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Abstract

Humans can reason compositionally whilst
grounding language utterances to the real world.
Recent benchmarks like ReaSCAN (Wu et al.,
2021) use navigation tasks grounded in a grid
world to assess whether neural models exhibit
similar capabilities. In this work, we present
a simple transformer-based model that outper-
forms specialized architectures on ReaSCAN
and a modified version (Qiu et al., 2021) of
gSCAN (Ruis et al., 2020). On analyzing the
task, we find that identifying the target location
in the grid world is the main challenge for the
models. Furthermore, we show that a particular
split in ReaSCAN, which tests depth generaliza-
tion, is unfair. On an amended version of this
split, we show that transformers can generalize
to deeper input structures. Finally, we design a
simpler grounded compositional generalization
task, RefEx, to investigate how transformers
reason compositionally. We show that a single
self-attention layer with a single head general-
izes to novel combinations of object attributes.
Moreover, we derive a precise mathematical
construction of the transformer’s computations
from the learned network. Overall, we provide
valuable insights about the grounded composi-
tional generalization task and the behaviour of
transformers on it, which would be useful for
researchers working in this area.

1 Introduction

Natural Languages are believed to be composi-
tional (Partee et al., 1984), i.e., the meaning of
an expression is determined by the meaning of
its constituents and how they are combined. The
field of compositional generalization seeks to un-
derstand whether neural models used for language
processing exhibit compositional behaviour. In re-
cent years, the field has received increased attention
resulting in the development of many new bench-
marks (Lake and Baroni, 2018; Kim and Linzen,

†Work done at Microsoft Research India.

Command: pull the big
cylinder that is inside of a
small blue box and in the same
column as a small green circle
hesitantly

Action Sequence: turn left,
turn left, walk, stay, walk, stay,
turn left, walk, stay, walk, stay,
pull, stay, pull, stay 

Target

Agent

Figure 1: An example from the ReaSCAN dataset.

2020; Keysers et al., 2020) and approaches (Li
et al., 2019; Lake, 2019; Chen et al., 2020; Liu
et al., 2021) to solve them.

Natural language utterances are also grounded to
the real world. To encourage development of sys-
tems that are both compositional and grounded,
Ruis et al. (2020) created the gSCAN dataset.
Recently, Qiu et al. (2021) proposed the GSRR
dataset1 and Wu et al. (2021) proposed the ReaS-
CAN dataset to address certain limitations in
gSCAN. These tasks consist of navigation com-
mands grounded in a 2D grid world containing
an agent and multiple objects with different visual
attributes. Given a command and grid world, a
model needs to output the sequence of actions for
the agent to execute. Fig. 1 shows an example from
ReaSCAN. The difficulty of the task lies in general-
izing to out-of-distribution splits that are formed by
systematically holding out particular compositions
of object attributes and command structures from
train set. Heinze-Deml and Bouchacourt (2020);
Kuo et al. (2021) developed specialized architec-
tures for gSCAN that are either difficult to adapt to
other problems or require extra supervision.

Contributions. Our goal is to better understand
these grounded compositional generalization tasks
and design generic ML models to solve them. Our
contributions include:

1They proposed new test splits for gSCAN, which we call
Grounded Spatial Relation Reasoning (GSRR).
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Simple:

Walk to the small red square.

1-relative-clause:

Pull the blue circle that is in the same row as the small
green square.

2-relative-clause:

Push the small blue cylinder that is in the same column
as the big green circle and the red square.

Table 1: Different types of ReaSCAN commands.

(i) We propose the Grounded Compositional
Transformer (GroCoT), which was created by mak-
ing simple and well-motivated modifications to a
multi-modal transformer model (Qiu et al., 2021).
GroCoT achieves state-of-the-art performances on
both, GSRR and ReaSCAN.2 Our results clearly
show that simple transformer-based models gener-
alize well on these tasks.

(ii) We design a series of experiments to under-
stand the underlying challenges in these tasks. We
show that identifying the target location, rather
than sequence generation, is the main difficulty.
We also demonstrate that the split, testing depth
generalization in ReaSCAN is unfair in that the
training data does not provide the models with
sufficient information to correctly choose among
competing hypotheses. On experimenting with a
modified training distribution, we show that simple
transformer-based models can successfully gener-
alize to commands with greater depths.

(iii) We examine why transformers are so suc-
cessful at generalizing compositionally on these
tasks. To this end, we introduce a new task called
RefEx (‘Referring Expressions’), which provides
a simpler setting isolating some of the main fea-
tures of ReaSCAN. We find that a 1-layer, 1-head
attention-only transformer is capable of grounding
and generalizing to novel compositions of multiple
visual attributes; moreover, it admits a complete
interpretation of the computations. RefEx also al-
lows easier probing and leads us to identify and
solve an overfitting issue with transformers on a
particular ReaSCAN split.

2 Background

We focus on the gSCAN (Ruis et al., 2020), GSRR
(Qiu et al., 2021) and ReaSCAN (Wu et al., 2021)

2We make our source code and data available at:
https://github.com/ankursikarwar/Grounded-Compositional-
Generalization.

SPLIT HELD-OUT EXAMPLES

A1 yellow squares referred with color and shape
A2 red squares as target
A3 small cylinders referred with size and shape
B1 small red circle and big blue square co-occur
B2 same size as and inside of relations co-occur
C1 additional conjunction clause added to

2-relative-clause commands
C2 2-relative-clause command with that is

instead of and

Table 2: Compositional splits in ReaSCAN.

datasets. A model, provided with a natural lan-
guage command, is tasked with generating a se-
quence of actions to navigate an agent in a 2D grid
world populated with objects. Below, we shall ex-
plain the setting of the ReaSCAN task in detail.
More information about other datasets is provided
in Appendix C.

Each example consists of a d × d grid world
(d = 6), a natural language command and the cor-
responding output sequence. Each cell in the grid
world is described by a c-dimensional vector that
concatenates one-hot encodings for the three object
attributes, color C = {red, green, blue, yellow},
shape S = {circle, square, cylinder, box}, and size
D = {1, 2, 3, 4} along with information about
agent orientation O = {left, right, up, down}
and agent presence B = {yes/no}. Hence,
the entire grid world is represented as a tensor
W ∈ Rd×d×c. The natural language command
x := (x1, x2, . . . , xn) is generated using a context-
free grammar (CFG), which is described in Ap-
pendix C.1. ReaSCAN has three types of in-
put commands which we illustrate in Table 1.
The output sequence y := (y1, y2, . . . , ym) is
made up of a finite set of action tokens A =
{walk, push, pull, stay, turn left, turn right}.

The main challenge of the task is generalizing
on the specially designed test splits that consist of
various types of examples systematically held-out
from the train set as shown in Table 2 (more details
in Appendix C.1).

The results of various previously proposed meth-
ods are shown in Table 3 for GSRR, Table 4
for ReaSCAN, and Table 12 for gSCAN. Qiu
et al. (2021) outperformed all previous methods
(Gao et al., 2020; Kuo et al., 2021; Heinze-Deml
and Bouchacourt, 2020) on gSCAN and GSRR.
Hence, for ReaSCAN, we don’t re-implement those
methods as baselines; rather, we compare directly
against Qiu et al. (2021).
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MODEL RANDOM (I) COMP. AVERAGE II III IV V VI

Multimodal LSTM (Wu et al., 2021) 86.5 58.9 40.1 86.1 5.5 81.4 81.8
Multimodal Transformer (Qiu et al., 2021) 94.7 63.5 64.4 94.9 49.6 59.3 49.5
GroCoT (ours) 99.9 98.8 98.6 99.9 99.7 99.5 96.5

Table 3: Performance of GroCoT on GSRR (Qiu et al., 2021) in comparison to baselines and previous approaches.

MODEL AVERAGE A1 A2 A3 B1 B2 C1 C2

Multimodal LSTM (Wu et al., 2021) 40.4 50.4 14.7 50.9 52.2 39.4 49.7 25.7
GCN-LSTM (Gao et al., 2020) 60.5 92.3 42.1 87.5 69.7 52.8 57.0 22.1
Multimodal Transformer (Qiu et al., 2021) 69.9 96.7 58.9 93.3 79.8 59.3 75.9 25.5
GroCoT w/ vanilla self-attention 80.8 99.2 88.1 98.7 94.6 86.4 75.3 23.4
GroCoT (ours) 82.2 99.6 93.1 98.9 93.9 86.0 76.3 27.3

Table 4: Performance of GroCoT on ReaSCAN (Wu et al., 2021) in comparison to baselines and previous
approaches.

3 Our Approach

We start with the multimodal transformer model
as used in Qiu et al. (2021). This model, hereafter
called the base model, follows encoder-decoder
structure Vaswani et al. (2017) and uses cross-
modal attention in the encoder.

Encoder maps world state W ∈ Rd×d×c to vi-
sual representation Hv through multi-scale CNNs
followed by linear layers. The command tokens
x := (x1, x2, . . . , xn) are encoded into embed-
dings Hl = {hl

1,h
l
2, . . . ,h

l
n}. These are passed

through N transformer blocks, each consisting of
two parallel multi-head attention blocks (one for
vision and one for language modality), with repre-
sentation of one modality passed as key and value
to the attention block of the other modality.

Decoder consists of N stacked blocks similar to
the decoder in Vaswani et al. (2017). Each block
contains one self-attention block and one multi-
head attention block over the contextual represen-
tation Hc = [Hl ;Hv ] of the encoder.

Below, we describe the modifications we make
to this base architecture to create GroCoT. Imple-
mentation details are provided in Appendix B.

Improving Spatial Representation. For this
task, models need to perform spatial reasoning be-
tween objects that may possibly be very far from
each other in the grid world. The base model (Qiu
et al., 2021) employed a multi-scale CNN to en-
code the world state W before feeding it to the
transformer. However, CNNs, without the pres-
ence of large filters (i.e., large receptive fields),
are inept at understanding the spatial relationships
between parts of the image that are not in imme-
diate vicinity. To address this limitation, instead

of passing the world state tensor W through a
multi-scale CNN, we propose tokenizing the grid
cells and projecting them to a higher dimension
Wv = {wv

1,w
v
2, . . . ,w

v
d×d},wv

i ∈ Rdmodel . In
line with Lu et al. (2019), we separately encode
the spatial information of grid cells in a 2D vector,
where the first dimension holds the row value and
the second one holds the column value. We project
these spatial encodings to a higher dimension
Sv = {sv1, sv2, . . . , svd×d}, svi ∈ Rdmodel and add
them to their corresponding grid cell representa-
tions to obtain the final grid cell embedding input to
the transformer Hv = {hv

1,h
v
2, . . . ,h

v
d×d},hv

i =

wv
i + svi ∈ Rdmodel .
Interleaving Self-Attention. The base model

uses cross-modal attention in all encoder layers.
While this facilitates grounding of semantic in-
formation across both modalities, we believe this
method to be inefficient. We know that differ-
ent layers in both vision transformers and lan-
guage transformers encode different levels of se-
mantic knowledge (Dosovitskiy et al., 2021; Raghu
et al., 2021; Jawahar et al., 2019). To allow effi-
cient grounding, we want both visual and language
modality streams to develop their own representa-
tions before synchronizing them with each other
via cross-modal attention. Hence, we propose inter-
leaving self-attention layers between co-attention
layers to allow intra-modal interaction within each
stream before cross-modal interaction.

Modified World State Encoding. In ReaSCAN,
for particular examples where another object is
present in the top left corner of a box object, the
grid cell embedding corresponding to that corner
is calculated by adding up the vector encodings
corresponding to the object and the box (Wu et al.,
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ISR ISA EM AVERAGE A1 A2 A3 B1 B2 C1 C2

✗ ✗ ✗ 69.9 96.7 58.9 93.3 79.8 59.3 75.9 25.5
✓ ✗ ✗ 70.7 96.4 75.2 93.8 78.2 57.9 71.7 21.9
✗ ✓ ✗ 77.7 99.1 87.6 98.4 89.2 67.7 79.3 22.3
✗ ✗ ✓ 73.6 97.4 70.7 94.3 83.2 66.4 76.7 26.3
✓ ✓ ✗ 79.0 99.0 90.9 98.2 88.3 72.7 77.0 26.9
✗ ✓ ✓ 77.8 98.5 79.6 97.8 90.8 78.9 78.6 20.8
✓ ✗ ✓ 73.9 97.7 76.7 96.0 82.1 64.8 75.1 25.1
✓ ✓ ✓ 82.2 99.6 93.1 98.9 93.9 86.0 76.3 27.3

Table 5: Ablation study for GroCoT on ReaSCAN (Wu et al., 2021). The results show that all our modifications are
necessary to achieve best performance. ISR, ISA, and EM stand for Improved Spatial Representation, Interleaving
Self-Attention, and Embedding Modification, respectively.

0 Size 1
0 Size 2
1 Size 3
0 Size 4
1 Circle
0 Cylinder
0 Square
1 Box
1 Red
0 Blue
0 Green
0 Yellow
0 Size 1
1 Size 2
0 Size 3
0 Size 4
0 Red
1 Blue
0 Green
0 Yellow
0 Agent
0 East
0 South
0 West
0 North

Size

Agent
Info

Shape

Color

Box
Size

Box
Color

0 Size 1
1 Size 2
1 Size 3
0 Size 4
1 Circle
0 Cylinder
0 Square
1 Box
1 Red
1 Blue
0 Green
0 Yellow
0 Agent
0 East
0 South
0 West
0 North

Size

Agent
Info

Shape

Color

Figure 2: Modified Grid Cell Encoding

2021). However, this design is inherently flawed
because the attributes of the two objects cannot
be disambiguated from the sum of their individual
encodings. This issue causes models to fail in such
examples. To handle such cases, we propose using
a higher dimensional grid cell embedding (see Fig.
2) to represent color and size properties of the box
separately from other objects.

Discussion. The results are provided in Table 3
for GSRR and Table 4 for ReaSCAN. We also pro-
vide exhaustive ablations of our approach on ReaS-
CAN in Table 5. On both datasets, GroCoT outper-
forms all specialized architectures. From the abla-
tion study on ReaSCAN, we observe that both, im-
proved spatial representation and interleaved self-
attention, lead to significant improvements. The
modified embedding structure additionally helps
when examples contain box objects (see improve-
ment in ReaSCAN B2 split). Our model also sat-
urates performance on most splits in gSCAN (see
Table 12). We also evaluated the effect of using
vanilla self-attention (as used in the original Trans-
former (Vaswani et al., 2017)) in GroCoT3 on ReaS-
CAN and found that it achieves surprisingly high

3Note that our other proposed modifications (improved
spatial representation and embedding modification) are still
being applied.

accuracies (see Table 4). Our hypothesis is that
vanilla self-attention facilitates individual process-
ing of both modalities similar to our interleaving
self-attention approach, and hence it does not hurt
the model performance significantly.

Overall, our results show that a simple
transformer-based model is capable of generaliz-
ing compositionally on most of the challenges pro-
posed by gSCAN, GSRR and ReaSCAN. Instead of
presenting GroCoT as a broadly applicable method
solving compositional generalization, we only wish
to establish that such simple transformer-based
models can exhibit strong compositional general-
ization capabilities and serve as powerful baselines.

4 Analyzing the Grounded Compositional
Generalization Tasks

4.1 Target Identification vs Navigation: What
is the Challenge?

In order to solve these tasks, a model needs to per-
form two subtasks: (1) identify the target location
by composing the words and reasoning about the
relative clauses, and (2) navigate the agent in the
grid world by generating the right set of output to-
kens. To understand why models fail and how to
improve them, we need to pinpoint where the main
difficulty in the task lies. Below we describe a set
of experiments that demonstrate that target identi-
fication is the main challenge in ReaSCAN rather
than navigation or sequence generation.4 We show
this for the gSCAN dataset in Appendix E.1.3.

Target Identification from Encoder Represen-
tations. We train a linear layer on top of the last
layer of learned encoder representations of the best-
performing model to perform target identification.5

4Studies with similar objectives have also been carried
out by past work. We explain their limitations and compare
against them in Appendix E.1.1.

5We also experimented with predicting the target location
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AVERAGE A1 A2 A3 B1 B2 C1 C2

Target Identification accuracy 78.5 96.4 85.7 95.4 90.4 83.5 70.2 27.7
Error overlap with ReaSCAN model 88.3 89.5 87.9 83.5 87.4 86.7 88.5 94.7

ReaSCAN accuracy w/ gold target locations 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Table 6: Experimental results for GroCoT to understand the performance bottleneck in ReaSCAN.

ISR ISA EM AVERAGE A1 A2 A3 B1 B2 C1 C2

✗ ✗ ✗ 69.8 94.3 59.4 91.0 79.9 64.3 74.4 25.1
✓ ✗ ✗ 71.9 95.4 87.0 94.1 75.7 56.0 71.6 23.5
✗ ✓ ✗ 77.7 96.0 84.3 95.5 90.5 73.4 78.2 25.7
✗ ✗ ✓ 77.0 95.5 76.3 93.4 87.8 81.2 75.8 29.1
✓ ✓ ✗ 74.6 95.6 85.4 95.1 84.7 69.8 71.4 20.0
✗ ✓ ✓ 81.1 96.5 89.5 96.5 91.9 88.1 80.7 24.3
✓ ✗ ✓ 72.7 95.7 71.7 93.7 82.0 73.2 71.4 21.2
✓ ✓ ✓ 78.5 96.4 85.7 95.4 90.4 83.5 70.2 27.7

Table 7: Target Identification accuracy for different ablations on GroCoT when tested on ReaSCAN (Wu et al.,
2021). ISR, ISA, and EM stand for Improved Spatial Representation, Interleaving Self-Attention, and Embedding
Modification, respectively.

We model the task as a 36-way classification prob-
lem, where each grid location is treated as a distinct
class. We train the model over all ReaSCAN ex-
amples with the ground truth target locations. Note
that we only update the weights of the linear layer;
the parameters of the encoder are kept frozen. We
then test this model’s target identification abilities
over the systematic generalization splits.

The first row of Table 6 shows the performance
of the model on target identification. We see the
same trend in performance across all splits as we
saw for the full model on ReaSCAN (see Table 4).
This indicates that target identification might be the
main difficulty for the model. To illustrate more
concretely, we calculate the overlap of errors be-
tween the target identification model and the ReaS-
CAN model. As can be seen from the second row
in Table 6, for each split, out of all the examples
where the ReaSCAN model failed, the percentage
of examples where the target identification model
also failed is extremely high.

We also provide exhaustive ablations for this ex-
periment in Table 7. Our proposed modifications do
indeed enable better target identification. However,
there might be other minor aspects of the problem
that are tackled by our modifications (model with
ISR performs better overall on ReaSCAN but is
not the best on target identification). Also note
that these experiments are performed without the
decoder, which is essential in solving ReaSCAN.

from earlier encoder representations and random vectors to
serve as baselines. These results are provided in Figure 10.

Sequence Generation from Gold Target Loca-
tions. We provide the model with gold target loca-
tions when training it on the ReaSCAN training set.
We enumerate all the 36 grid cell locations and sim-
ply append gridnum to the end of the natural lan-
guage command where gridnum ∈ {1, 2, ..., 36},
depending on the ground-truth target location for
a particular example. The results are provided in
the last row of Table 6. Clearly, the model is able
to generalize almost perfectly when provided with
the ground-truth target locations. This shows that if
the target is identified, the model has no difficulty
in navigating the agent towards it.

In this section, with comprehensive empirical
evidence, we showed that models are highly compe-
tent at agent navigation and that the chief difficulty
lies in identifying the target location.

4.2 Issues in ReaSCAN Test Set Design

Compositional generalization setups are used to
assess specific capabilities of models. However,
if the train-test splits within these setups are not
carefully created, then the experimental results may
lead to false conclusions (Patel et al., 2022). In this
section, we show that the C2 test set of ReaSCAN
is unfair because of lack of necessary information
in the train set. We then propose a correction in the
train-test setup that allows us to fairly evaluate the
depth generalization capabilities of models.

C2 Test Set is Unfair. The train set of ReaS-
CAN consists of commands with different struc-
tures as shown in Table 1. The C2 test set is
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made up of commands with the other type of
2-relative-clause structure (e.g., “walk to the
red square that is in the same row as the blue cylin-
der that is in the same column as a green circle”).
This split tests whether a model is able to perform
recursion to higher depths. It is clear that the only
difference between the 2-relative-clause com-
mands in the train set and the C2 test set is that the
‘and’ connecting the last two clauses is replaced
with ‘that is’. Hence it is crucial for the model to
understand the difference between these terms to
successfully generalize on the C2 test set. How-
ever, based on the train set, they both perform the
same role: they act as a connector between two
clauses in the command where the target needs
to be identified based on the attributes in the first
clause after satisfying the constraint of the follow-
ing clause. We explain this more intuitively in
Appendix E.2.1. To illustrate this empirically, we
show that the average consistency between model
predictions before and after replacing all ‘and’ with
‘that is’ in ReaSCAN test sets is 93.5.6 Hence, the
train set of ReaSCAN is insufficient for the model to
disambiguate between ‘and’ and ‘that is’, thereby
rendering the C2 generalization task unfair.

Model Learns a Reasonable Alternate Hy-
pothesis for C2. We hypothesize that for the
commands in the C2 split, the model treats the
second ‘that is’ as if it were ‘and’, similar to the
2-relative-clause commands it has seen in the
train set. We consider this model behavior to be
reasonable, since this hypothesis is consistent with
the train set. To verify this empirically, we create a
new set of examples, called C2-alt, by replacing
the second ‘that is’ with an ‘and’ in all examples
in the C2 test set. The model’s predictions for C2
matched those for C2-alt 93% of the time7, clearly
validating our hypothesis.

Transformers Generalize to Higher Depths
of Relative Clauses. Since we showed that the
C2 test set is unfair, we designed a new, fairer test
split to check generalization capability of models to
higher depths. We include commands up to depth 2
(i.e., the type of commands in the C2 test set) in the
train set and test on commands of depth 3. We call
this new test set as C2-deeper.8 By including com-
mands up to depth 2, we alleviate the issue of the

6Detailed results can be found in Table 14.
7Note that the model prediction for C2-alt matches the

corresponding ground-truth for C2-alt 99% of the time, show-
ing that the model correctly handles those type of commands.

8Details of this setup are provided in Appendix E.2.2.

Expression: blue circle

Target (Row, Col): [0, 1]

Expression: small blue square

Target (Row, Col): [3, 1]

Target

Target

Expression: green square object
same size red cylinder object

Target (Row, Col): [3, 2]

Target

Two-Attr Three-Attr Three-Attr-Rel

Figure 3: Examples from our RefEx dataset.

model not being able to disambiguate between ‘that
is’ and ‘and’. Our best model achieved 85.6% accu-
racy on C2-deeper. This is very surprising (since
transformers have been known to struggle at depth
recursion (Kim and Linzen, 2020)) and clearly
shows that the multimodal transformer model is
capable of generalizing systematically to higher
depths in this setting. This also re-affirms our claim
that the original C2 test set was unfair.

5 RefEx: Understanding How
Transformers Ground and Compose

We wish to understand how transformers succeed
on grounded compositional generalization tasks.
However, the complexity of both, the ReaSCAN
task, and the multi-modal transformer, makes it
difficult to interpret the model. Hence, we design a
new task, RefEx, based on the target identification
subtask of ReaSCAN.9 In the following sections,
we show that even a one-layer, one-head attention-
only model can successfully ground and compose
multiple object attributes in RefEx. We then give
a precise construction of the model, which demon-
strates the detailed computations corresponding to
grounding and composition.

5.1 Task Setup and Test Splits

Given a command that refers to a unique target
object in the accompanying grid world, a model
needs to identify the target location. Compared to
ReaSCAN, etc., we get rid of subtasks like path
planning and action sequence generation, and focus
only on target identification.

We design three variants of the RefEx task with
different command structures varying in difficulty:
(i) two-attr:=$COL $SHP. Model needs to ground
and compose color and shape attributes.
(ii) three-attr:=$SIZ $COL $SHP. Model needs

9We discuss how RefEx differs from similar synthetic
benchmarks in Appendix F.1.
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SPLIT HELD-OUT EXAMPLES

A1 green squares as targets
A2 red circle as targets or distractors

A310 green circles of size 2, referred with “small”
A410 command is “small blue cylinder”

Table 8: Held-out examples in RefEx’s compositional
splits. Detailed descriptions are provided in Appendix
F.2.1.

VARIANT LAYERS R A111 A2 A3 A4

two-attr 1 100 100 100 - -

three-attr 1 100 100 100 100 100

three-attr-rel
1 78.8 31.9 33.5 - -
2 99.7 99.4 98.8 - -

Table 9: Performance of attention-only transformer
(with single attention head in each layer) on the RefEx
task. R stands for random.

to additionally handle the size attribute, which re-
quires relative reasoning.
(iii) three-attr-rel:=$OBJ $REL $OBJ. Model
effectively needs to perform two three-attr sub-
tasks sequentially based on the relation between
the referent and target objects.
Here, $COL ∈ {red, green, blue}, $SHP ∈
{square, circle, cylinder}, $SIZ ∈ {small, big},
$OBJ:= $SIZ? $COL? $SHP?, and $REL ∈
{same size, same color, same shape}. Figure 3
shows examples from all three variants. Addition-
ally, we create four compositional generalization
test splits as described in Table 8.

5.2 Model
We consider attention-only transformers (with
residual connections) with two layers or less. We
use natural sparse embedding matrices (see Fig.
14, 15, 16) to represent the command and world
state. The input sequence length n = 2 + 36 for
two-attr where 2 and 36 correspond to the num-
ber of command and grid world tokens, respec-
tively. The output representations corresponding to
the grid world tokens are mapped to logits by taking
element-wise sum followed by softmax for 36-way
classification (each class represents a unique grid
location). See Appendix F.2 for more details.

5.3 Results and Discussion
The performance of the model described above on
the RefEx task is shown in Table 9.

10Only for the three-attr variant.
11Result on modified training distribution. See Section F.3.

Efficacy of Self-attention Layers. For two-attr,
we found it surprising to see that a one-layer, one-
head attention-only transformer can successfully
ground and compose the attributes for correct target
identification. Moreover, the model generalizes to
novel compositions of the attributes as can be seen
from its performance on the compositional splits.

In three-attr, which is more difficult than
two-attr, surprisingly, a one-layer, one-head
model can ground and compose three different at-
tributes, including size, which requires complex
relative reasoning. Finally, in three-attr-rel,
we find that at least two layers are required to solve
the task. This makes intuitive sense: each layer
will solve one three-attr subtask to identify the
referent or target object.
From RefEx to ReaSCAN. Inspired by these re-
sults, we evaluate attention-only transformers on
ReaSCAN target identification. Examples in ReaS-
CAN can contain up to three referring expression
subtasks. Therefore, based on our intuition above,
the model’s performance should saturate after 3
layers. We show these results in Fig. 12. More-
over, since the design of splits in RefEx is similar
to that of ReaSCAN, we were able to derive useful
insights from models trained on RefEx in order to
improve the performance on ReaSCAN A2 split.
See Appendix F.3 for details.

5.3.1 Interpreting how Transformers Ground
and Compose

We completely describe how an attention-
only transformer with one attention layer and
one head solves two-attr (three-attr and
three-attr-rel are similar but more complex).
Let’s first recall how the one-layer, one-head model
works. We denote the input token embeddings
by x1, . . . ,xn and the final output embeddings by
r1, . . . , rn. Let WQ,WK ,WV be the parameter
matrices for queries, keys, and values; we can then
define the query, key and value vectors for i ∈ [n]
by qi = WQxi, ki = WKxi, and vi = WV xi.
For each i ∈ [n] we compute the output of atten-
tion block as r̃i = Wo

∑n
j=1 αi,jvj , where the

attention scores are given by (αi,1, . . . , αi,n) =
softmax(⟨qi,k1⟩, . . . , ⟨qi,kn⟩). The residual
connection then gives ri = r̃i + xi. As described
in Section 5.2, in our model, the final grid cell con-
taining the target is chosen by applying softmax
to the logits corresponding to 36 grid world to-
kens, Ln−36, . . . , Ln. Let 1 be the all-ones vector;
for two-attr, we have ⟨1,xi⟩ = 2 when i corre-
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sponds to grid world tokens (see embedding matrix
in Figure 14). Now, we show the computation of
logit Li where i corresponds to grid world tokens.

Li = ⟨1, ri⟩ = ⟨1,xi⟩+ ⟨1, r̃i⟩

= 2 + ⟨1,Wo

n∑

j=1

αi,jvj⟩

= 2 +

n∑

j=1

αi,j⟨1,Wovj⟩

= 2 +

n∑

j=1

αi,jsj

We now qualitatively illustrate on a specific ex-
ample of two-attr and show how the learned
parameters (MLearned in Figure 4)) lead to the
correct target prediction. Note that the matrix
M ∈ Rnvocab×nvocab here contains the dot prod-
uct of query and key vectors of all possible pairs
of tokens in the vocabulary. The rows in M corre-
spond to queries while the columns correspond to
keys. Let the command tokens be ⟨red⟩, ⟨cylinder⟩.
We now show that the logit for ⟨red cylinder⟩ is
the maximum among all possible values for grid
tokens. In the learned model, we observe that when
i and j correspond to grid world tokens either αi,j

or sj is very small :

Li ≈ 2 +
∑

j∈C
αi,jsj ,

where C is the set of indices of command tokens
in our example, i.e., C = {1, 2}. When there is a
match in an attribute in the grid world token i (say
⟨red circle⟩) and a command token j (say, ⟨red⟩),
then the corresponding summand in the above sum,
i.e. αi,jsj is large, and when there is no match
(e.g., when the command token j is changed to
green) then it is small. Therefore, in our example,
the logit computation for the token ⟨red cylinder⟩
has two large summands and corresponds to a full
match, whereas for tokens like ⟨blue cylinder⟩ and
⟨red circle⟩, there is only one large summand. This
corresponds to partial match. Finally, for a token
like ⟨green square⟩, there is no match i.e. none of
the summand, in this case, is large. While the above
argument is qualitative, by looking at the entries
of MLearned it can be made quantitative; MLearned

led us to construct MConstruct (Fig. 4(b)) which
makes the computations transparent while stay-
ing faithful to the learned model. Looking along
the columns of the matrix corresponding to tokens
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(b) Our Construction

Figure 4: (a) Portion of matrix MLearned for the
attention-only transformer trained on the two-attr vari-
ant and (b) Portion from MConstruct matrix (right side).
Darker grid cells correspond to higher values in the ma-
trix. Refer to Figure 17 and 18 for full matrices.

⟨red⟩ and ⟨cylinder⟩, we can see that the row corre-
sponding to ⟨red cylinder⟩ grid world token has two
“dark” cells (full match), while rows corresponding
to ⟨blue cylinder⟩, ⟨red circle⟩ and ⟨green square⟩
have at most one “dark” cell (i.e. partial match
or no match). Thus the grid cell corresponding
to ⟨red cylinder⟩ will be the model’s output. Full
match here corresponds to the idea that both visual
attributes ⟨red⟩ and ⟨cylinder⟩ mentioned in the
command, were successfully grounded to the grid
world token ⟨red cylinder⟩, and the composition of
these two successful groundings contributed to two
large summands in the final logit computation.

Finally, empirically our constructions attain per-
fect accuracies across all splits. The matrices of
our construction for three-attr are in Figure 20
and 22.

6 Related Works

Compositional Generalization. Modern deep
learning models perform extremely well on in-
distribution test sets. However, unlike humans,
they fail at generalizing compositionally (Lake
and Baroni, 2018; Kim and Linzen, 2020; Keysers
et al., 2020). Recent works have investigated the
compositional generalization abilities of models in
grounded setups using datasets such as CLEVR
(Johnson et al., 2017), CLOSURE (de Vries et al.,
2019), and gSCAN (Ruis et al., 2020). In this work,
we focus on the task setup of gSCAN, and addi-
tionally work with GSRR (Qiu et al., 2021) and
ReaSCAN (Wu et al., 2021). Both these works
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propose new challenging splits for gSCAN. Prior
works have proposed many different specialized
methods for solving gSCAN (Gao et al., 2020;
Kuo et al., 2021; Heinze-Deml and Bouchacourt,
2020). Similar to Csordás et al. (2021); Patel et al.
(2022), in this work, we show that even simple
transformer-based models, with minor modifica-
tions to the architecture or training data distribu-
tion, perform well on the task and serve as strong
baselines for future work.

Probing and Interpreting Models. In this work,
we used a linear probe (Belinkov, 2022) to ana-
lyze the target identification abilities of models.
Similar to our work, Weiss et al. (2021); Elhage
et al. (2021); Kobayashi et al. (2020) and many
others also attempt to explain the inner workings
of transformers, possibly for non-synthetic prob-
lems. Unlike most of these works, however, our
construction essentially completely describes the
computations of the learned models. To the best of
our knowledge, we are the first to study how self-
attention facilitates compositional generalization in
grounded environments.

7 Conclusion and Future Work

Recent benchmarks like gSCAN and ReaSCAN
test grounded compositional generalization abili-
ties of ML models. In this work, we identify key
modifications in multimodal transformers that im-
prove compositional generalization on these bench-
marks. With a battery of probing experiments, we
found that identifying the target location is the
main challenge for the models. Additionally, we
showed that a particular test set in ReaSCAN is
unfair and proposed a modified train-test split in its
stead. Finally, we designed a new task, RefEx, to
study grounding and composition in attention-only
transformers. We showed the efficacy of single
self-attention layer with single head in successfully
grounding and composing multiple visual attributes
in a grid world environment. From the learned
models, we derived an explicit and interpretable
construction that captures the model’s behavior and
completely describes the detailed computations cor-
responding to grounding and composition.

While our focus has been on tabula rasa models,
it is also of interest to see if pretraining on large
datasets enables good performance on the consid-
ered benchmarks. Our preliminary investigations
on GPT-3 and Codex (Appendix D) suggest that
these text-based models have some way to go; more

thorough investigation is left for the future.
We expect future work to address the current

limitations of models on action sequence side com-
positional generalization, i.e., generalizing to novel
combinations of action tokens. Moreover, our re-
sults indicate that designing compositional general-
ization splits can be surprisingly subtle and require
careful scrutiny. Finally, grounded compositional
generalization benchmarks should also target more
realistic setups with natural images in the future.

8 Limitations

Our proposed approach fails on some gSCAN
splits, specifically D, G, and H. These splits are
designed to test output sequence-side systematic
generalization capabilities of the model. In the fu-
ture, we intend to extend our model by making
architectural changes on the decoder side in order
to tackle these splits.

On ReaSCAN, our approach achieves 86.1% on
the B2 split and 76.3% on the C1 split, which is
relatively less compared to the performance on
other splits, suggesting room for further improve-
ment. We expect that the C1 split also has similar
issues like the C2 split (see section 4.2), although
we haven’t yet succeeded at concretely identifying
these issues.

In line with previous models, our model also
uses grid cell encodings which are very simple
and explicitly represent different attributes of the
world objects. However, natural images are high-
dimensional and contain entangled representations
of object attributes. Ideally, we would like to eval-
uate the compositional generalization abilities of
models in a real-world setting using natural images
since that has direct applications.

Our constructions for attention-only transform-
ers in Section 5 are given only for the RefEx task
which is a relatively simpler task than ReaSCAN.
We plan to give similar constructions for more com-
plex tasks than RefEx in the future.
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A Model Architecture

The model architecture of our proposed approach
GroCoT is shown in Figure 5.

B Implementation Details

We use PyTorch (Paszke et al., 2019) for all our
implementations. All our models were trained from
scratch, and the parameters were updated using
Adam optimizer. We designed a compositional
validation set by taking few examples from each
compositional splits of the respective dataset. The
best model is selected based on the accuracy on
this compositional validation set. Hyperparameter
tuning was done using grid search. We show the
best hyperparameters for our models corresponding
to different datasets in Table 10. Moreover, we
show the average performance of 3 different runs
with random seeds for all the models in the paper.
We used 8 NVIDIA Tesla V100 GPUs each with
32 GB memory for all our experiments.

C Details of Datasets

C.1 ReaSCAN

ReaSCAN consists of around 500K train, 30K vali-
dation, and 6K test examples where each example
is a pair of command and world state. Given these
two as input, models are supposed to output the
correct sequence of action tokens. Apart from the
above splits, ReaSCAN also has 7 systematic gen-
eralization test splits in total. ReaSCAN has three
types of input commands.

• Simple:= $VV $ADV? (equivalent to gSCAN
commands)

• 1-relative-clause:= $VV $OBJ that is
$REL_CLAUSE $ADV?

• 2-relative-clauses:= $VV $OBJ that is
$REL_CLAUSE and $REL_CLAUSE $ADV?

See Table 11 for expansions of non-terminals in
the grammar. Below, we describe the ReaSCAN
test splits in detail:
A1 Novel Color Modifier: For this split, the train
set never contains “yellow square” in the command.
However, commands containing expressions such
as “yellow circle” and “blue square” are present in
the training set. During test time, this split expects
model to zero-shot generalize on the phrase “yellow
square”.

A2 Novel Color Attribute: Here, the examples in
which red squares are targets are held out from the
train set. Commands in the train set also never con-
tain the phrase “red square”. However, the train set
may contain red square objects as distractors in the
background. This particular split tests model per-
formance on novel combination of target object’s
visual attributes.
A3 Novel Size Modifier: In this split, a particular
combination of size and shape attributes is held out
from the train set. Specifically, the model never
sees phrases like “small cylinder” or “small green
cylinder” during training. While testing, the model
needs to generalize to examples where cylinders
of any color are referred using the “small” size
attribute. Additionally, size being a relative concept
in ReaSCAN, adds another level of complexity. For
instance, size “small” can refer to an object of size
2 in a particular example, and in another example
size “small” can instead refer to an object of size 3,
depending on the other objects present in the grid
world.
B1 Novel Co-occurrence of Objects: In this split,
the commands contain those objects which never
co-occur in training (e.g. “small red circle” and
“big blue square”). However, models do encounter
these objects co-occurring with other objects dur-
ing training. In summary, this split tests whether
models can generalize over novel co-occurrence of
objects.
B2 Novel Co-occurrence of Relations: Commands
containing both “same size as” and “inside of” re-
lations are held out from the training data. At
test time, models must generalize to the novel co-
occurrence of these two relations. Importantly,
during training model does encounter commands
where the relation “inside of” co-occurs with other
relations except “same size as”.
C1 Novel Conjunctive Clause Length: This split
contains commands with additional conjunctive
clause i.e. the commands contains 3 relative clauses
(e.g. “push the small red circle that is in the same
column as a big green square and inside of a big
blue box and in the same row as a blue square
hesitantly”). Models trained with up to 2-relative
clauses must generalize to longer commands which
contain 3 relative clauses.
C2 Novel Relative Clauses: In ReaSCAN train
data, commands contain a maximum of 1 recursive
relative clause (e.g. “push the circle that is in the
same column as a yellow square and inside of a
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Interleaved  
Self-Attention

Tokenized Grid Cells

Figure 5: Illustration of the architecture for our proposed GroCoT model.

Hyperparameters ReaSCAN GSRR gSCAN

# Self-attention Layers (Vision) 6 3 3
# Self-attention Layers (Language) 6 3 3
# Co-attention Layers 6 3 3
# Decoder Layers 6 6 6
Embedding Size 128 128 128
Hidden/FFN Size 256 256 256
Attention Heads 8 8 8
Learning Rate [0.00005, 0.00008, 0.0001] [0.00005, 0.00008, 0.0001] [0.00005, 0.00008, 0.0001]
Batch Size [32, 64] [32, 64] [32, 64]
Dropout 0.1 0.1 0.1

# Parameters 4.5M 3M 3M
Epochs 100 100 100
Avg Time (Overall) 64 14 18

Table 10: Different hyperparameters considered for models trained on ReaSCAN, GSRR, and gSCAN. Best
hyperparameters for each model are in bold. (Avg Time shown above is in hours).

big box cautiously”). However, this test split con-
tains commands with 2-recursive relative clauses
i.e. there are two “that is” clauses in the commands
(e.g. “push the blue circle that is in the same col-
umn as a blue cylinder that is in the same row as a
green square hesitantly”).

C.2 gSCAN

gSCAN is very similar to ReaSCAN; both are es-
sentially grounded navigation tasks. The grid world
in gSCAN is the same as that of ReaSCAN, al-
though commands in ReaSCAN are much more
complicated than gSCAN. Commands in ReaS-
CAN contain relative clauses, whereas gSCAN
commands have no relative clauses. For example

command from gSCAN looks like walk to a red
big square. gSCAN contains around 350K train-
ing and 20K test examples for the compositional
splits. Below, we briefly describe the individual
compositional test splits in gSCAN:
A Random: This test split contains random exam-
ples and is supposed to test in-distribution general-
ization.
B Yellow squares: For this split, the train set doesn’t
contain examples where yellow squares are referred
with color and shape attributes.
C Red Squares: Here, the examples where the tar-
get is red square are held out from the train set.
D Novel Direction: For this split, the examples
where the target objects are located south-west of
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Syntax Descriptions Expressions

$VV verb {walk to, push, pull}
$ADV adverb {while zigzagging, while spinning,

cautiously, hesitantly}
$SIZE attribute {small, big}∗

$COLOR attribute {red, green, blue, yellow}
$SHAPE attribute {circle, square, cylinder, box, object}

$OBJ objects (a | the) $SIZE? $COLOR? $SHAPE
$REL relations {in the same row as, in the same column as,

in the same color as, in the same shape as,
in the same size as, inside of}

$REL_CLAUSE clause $REL $OBJ

Table 11: Definitions of syntax used in ReaSCAN command generation.∗the
actual size of any shape is chosen from {1,2,3,4} as in gSCAN (Ruis et al., 2020).
This table is taken from Wu et al. (2021).

same row as same column as

same color as same shape as

same size as inside of

Figure 6: Relations.

the agent, are held out from training set.
E Relativity: To create this split, examples where
circles with size 2 are referred as small are held out
from the train set.
F Class Inference: In this split, all examples where
the verb is push, and target is a square of size 3
are held out from the training set. Note that the
model needs to infer that this object is of class
‘heavy’ based on the size 3 and needs to push twice
to move an object by one grid cell.
G Adverb k=1: Only one example with the adverb
cautiously is shown in the train set.
H Adverb to Verb: For this split, examples where
the commands have verb pull and adverb while
spinning are held out from the train set.

C.3 GSRR

Based on the gSCAN task setup, (Qiu et al., 2021)
proposed 5 additional compositional generalization
splits that also test spatial reasoning capabilities
of models. GSRR contains around 250K train ex-
amples, from which specific kind of examples are
held-out to create the systematic splits. Below, we
describe the compositional splits in GSRR:
I Random: This split contains random examples
for testing in-distribution generalization.
II Visual: For this split, the train set doesn’t contain
examples where red squares are present either as
targets or referent object.
III Relation: Here, the examples which contain
both green squares and blue circles are held-out
from the training data.
IV Referent: For this split, the examples where
yellow squares are referred as target are held-out

[ red circle , _ , green cylinder ]

[ _ , green circle , blue square ]

[ blue cylinder , _ , red square ]

The blue square is in second row, third column.

In-context example:

Prompt:

[ blue circle , red square , _ ]

[ green square , red circle , green circle ]

[ _ , blue cylinder , red cylinder ]

The red circle is in

Answer:

second row, second column

Figure 7: An example from the direct-grounded ex-
periment on LLMs.

from the trainset.
V Relative Position 1: Here, all examples where
the targets are north of their referent objects are
held-out from the training set.
VI Relative Position 2: In this split, all examples
where the target is south-west of the referent object
are not seen in training data.

D Performance of Large Language
Models

We design a simpler version of the task to evaluate
the performance of large language models (LLMs)
such as GPT-3 (Brown et al., 2020) and Codex
(Chen et al., 2021). Given a 3× 3 grid world and
a simple command stating an object’s color and
shape, the model needs to output that object’s loca-
tion. The world state as well as the output are in
a textual description format to make the task com-
patible with the input and output space of LLMs.
Along with each test example, the models are given
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MODEL A COMP. AVERAGE B C D E F G H

Multimodal LSTM (Wu et al., 2021) 97.7 32.7 54.9 23.5 0.0 35.0 92.5 0.0 22.7
GCN-LSTM (Gao et al., 2020) 98.6 - 99.1 80.3 0.2 87.3 99.3 - 33.6
Multimodal Transformer (Qiu et al., 2021) 99.9 60.0 99.9 99.3 0.0 99.0 99.9 0.0 22.2
GroCoT (ours) 99.9 60.4 99.9 99.9 0.0 99.8 99.9 0.0 22.9

Table 12: Performance of GroCoT on gSCAN (Ruis et al., 2020).

[ dax qon , _ , wif fod ]

[ _ , wif qon , lug wub ]

[ lug fod , _ , dax wub ]

The blue square is in second row, third column.

In-context example:

Prompt:

[ lug qon , dax wub , _ ]

[ wif wub , dax qon , wif qon ]

[ _ , lug fod , dax fod ]

The red circle is in

Answer:

second row, second column

Figure 8: An example from the nonsense-grounded
experiment on LLMs.

[ dax qon , _ , wif fod ]

[ _ , wif qon , lug wub ]

[ lug fod , _ , dax wub ]

Where is the blue square? blue means lug and square means 
wub. So, the lug wub is in second row, third column.

In-context example:

Prompt:

[ lug qon , dax wub , _ ]

[ wif wub , dax qon , wif qon ]

[ _ , lug fod , dax fod ]

Where is the red circle?

Answer:

red means dax and circle means qon. So, the dax qon is in 
second row, second column

Figure 9: An example from the chain-of-thought
experiment on LLMs.

prompts containing multiple in-context examples.
Note that the context provided to the model is en-
sured to contain all necessary information that the
model might need to answer the test example.

In the most basic version of the experiment,
called direct-grounded, we directly refer to the
objects in the grid world with their attributes used
in the command. See Fig. 7 for an illustration. We
provide 30 in-context train examples to the model
as part of the prompt for each of the 20 test exam-
ple. In this setup, Codex achieved 95% accuracy
while GPT-3 achieved 65% accuracy. This experi-
ment merely serves as a sanity-checking baseline
for the other experiments we described next.

Ideally, the model should learn the mappings

of words in the commands to the tokens in the
world state. Hence, in this experiment, called
nonsense-grounded, we use non-sense words to
refer to the objects in grid world as shown in Fig.
8. This task setting more closely resembles the
target identification task in ReaSCAN (while be-
ing a much more simpler version of it). In this
setup, the models fail badly. Codex achieves only
25% accuracy, and GPT-3 achieves only 30%. This
clearly shows that LLMs are as yet unable to tackle
such grounded compositionality tests, even when
provided with sufficient evidence via in-context
training examples in the prompt.

Following recent work (Wei et al., 2022), we
provide explicit chain-of-thoughts to the LLMs
to make them understand the task. While from
a purely evaluation point-of-view, this can be con-
sidered cheating, we were merely curious to check
whether the chain-of-thought idea, which has led to
so much success in reasoning tasks, would help the
models do better in this task setting. An illustration
of the chain-of-thought provided to the models is
given in Fig. 9. Codex performs much better when
provided with such chain-of-thoughts, achieving
70% accuracy. However, GPT-3 still struggles on
the task, achieving only 25% accuracy.

E Additional Details and Results of
Analysis Experiments

E.1 Target Identification vs Navigation: What
is the Challenge?

E.1.1 Comparison with Other Methods
Studies with similar objectives to ours have been
carried out by Ruis et al. (2020) and Qiu et al.
(2021). However, the results of their experiments
are not very conclusive. Ruis et al. (2020) exam-
ined the object in the grid world that was being max-
imally attended by the agent and checked whether it
is the target. However, their results do not correlate
well with the conclusions. For instance, they find
that in the error cases on the gSCAN ‘C’ split, the
agent attends over the correct target object half the
time! Qiu et al. (2021) compare the final position
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Figure 10: Probing target location information in en-
coder representations at different layers. Layer 0 corre-
sponds to directly training a linear layer over the input
embeddings and Rand corresponds to training a linear
layer on random embeddings.

of the agent with the ground-truth target location.
However, such an analysis fails to disentangle the
subtasks of target identification and agent naviga-
tion and discards the causal relationship between
them. Also, because of the interpretation of verbs
such as push and pull, the final position of the agent
may be very different from the target location.

E.1.2 Predicting Target Location from Earlier
Encoder Representations

We experimented with predicting the target loca-
tion from earlier encoder representations, including
the embeddings and randomly initialized represen-
tations. The latter two act as baselines for our prob-
ing results described in section 4.1. The results are
provided in Figure 10.

E.1.3 Target Identification Results on gSCAN
We show that target identification is the main chal-
lenge for most of the gSCAN splits as well. Simi-
lar to the experiment described in section 4.1, we
experiment with providing ground-truth target lo-
cations to the model. As seen from the results
provided in Table 13, identifying the target loca-
tion is the main challenge for most of the splits in
gSCAN.

E.2 Issues in ReaSCAN Test Set Design
E.2.1 Intuitive Explanation of Unfairness in

C2 Split Design
In this section, we explain why the model would
not be able to disambiguate between ‘and’ and

‘that is’ based on the train set. Since the meanings
of ‘and’ and ‘that is’ are apparent to humans, to
understand things from the model’s perspective, let
us replace them with non-sense words ‘axyo’ and

SPLIT ACCURACY

B 99.9
C 100
D 0.0
E 100
F 99.9
G 0.0
H 23.4

Table 13: Results of GroCoT on gSCAN when provided
with ground-truth target locations in the input.

Splits Action Seq
Accuracy
(Default)

Action Seq
Accuracy

(“and”
replaced)

Consistency

A1 99.40 99.26 99.61
A2 88.74 88.41 96.86
A3 98.13 97.54 98.90
B1 93.55 94.43 97.36
B2 86.15 87.19 95.33
C1 74.06 68.90 72.78

Table 14: Measuring the consistency of the predictions
made by the model before and after replacing all and’s
with that is’s in ReaSCAN.

‘tafyo’ respectively. The model sees commands
such as “walk to the small red square tafyo in the
same row as the big blue cylinder” and “walk to
the small red square tafyo in the same row as the
big blue cylinder axyo in the same column as a
green circle” during training. There isn’t enough
information here to make the model understand
that ‘tafyo’ applies the constraint on its right to the
clause on its immediate left while ‘axyo’ applies
the constraint on its right to the clause that occurs
on the immediate left of the ‘tafyo’ before it. Look-
ing at these examples, both ‘tafyo’ and ‘axyo’ do
the exact same thing, i.e., apply the constraint on
their immediate right over the first clause in the
command.

E.2.2 Experimental Details of Evaluation on
C2-deeper

We randomly select 100,000 examples from the
train set and 6,000 examples from the C2 test set.
This forms the new train set. We generate 4500 new
examples of depth three to form the C2-deeper test
set.
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F Additional Details and Results on our
RefEx Task

F.1 Differences with Other Benchmarks

RefEx dataset is different from existing similar-
looking synthetic benchmarks like SHAPES (An-
dreas et al., 2016), CLEVR (Johnson et al., 2017),
and CLEVR-Ref+ (Liu et al., 2019). RefEx aims
to test the systematic generalization capabilities of
neural models in a grounded setting while keeping
the task simple enough to allow easier interpreta-
tion of the model’s behaviour. On the contrary, pre-
vious diagnostic benchmarks are more concerned
with testing the overall reasoning capabilities of the
model. Also, the close resemblance between RefEx
and ReaSCAN allows us to use insights gained
from the RefEx task to improve performance on
ReaSCAN.

F.2 Details about the Task and Model

F.2.1 Details About the Task
Each variant in RefEx contains 90K training, 2.5K
validation, and 2.5K test examples.
A1 We hold out all examples where the command
contains “green square”. As a result, the model
never sees a green square object as the target al-
though green squares occur in the background in
the train set. This split expects the model to zero-
shot generalize over the composition of “green”
and “square” attributes.
A2 We hold out all examples where the command
contains “red circle” while ensuring that model
never encounters red circle object during training.
A312 We hold out all examples where the command
is “small green circle” and the corresponding target
is of size 2, meaning that the model has never seen a
green circle of size 2 being referred to with “small”.
A412 We hold out all examples where the command
is “small blue cylinder”. At test time, the model
needs to zero-shot compose the concept of “small”
with “blue cylinder” objects.

F.2.2 Details About the Model
Below, we describe the details of our attention-only
transformer. We begin by mapping the command
and the world state to dmodel size embeddings using
our embedding matrix. These embeddings consti-
tute the initial input X ∈ Rdmodel×n to our network,
where n is the sequence length. Here, n = 2 + 36
for two-attr variant, n = 3+ 36 for three-attr

12Only for the three-attr variants.

Multi-Head Attention

Multi-Head Attention

Logits

Softmax

Output Probabilities for
Target Location

<small> <blue> <square>

Expression: small
blue square

Figure 11: Model architecture used for the RefEx ex-
periments.

variant, and n = 8 + 36 for three-attr-rel vari-
ant. Here, 2, 3, and 8 correspond to the tokens
in the referring expression. Note that this input
representation X contains information from both
modalities. This representation is fed into the first
multi-head attention block, and the subsequent out-
puts are residually added back to the initial input.
We repeat this mechanism for successive attention
blocks, and after the nth attention block, the final
representations corresponding to the world state
tokens are mapped to logits by taking element-wise
sum along the dmodel dimension. In the end, we
apply softmax operation on the logits for 36-way
classification, where each class corresponds to a
particular grid cell. The architecture is illustrated
in Figure 11.

The only learnable parameters for our model
come from the query, key, value, and output ma-
trices of different attention layers. For two-attr
and three-attr variants, we don’t require posi-
tional information for the command while we in-
corporate learned positional embeddings for the
three-attr-rel variant.

F.3 Understanding Model Performance on the
RefEx A1 Split

When we first created the Referring Expressions
train and test sets, the attention-only transformer
achieved perfect generalization on all splits except
A1. On A1, the model achieved average accuracy.
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Figure 12: Target Localization accuracy for attention-
only transformer on ReaSCAN. The model’s perfor-
mance plateaus after 3 layers for most of the composi-
tional splits.

This was very surprising because the model was
able to solve A2, which seems a strictly harder
task than A1. The only difference between the two
splits is that in A1, the held-out target object (green
square) is seen as a distractor while in A2, the
object (red circle) is never seen as a distractor. One
probable hypothesis we had for the model failing
on A1 was that the model was overfitting on the
fact that green squares are always distractors in the
train set, thereby preventing the model to predict it
as a target at test time. To confirm this, we decrease
the average number of green square distractors per
example by about 75% in the train set and retrain
the model. The model performance immediately
jumps to 100%, thereby confirming our hypothesis.

Similarly, ReaSCAN also has a test split (A2),
which is analogous to the A1 split in Referring Ex-
pressions. We observe that the Transformer model
performs comparatively worse on A2 than other
similar splits on ReaSCAN. Considering the above-
mentioned result, we believe that the ReaSCAN A2
split is also suffers from the same issue. Hence, we
modify the training distribution to vary the number
of examples where “red square” object occurs as a
distractor. We show our results in Figure 13. Note
that the size of train set in this experiment is 200K
examples which is less than half of the full ReaS-
CAN trainset. Even with less number of training
samples, the model trained on the modified training
distribution (No examples contain Red Squares as
distractors) outperforms the model trained on full
ReaSCAN, on the A2 split. This validates our hy-
pothesis about the overfitting issue in transformers.
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Figure 13: Effect of modifying training distribution on
A2 accuracy. The blue bar corresponds to the original
training distribution, the orange bar corresponds to a
distribution where all red squares occur as distractors,
and the green bar corresponds to the training distribution
where no red square occurs as a distractor.
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red

green

blue

circle

square

cylinder

world_red

world_green

world_blue

world_circle

world_square

world_cylinder

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

Figure 14: Embedding matrix for two-attr variant. The columns correspond to different tokens in the vocabulary
and the rows correspond to what each position in the embedding represents. Along columns, labels like blue, and
square correspond to the command tokens, labels like red_circle correspond to the grid world tokens, where the
object has “red” color attribute, and “circle” shape attribute, and the label empty corresponds to the grid world token
where there is no object in the grid cell. Along rows, labels like green corresponds to the “green” color attribute for
command tokens, and labels like world_green corresponds to “green” color attribute for grid world tokens.
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Figure 15: Embedding matrix for three-attr variant. The columns correspond to different tokens in the vocabulary
and the rows correspond to what each position in the embedding represents. Along columns, labels like blue, square,
and big correspond to the command tokens, labels like 1_red_circle correspond to the grid world tokens, where the
object has “1” size attribute, “red” color attribute, and “circle” shape attribute, and the label empty corresponds
to the grid world token where there is no object in the grid cell. Along rows, labels like green, big correspond to
the “green” color attribute, and “big” size attribute respectively for command tokens, and labels like world_green,
world_size_2 corresponds to “green” color attribute, and “2” size attribute respectively for grid world tokens.
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Figure 16: Embedding matrix for three-attr-rel variant. Rows and columns have the same meaning as described
in Figure 15.
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(b) Our Construction

Figure 17: MLearned (left side) for the attention-only transformer with a single layer and single attention head
trained on the two-attr variant and our MConstruct matrix (right side) for the two-attr variant. Labels like blue
and square correspond to the command tokens, labels like red_circle correspond to the grid world tokens, where the
object has “red” color attribute and “circle” shape attribute, and the label empty corresponds to the grid world token
where there is no object present in the grid cell. See section 5.3.1 for the exact formulation of M matrix.
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Figure 18: sLearned (left side) for the attention-only transformer with a single layer and single attention head trained
on the two-attr variant and our sConstruct matrix (right side) for the two-attr variant. See section 5.3.1 for the
exact formulation of s. In this particular run, sLearned contains positive scalars for command tokens. Some training
runs also converged to negative values in sLearned for command tokens. In that case, the interpretation of MLearned

changes accordingly, while the fundamental idea remains the same.
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Figure 19: MLearned for the attention-only transformer with a single layer and single attention head trained on the
three-attr variant. Notice the matching pattern between MLearned and MConstruct (shown in Figure 20). We can
observe that the dot product between the key of an attribute and queries of grid world tokens with the corresponding
attribute has higher values (darker grid cells). For example, in the column of “square” command token, the darker
grid cells correspond to only those grid world objects which have the “square” shape attribute. Similarly, in the
column for the “big” command token, grid world objects like 4_blue_square with larger size have higher values as
compared to objects like 1_blue_square with smaller size.
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Figure 20: Our MConstruct matrix for three-attr variant.
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Figure 21: sLearned for the attention-only transformer with a single layer and single attention head trained on the
three-attr variant. In this particular run, sLearned contains positive scalars for command tokens. Some training
runs also converged to negative values in sLearned for command tokens. In that case, the interpretation of MLearned

changes accordingly, while the fundamental idea remains the same.
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Figure 22: Our sConstruct for three-attr variant.

669


