To evaluate
our model’s dependence on this process, we also
present the results of translation performance with
Transformer-base, CMLM and our approach on
WMT14 En⇒De original training data, which are
shown in Table 4. Overall, our approach (XLM-
D) performs better than the CMLM baseline model
significantly. For instance, our model obtains 27.49
BLEU scores, which outperforms the CMLM
model by 2.88 points while remaining a faster infer-
ence speed with 2.8×. In particular, our model can
achieve comparable results (27.49 vs. 27.74) with
autoregressive Transformer-base, which is a very
promising result to compensate for the performance
gap on the original data. These results confirm the
robustness and effectiveness of our approach.

Iter. s = 1.5 s = 2.0 s = 2.5 s = 3.0

1 25.53 26.91 27.10 27.32
2 28.08 28.69 28.68 28.65
4 28.97 29.41 29.45 29.61
8 29.20 29.80 29.70 29.76

Table 5: Comparison of translation performance on
WMT14 En⇒De with different upsampling ratios.

Effects of Upsampling Ratio In Table 5, we
study the influence of different upsampling ra-
tios (s) in our model. We find that a higher upsam-
pling value achieves a significant improvement in
the translation performance with a single decoding
iteration. For instance, the translation performance
is improved by 1.38 points when increasing s from
1.5 to 2.0. Besides, the upsampling ratio does not
influence the performance notably with multiple
iterations. This reveals that multiple iterations can
remedy the translation performance effectively.
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(b) Speed Up

Figure 2: Translation performance and inference speed
on the WMT14 En⇒De test set with respect to differ-
entM . The left figure denotes the BLEU scores vs. the
number of iterations while the right figure indicates the
speed up vs. the number of iterations.

Effects of Different M Previous researches
demonstrate that to obtain reliable performance,
NAT models usually sacrifice the inference speed
by multiple refinement iterations. In our model,
we introduce an extra user-configurable hyper-
parameter M to balance the translation quality and
inference speed. To verify its efficacy, we study
the influence of different M on translation perfor-
mance and decoding latency. As shown in Figure 2,
we can find that a higher M value brings more
speed-up by multiple iterations without damaging
much translation performance. Although the litera-
ture shows that the translation quality and inference
speed is irreconcilable, our results suggest that the
proposed approach can achieve their balance by
modifying the user-configurable M .

Model Iter. Pre-train Reset

XLM-D with LT only 1 27.46 25.80

XLM-D (M=0)

1 26.91 26.04
2 28.69 27.98
4 29.41 28.56
8 29.80 28.83

XLM-D (M=6)

1 27.01 25.75
2 28.91 27.64
4 29.37 28.24
8 29.59 28.57

Table 6: Effects of utilizing pre-training parameters vs.
resetting parameters on WMT14 En⇒De.

Effects of Pre-training To study the influence
of additional knowledge brought by pre-training,
we conduct an ablation analysis on the WMT14
En⇒De translation task. Specifically, we follow
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our approach but reset the parameters by the strat-
egy of random initialization in XLMR. As shown
in Table 6, our model with pre-trained parameters
achieves significant and consistent improvements
over the counterparts with parameters reset across
all model variants. For instance, in single-step NAT
models, our system outperforms the “Reset” model
by 1.66 BLEU points (27.46 vs. 25.80). Besides,
our iterative NAT models achieve improvements by
over 1.0 BLEU points as the increase of multiple it-
erations. These results confirm that the pre-training
provides additional language knowledge, which
helps non-autoregressive machine translation.

Effects of Sentence Length To explore the bene-
fits of our iterative models, we investigate the trans-
lation results of our approach on WMT14 En⇒De
with respect to different lengths of target sentences.
Specifically, based on the respective lengths of tar-
get sentences, translations are allocated into dif-
ferent buckets. The evaluation results of BLEU
scores for each bucket are shown in Table 7. As ex-
pected, our approach achieves improvements with
the increase of iterations across all buckets. In addi-
tion, the improvements of translation performance
are limited when the lengths of target sentences
are constrained (≤ 10). In particular, for longer
sentences (≥ 40), our model improves the perfor-
mance by 2.70 BLEU points with T = 2. This
evidence suggests that our model clearly benefits
long-distance dependencies in NAT models.

Bucket T = 1 T = 2 T = 4

1 ≤ N < 10 21.90 22.64 22.51
10 ≤ N < 20 26.07 27.47 28.42
20 ≤ N < 30 27.09 28.92 29.61
30 ≤ N < 40 27.11 29.57 30.02
40 ≤ N 26.95 29.65 30.23

Table 7: Translation performance on WMT14 En⇒De
with respect to different lengths of target sentences (N ).
“T ” denotes the number of iterations.

4 Related Work

Pre-training Models Unsupervised representa-
tion learning (Peters et al., 2018; Devlin et al., 2019;
Liu et al., 2019) has achieved remarkable success
in natural language understanding. Peters et al.
(2018) first introduced a general approach for learn-
ing high-quality context-dependent representations,
which encode syntactic and semantic information
efficiently. By using the objective of masked lan-

guage model, Devlin et al. (2019) introduced a new
bidirectional representation model and obtained
state-of-the-art results on various tasks. Most re-
cently, Conneau et al. (2020) extended pre-training
models to one hundred languages by using more
than two terabytes of data. Different from these
studies, we observe that cross-lingual pre-trained
masked language models are endowed with the at-
tribute of non-autoregressive generation inherently.
Hence, we propose to decorate a cross-lingual pre-
training model as non-autoregressive translation.

Non-Autoregressive Neural Machine Transla-
tion Many previous works investigate reducing
the decoding latency by empowering the parallel se-
quence generation capability (Gu et al., 2018; Lee
et al., 2018). Gu et al. (2018) pioneered to propose
a non-autoregressive translation model by model-
ing fertility as latent variables. Although accelerat-
ing the inference process significantly, NAT mod-
els suffer from the serious multi-modality problem,
which results in considerably worse performance
than their autoregressive counterparts. To alleviate
this issue, extensive methods have been investi-
gated in vanilla non-autoregressive training (Kaiser
et al., 2018; Sun et al., 2019; Bao et al., 2021; Du
et al., 2021). Another line of researches (Lee et al.,
2018; Ghazvininejad et al., 2019; Gu et al., 2019;
Ding et al., 2021a, 2022; Huang et al., 2022) em-
ploy an iterative refinement process to maintain
the translation quality. Ghazvininejad et al. (2019)
used a masked language modeling to predict any
subset of target words by conditioning on a partially
masked target translation.

5 Conclusion

We propose to decorate cross-lingual pre-training
models (XLMR) as non-autoregressive machine
translation in a lightweight, effective and flexible
way. Firstly, we bridge pre-training masked lan-
guage models with non-autoregressive generation,
revealing that a pre-trained masked language model
can be directly used to produce sequences in paral-
lel. Moreover, we propose to incorporate distance-
based latent transformation and position-wise add
and scale components into a user-specified layer of
XLMR. Empirical results on a variety of language
pairs demonstrate the effectiveness and universal-
ity of our approach. Further analyses confirm that
the proposed method benefits translations for long
sentences and achieves a better balance between
translation quality and inference speedup.
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Limitations

This work has several limitations which are ex-
pected to explore sufficiently in future work.
Firstly, we only conduct experiments on non-
autoregressive machine translation. Although our
method significantly improves translation perfor-
mance and obtains state-of-the-art results on trans-
lation tasks, we believe that the proposed approach
is generally applicable to other generation tasks
as well, including text summarization (See et al.,
2017) and dialogue generation (Vinyals and Le,
2015). Future explorations on these tasks are
needed to extend the application scope of XLM-D.

At the same time, we hypothesize that a cross-
lingual pre-training model can be seamlessly trans-
formed as a non-autoregressive translation model
and take bilingual machine translation as a testbed
in this work. Actually, a multilingual pre-training
model, such as XLMR (Conneau et al., 2020), can
be employed in the multilingual scenario (Aha-
roni et al., 2019; Freitag and Firat, 2020) and has
great potential for building multilingual/zero-shot
non-autoregressive machine translation (Johnson
et al., 2017; Zhang et al., 2020, 2022). XLM-D
is bilingual and only evaluated on the language
pair involved in training. It is interesting to fur-
ther extend XLM-D to the multilingual scenario
that can benefit from effective cross-lingual trans-
fer and improved serving efficiency. We leave more
explorations on this direction as future work.
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A Appendix

A.1 Implementation Details

We implement our approach with open-source
toolkit - fairseq3 (Ott et al., 2019). For WMT tasks,
all models were trained for 200K updates on 8
NVIDIA Tesla A100 GPUs with a batch size of
128K tokens using Adam optimizer (Kingma and
Ba, 2015). For IWSLT17 Ko-En and IWSLT17
Ar-En tasks, we trained the model for 100K up-
dates on 1 GPU with a batch size of 8K tokens.
Following previous studies (Gu et al., 2018; Lee
et al., 2018), we evaluate the speed-up by averag-
ing the decoding latency for each sentence on the
WMT14 En-De test set with batch size 1 on a single
NVIDIA Tesla A100 GPU for Transformer-base
and our model.

A.2 Computation of Inference Speed

To compute the inference speed, we run our own
baselines and perform 5 runs to reduce the potential
noise for timing. Specifically, we run our model
and Transformer-base model on a single GPU with
the WMT14 En⇒De test set and evaluate the speed
up by comparing the translation latency. The details
are shown in Table 8.

Model Iter. Latency Speed

Transformer N 320.91ms 1.0×
XLM-D (M=0) 1 16.48ms 19.5×
XLM-D (M=6) 1 16.41ms 19.6×
XLM-D with LT only 1 16.15ms 19.9×

Table 8: Translation latency and inference speed on the
WMT14 En⇒De task.

A.3 More Analyses

Effects of Different Decoding Strategies The
block-wise mask policy is to ensure that for ev-
ery decoding iteration, the tokens in each sen-
tence block have the chance to be selected and
predicted, and thereby improves the translation per-
formance. As shown in Table 9, we systemati-
cally compare different decoding strategies on both
WMT14 En⇒De and De⇒En translation tasks. As
seen, the dynamic strategy performs better than the
static one across all number of iterations and tasks.
Therefore, we use the strategy of dynamic decoding
throughout our experiments.

3https://github.com/pytorch/fairseq

Model Iter. En⇒De De⇒En
Static Dynamic Static Dynamic

XLM-D
(M=0)

2 28.57 28.69 31.88 32.08
4 29.18 29.41 32.58 32.73
8 29.80 29.80 32.88 32.88

XLM-D
(M=6)

2 28.51 28.91 32.04 32.59
4 29.25 29.37 32.85 32.99
8 29.59 29.59 33.28 33.28

Table 9: Effects of different decoding strategies on
WMT14 En-De. “Static” denotes that the block size
is fixed as 8, while “Dynamic” indicates that it is equal
to the number of iterations in iterative decoding.

Comparison with Pre-training Models Guo
et al. (2020b) propose to incorporate BERT into
parallel sequence decoding with adapters. Dif-
ferent from their work, our study builds the con-
nection between the pre-training MLM and non-
autoregressive generation. Furthermore, we pro-
pose a lightweight, effective and user-configurable
approach to decorating XLMR as NAT models,
achieving both inference speed-up and huge per-
formance gain. We compare the translation quality
and inference speed for both approaches, which
are shown in Table 10. The results show that com-
pared with AB-Net, our approach achieves more
improvements (29.59 vs. 28.69) while remaining a
faster inference speed (4.1× vs. 2.4×). This again
demonstrates the superiority of our method.

Model Iter. Speed BLEU

Transformer N 1.0× 27.74

AB-Net-Enc 10 4.7× 28.08
AB-Net 10 2.4× 28.69

XLM-D (M=6)
2 12.5× 28.91
4 7.6× 29.37
8 4.1× 29.59

Table 10: Evaluation of translation quality with pre-
training models on WMT14 En⇒De.

Case Study We carried out a case study to il-
lustrate the performance of our method and base-
line approach. Table 11 shows a translation ex-
ample randomly selected from the test set in the
WMT14 De⇒En task. As seen, XLM-D can pro-
duce more adequate and fluent translations. For in-
stance, the German words “befinden sich in einem
Dauer-Kampf” are mistranslated by baseline, while
the XLM-D model accurately translates it into “en-
gaged in an ongoing fight”. Besides, the baseline
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Source Sowohl die US-Behörden als auch die mexikanischen Sicherheitskräfte befinden sich in
einem Dauer-Kampf gegen die Drogenkartelle.

Target Both the US authorities and the Mexican security forces are engaged in an ongoing battle
against the drug cartels.

Baseline Both the US authorities and Mexico’s forces are in a long-term fight against the drug
cartels.

XLM-D Both the US authorities and the Mexican security forces are engaged in an ongoing fight
against drug cartels.

Table 11: An example from the WMT14 De⇒En task. Phrases formatted as bold (or underline) indicate the
problem of incomplete translations (or under translations) in the baseline but fixed by XLM-D.

tends to generate incomplete words (e.g., “Mexico’s
forces”), while our model corrects this issue. This
demonstrates that our model improves the fluency
and adequacy of translations in terms of words,
phrases and patterns.
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