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Abstract

As multimodal learning finds applications in a
wide variety of high-stakes societal tasks, in-
vestigating their robustness becomes important.
Existing work has focused on understanding
the robustness of vision-and-language models
to imperceptible variations on benchmark tasks.
In this work, we investigate the robustness of
multimodal classifiers to cross-modal dilutions
– a plausible variation. We develop a model
that, given a multimodal (image + text) input,
generates additional dilution text that (a) main-
tains relevance and topical coherence with the
image and existing text, and (b) when added
to the original text, leads to misclassification
of the multimodal input. Via experiments on
Crisis Humanitarianism and Sentiment Detec-
tion tasks, we find that the performance of
task-specific fusion-based multimodal classi-
fiers drops by 23.3% and 22.5%, respectively,
in the presence of dilutions generated by our
model. Metric-based comparisons with sev-
eral baselines and human evaluations indicate
that our dilutions show higher relevance and
topical coherence, while simultaneously being
more effective at demonstrating the brittleness
of the multimodal classifiers. Our work aims
to highlight and encourage further research on
the robustness of deep multimodal models to
realistic variations, especially in human-facing
societal applications.

1 Introduction

Rich multimodal content understanding is cru-
cial for several AI for Social Good applications
like humanitarian information detection during
crises, hate speech analyses, and fake news mitiga-
tion (Ofli et al., 2020; Kiela et al., 2020; Facebook,
2020; Khattar et al., 2019; Verma et al., 2022). In
many such scenarios, the information in individual
modalities, either image or text, is designed to be
complementary to information in the other modal-
ity. As such, joint modeling of both modalities
is of fundamental importance, and consequently,
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Figure 1: Overview of our study. We investigate the
robustness of fusion-based deep multimodal classifiers
to cross-modal dilutions. We generate dilutions that
maintain semantic relevance with the original text and
image while causing incorrect classifications. We also
demonstrate the realistic nature of cross-modal dilutions
using human evaluation. The figure shows an actual
example from our experiments.

technologies that enable multimodal understanding
are advancing rapidly and are being deployed at
scale (Nayak, 2021; Grauman et al., 2021).

It is desirable that deep learning models are ro-
bust to dilution-based variations in input. Dilution
is defined as the addition of related content that
dilutes the effect of the original information. Naik
et al. (2018) and Ribeiro et al. (2020) argue that
natural language processing (NLP) models should
not alter their predictions after adding dilutions —
for instance, appending statements like “and true
is true” (multiple times) for the Natural Language
Inference task and adding randomly created URLs
for the Sentiment Analysis task.

We study the robustness of multimodal classi-
fiers to dilutions. Compared to the simple dilutions
created for NLP tasks, we aim to explore realis-
tic dilutions for multimodal data. Since what en-
tails plausible dilutions for multimodal data has not
been established, we propose a new category of
dilutions specific for multimodal content, named
cross-modal dilutions. Cross-modal dilution in-
volves adding relevant information from the image
modality to the text modality for a multimodal in-
put; see Figure 1. Our notion of dilution, unlike the
examples above, is contextual – that is, the change
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introduced varies for different information items.
Additionally, evaluating robustness to dilutions in
a multimodal setting is non-trivial because the pos-
sible additions are constrained by the semantics of
both the image and the original text.

Previous research on the robustness of deep mul-
timodal learning focuses on perturbations for Vi-
sual Question Answering (VQA) (Srivastava et al.,
2020; Zhang et al., 2019; Gupta, 2017; Wu et al.,
2017) and involves making minor alterations to
the textual questions (Mudrakarta et al., 2018),
or asking more challenging questions than what
were present in the training dataset (Sheng et al.,
2021; Li et al., 2021b). In contrast, we focus on
multimodal classification and study dilution-based
variations. To this end, we propose a method that
leverages a large language model to generate addi-
tional text that is (i) related to the information in
the image, (ii) semantically aligned to the existing
user-provided textual description, and (iii) is ad-
versarial in nature (i.e., when added to the existing
description, leads to incorrect predictions by mul-
timodal models). The first two constraints ensure
that the additional text is realistic, while the third
constraint enables us to assess the robustness of
multimodal classifiers under these settings.
Our contributions are summarized as follows:
• We propose and investigate the robustness of mul-
timodal classifiers to cross-modal dilutions. We
develop an approach that leverages keywords from
image and text to perform controlled generation of
semantically relevant text that can be appended to
the original text to cause misclassification.
• Via extensive evaluation covering aspects like
adversarial effectiveness, content relevance, diver-
sity, and coherence, we establish that the dilutions
generated by our proposed model are better than
several rule-based and model-based baselines. We
release our code to aid future research.1

• We conduct human evaluations to (a) assess the
quality of generated dilutions over the most compet-
itive baseline and (b) establish the realistic nature
of diluted multimodal examples. We find that our
cross-modal dilutions are perceived by humans as
better than the baseline dilutions and more realistic.

2 Related Work
Robustness of Multimodal Models: Existing re-
search studies the robustness of multimodal mod-
els by making imperceptible adversarial changes

1Project webpage with code: https://claws-lab.
github.io/multimodal-robustness/

to the individual input modalities using unimodal
perturbations (Li et al., 2020a; Chen et al., 2020).
However, while adversarial perturbations to images
are often deemed as imperceptible to humans, the
adversarial perturbations in text often compromise
the semantic meaning and its category to notable
extents (Wang et al., 2021). In the context of
multimodal learning, the problem of introducing
textual perturbations that lead to semantically poor
changes has been tackled by developing careful
automated approaches – for instance, by synthe-
sizing counterfactual samples using language mod-
els (Chen et al., 2020), or by conducting human-in-
the-loop curation of adversarial examples (Sheng
et al., 2021; Li et al., 2021b). However, these stud-
ies only focus on VQA (Antol et al., 2015). Ad-
ditionally, as Gilmer et al. (2018) argue, the im-
perceptibility criterion does not constrain the plau-
sible action space in human-facing applications.
For instance, it has been shown that the human-
provided description of an image can vary notably
with the personality, age, and location of the writer
in terms of its length, emotion, and vocabulary;
all the while preserving the cross-modal semantic
interaction (Shuster et al., 2019; Chunseong Park
et al., 2017; Denton et al., 2015). Consequently,
in this work, we focus on the robustness of mul-
timodal classifiers to plausible variations, specifi-
cally cross-modal dilutions.

Adversarial Perturbations: Our investigation con-
cerns adding related text in a multimodal example
to the existing textual information. Several meth-
ods have been proposed to introduce impercepti-
ble and adversarial perturbations in text (Li et al.,
2021a, 2020b; Garg and Ramakrishnan, 2020), fo-
cusing on word-level or phrase-level automated
insertions, replacements, and merging. Moving
beyond the imperceptibility constraint, to estimate
robustness to perceptible but plausible changes in
text, recent research has investigated the robustness
of NLP models to rule-based distractions that are
added to the original text (Naik et al., 2018; Ribeiro
et al., 2020). As the constraints that govern textual
dilutions in a multimodal setting are different, we
propose a model to generate cross-modal (image →
text) dilutions that maintain semantic and topical
coherence with the existing image and text, while
also demonstrating adversarial properties with re-
spect to the multimodal classifiers. This provides
us with a realistic estimate of the robustness of
multimodal classifiers.
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Figure 2: Overview of our proposed method. We propose XMD — Cross-Modal Dilution Generator. Our
approach extracts keywords from the image and text of a multimodal example and generates dilution text that causes
incorrect classifications by the multimodal classifier when appended to the original text. The generation model is
trained in a multi-stage multi-task setup, where the adversarial loss component (stage 2) encourages the generation
of dilution words that cause incorrect categorization. The blue dashed lines depict the training pathway.

3 Cross-Modal Dilutions
Related work on language-only models (Naik et al.,
2018; Ribeiro et al., 2020) inspires us to study the
robustness of deep multimodal classifiers to dilu-
tion. In the context of multimodal learning, dilu-
tions can be introduced by adding information from
the associated image to the original text. Since mul-
timodal fusion models are expected to consider the
information in images and text jointly, they should,
in principle, be robust to the expression of addi-
tional information regarding the image in the form
of text. This is, however, challenging to study be-
cause a plausible dilution should have semantic
similarity with both the image and the original text.
While a rule-based dilution like “and true is true"
(investigated by Naik et al. (2018)) are plausible
for specific language-only tasks like Natural Lan-
guage Inference (Bowman et al., 2015), they do
not cover the action space of plausible cross-modal
dilutions for multimodal content. Therefore, we
develop an approach to generate dilutions that are
semantically aligned with original text and image.

Our proposed approach follows the following
framework to generate dilutions; see Figure 2.
(i) Extract keywords from image and text based on
their prominence in their respective modalities.
(ii) Train a language model to fill words around
the extracted keywords from the original text to
generate dilutions (Zhang et al., 2020). The genera-
tion model is trained using a multi-stage multi-task
approach. The first stage fine-tunes the model to
generate in-domain text using textual keywords in a
self-supervised manner. The second stage involves
training the model on an objective that combines
generation loss with adversarial loss.

(iii) The trained model is then used to generate text
based on the keywords combined from both text
and image modalities. The generated text is then
appended to the original text as dilution.

3.1 Method for Generating Dilutions

Multimodal classifier: We design a fusion-based
multimodal classification model (Mmm) follow-
ing widely adopted architectures in both academic
research and industrial applications (Agarwal et al.,
2020; Dataminr, 2020). Mmm takes the concate-
nation of modality-specific representations as input
and makes a joint classification. To model individ-
ual modalities, we first train an image-only clas-
sifier Mimage and a text-only classifier Mtext for
the same classification task. We then concatenate
the output of the penultimate layers of the modality-
specific models to feed them into a fully-connected
network that is trained to fuse the modality-specific
representations to perform joint classification based
on the multimodal input.
Keyword extraction: Our dilution generation ap-
proach is centered around keywords in the original
image and text as that will ensure semantic relat-
edness of the dilution text with both the associated
modalities. We use Yet Another Keyword Extrac-
tor (YAKE) (Campos et al., 2018) to extract the
most important keywords from the textual descrip-
tion for each example. For extracting keywords
from the image, we consider the top 150 objects in
the Visual Genome dataset (Krishna et al., 2017)
and identify these objects in our dataset using a
pre-trained image to Scene Graph generator (Tang
et al., 2020). We further filtered the list of all iden-
tified objects by only considering objects with a
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bounding box that occupies at least 10% of the
total image area to ensure prominence in the im-
age. These objects are considered the keywords of
the image. We denote the keywords from text and
image as Ktext and Kimage, respectively.
Constrained text generation: Once we have the
keywords from text and image for each of the exam-
ples, the goal is to generate dilution around these
keywords. For this, we extend the constrained
text generation approach proposed by Zhang et al.
(2020). We fine-tune a BERT language model to
progressively predict [MASK] tokens around the
initial set of keywords until only a special token
(i.e., no-insertion token [NOI]) is predicted at all
places to indicate no further insertions. We con-
sider the original descriptions of the training ex-
amples in our target dataset and fine-tune the pre-
trained model to reconstruct the original examples
using keywords in the text, i.e., Ktext. We adopt the
same generation objective as Zhang et al. (2020)
and denote it as Lgen. The fine-tuned model can
generate domain-specific text using the supplied
keywords during inference.
Adversarial training: While the above fine-tuning
enables constrained generation of target-domain
text based on the supplied keywords, we need to
ensure that the generated dilutions also cause in-
correct classifications by the trained multimodal
classifier Mmm. Explicitly designing the genera-
tion process to exhibit adversarial nature provides
an estimate of the possible drop in performance in
the presence of cross-modal dilutions. To this end,
we consider the POINTER model after domain-
specific fine-tuning and fine-tune it further using a
combined loss function. The combined loss func-
tion takes into account not only the original gen-
eration loss but also a weighted component of the
adversarial loss Ladv. More formally,

Lcombined = Lgen + λLadv (1)

where λ controls the contribution of the adversarial
loss towards the generation process. The incorpo-
ration of Ladv encourages the generation model
to fill the [MASK] tokens with words that would
cause incorrect classifications by the multimodal
classifier Mmm. More formally, Ladv is computed
for each training example as:

Ladv = −(y log(ŷ) + (1− y) log(1− ŷ))

where y = 1 when the predicted class by Mmm

is different from the ground-truth class and y = 0

when the predicted and ground-truth labels are the
same. The probability of incorrect classification,
i.e., ŷ, is obtained by adding the class probabili-
ties of incorrect classes (Le et al., 2020; He et al.,
2021). The training of the generation model is done
in a multi-stage manner — in the first stage, the
model is fine-tuned to generate related in-domain
text from keywords using Lgen and then in the
second stage, it is trained in a multi-task fashion
using a weighted combination of Lgen and Ladv.
This ensures that the model maintains the quality
and coherence in the generated text while learning
adversarial behavior.
Inference-time dilution generation: We use the
constrained text generation model described above
to generate text based on combined keywords from
both text and image (i.e., Ktext⊕Kimage — where
⊕ denotes the concatenation of keywords). These
generated textual dilutions are added to the original
text to obtain examples with cross-modal dilutions.
Our evaluation aims to assess the impact of these
cross-modal dilutions on the performance of the
trained multimodal classifier Mmm along with var-
ious attributes of the generated text.

4 Multimodal Datasets

We conduct experiments on two user-generated
datasets that have real-world societal applications.
Crisis Humanitarianism Dataset: During crises,
affected parties often use social media to communi-
cate with humanitarian organizations that process
the available information to provide timely and ef-
fective interventions. To aid development of related
computational methods, Alam et al. (2018) curated
the CrisisMMD dataset. This multimodal dataset
comprises 7, 216 Twitter posts in English (images
+ text) that are categorized into 5 humanitarian cat-
egories.2 We formulate the task of humanitarian
information detection as a multi-class classification
problem, and use the standard training (n = 5263),
evaluation (n = 998), and test (n = 955) sets in
our experiments.
Sentiment Detection Dataset: User-generated
content has been frequently used to infer sentiments
of individuals for various applications, including
detection of mental health indicators (De Choud-
hury et al., 2013). We collect the dataset introduced
by Duong et al. (2017) for the task of sentiment

2infrastructure and utility damage: 10%, rescue volunteer-
ing or donation effort: 14%, affected individuals: 1%, other
relevant information: 22%, & not humanitarian: 53%
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detection. The dataset comprises multimodal posts
(in English) from Reddit that are categorized into
4 classes.3 We crawled the images from Reddit
URLs provided by the authors and split the dataset
in a 80:10:10 ratio to obtain the train (n = 2568),
validation (n = 321), and test (n = 318) sets.

5 Experiments

We first discuss the training of our proposed cross-
modal dilutions (XMD) generator model. Then,
we discuss multiple baselines that dilute the orig-
inal text using various rule- and model-based ap-
proaches. Finally, we evaluate XMD and compare
its performance with the baselines.

5.1 Training Details

Multimodal Classifier (Mmm): Mmm is a fu-
sion of text-only and image-only classifiers. For
text-only classifier Mtext, we fine-tune and eval-
uate a BERT (Devlin et al., 2018) model on the
target dataset. Similarly, we fine-tune a VGG-
16 model (Simonyan and Zisserman, 2015) pre-
trained on ImageNet (Deng et al., 2009) to train an
image-only classifier Mimage. We refer the reader
to Appendix A.1 and A.2 for details and evaluation
of the modality-specific classifiers. We feed the
concatenation of fine-tuned text and image repre-
sentations to the multimodal classifier, which is
essentially a series of fully-connected layers with
ReLU activation (Agarap, 2018). The architecture
of the multimodal classifier comprises an input
layer (1024 neurons), 3 hidden layers (512, 128,
32 neurons), and an output layer (neurons = num-
ber of classes in the dataset). We use Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
initialized at 10−4 and adopt early stopping based
on the validation set loss to avoid overfitting.
Cross-modal dilutions generator (XMD): For
keyword extraction from YAKE, we set the max-
imum n-gram size to 1, the de-duplication thresh-
old to 0.9 with ‘seqm’ function, and the win-
dow size to 1. The rest of the hyper-parameters
were set to their default values used in previous
studies (Zhang et al., 2020; Tang et al., 2020).
We fine-tune the POINTER model pre-trained on
Wikipedia text (Zhang et al., 2020) using default
hyper-parameters for 5 epochs. During this stage
of the training, the objective is Lgen and the model
learns to generate text from keywords that aligns
with the target domain. Following this, we further

3creepy: 22%, rage: 19%, gore: 25%, & happy: 34%

train the generation model for another 1 epoch us-
ing the combined objective in Equation 1, while
setting λ = 0.01 (based on results on the valida-
tion set). This adversarial adaptation of the model
encourages generations that could cause misclas-
sifications by the trained Mmm. Finally, the key-
words from images and text (i.e., Ktext ⊕Kimage)
are passed as input to XMD to generate dilutions
for the examples in the test set.

5.2 Baselines

Rule-based dilutions:
(i) Random URL: As proposed by Ribeiro et al.
(2020), we append a randomly generated twitter
URL (e.g., https:t.co/gXvDrs) to the original text.
(ii) Relevant keywords: We experiment with adding
extracted keywords from the image, text, and both
together to the original text.
(iii) Most similar image’s description: We add the
textual description of the most similar image (com-
puted using cosine similarity between fine-tuned
VGG-16 embeddings of images in the test set) to
the original text. This mimics scenarios where the
user dilutes the original text by adding the descrip-
tion of a highly similar image; see Appendix A.4.

Model-based dilutions:
(i) GPT: We use the original text as the prompt for
a GPT-2 (Radford et al., 2019; Wolf et al., 2020)
model and add the generated text to it for dilution.
(ii) GPT Fine-tuned: We first fine-tune a GPT-2
model using the text in the training set of the dataset
(using default hyper-parameters) for domain adap-
tation, and then use the original text as the prompt
to obtain the dilution text.
(iii) Image Captioning: We use two trained image
captioning models (SCST (Rennie et al., 2017) &
XLAN (Pan et al., 2020)) to generate the captions
for the images in the test set. We append the gener-
ated captions to the original text for dilution.

5.3 Evaluation metrics

Our evaluation is focused on assessing two aspects
of the dilutions: (a) are the dilutions effective in
deteriorating the classification performance of the
multimodal classifier?, and (b) are the added di-
lutions relevant to the original text + image, and
maintain topical coherence with the existing text?
To this end, we compute standard classification
metrics for the former evaluation and compute
embedding-based similarity measures for the latter.
Simtext denotes the similarity between the original
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text and the generated dilution and is computed us-
ing the cosine similarity between the embeddings
from the fine-tuned BERT classifier. Similarly,
Simimg denotes the similarity between the gener-
ated dilution and the image and is computed using
cosine similarity between CLIP embeddings (Rad-
ford et al., 2021). For topical coherence, we com-
pute the KL Divergence (KL Div) between the
topic distributions of the original text and the gen-
erated text. For details regarding the training of the
topic model, please see Appendix A.6. Addition-
ally, we quantify the correspondence similarity be-
tween image and final text (i.e., original + dilution)
using a learned metric Simcorr that quantifies the
correspondence between diluted descriptions and
original images based on the correspondence be-
tween original text and images; see Appendix A.5
for further details. Furthermore, we compute Self-
BLEU (Zhu et al., 2018) scores for the sentences in
the generated dilution to quantify diversity, wher-
ever applicable. For all model-based baselines and
XMD, we report the average values over 5 runs
with different random seeds.

6 Main Results

Our results (Tables 1 & 2) show the following:
• Rule-based dilutions do not demonstrate adversar-
ial effectiveness with the exception of using most
similar image’s description as dilution, which how-
ever, shows poor relevance and topical coherence.
• Model-based baselines show adversarial effec-
tiveness but lack in relevance and coherence.
• XMD demonstrates the best adversarial effective-
ness while generating more relevant and topically
coherent dilutions with respect to all the baselines.
• Our results generalize over both the datasets un-
der considerations — see Table 1 for Crisis Hu-
manitarianism and Table 2 for Sentiment Detection.
We elaborate on these results next.

Effect of rule-based baseline dilutions: We start
by noting that the insertion of random URL, key-
words from image, text, and both together, are inef-
fective in decreasing the classification performance
of multimodal classifiers considerably. However,
inserting the most similar image’s description to
the original text substantially lowers the classifica-
tion performance, from F1 score of 0.734 to 0.642
(12.3% drop) for Crisis Humanitarianism dataset
and from 0.793 to 0.665 (16.4% drop) for the Senti-
ment Detection dataset. This indicates that adding
text corresponding to a similar image in the dataset

is a reasonably effective dilution strategy. However,
since the most similar image in the dataset could
correspond to a different class, using its description
as dilution frequently leads to less relevance and
low topical coherence, as indicated by low values
of Simtext, Simimg, and KL Div.

Effect of model-based baseline dilutions: Model-
based baseline dilution strategies are generally
more effective than rule-based dilution strategies
in lowering the classification performance of the
multimodal models. The drop in F1 scores ranges
from 9.6% (0.734 → 0.684) using GPT to 15.1%
(0.734 → 0.628) using GPT-FT for the Crisis Hu-
manitarianism dataset. Similar trends are observed
on the Sentiment Detection dataset. Since GPT-
FT is fine-tuned on in-domain text, the inserted
text demonstrates a higher relevance with the origi-
nal text when compared to GPT alone. Similarly,
consistently across the two datasets, the correspon-
dence similarity and the topical similarity scores
for GPT-FT based dilutions are better than those
of GPT. While the caption generation-based dilu-
tion strategies are also effective, they show lower
relevance with existing text and a higher topical
difference due to domain mismatch. The generated
captions are generic and do not cater to the domains
of crises and sentiment. Given the performance of
all the model-based baselines across all the metrics,
we consider GPT-FT to be the most competitive
baseline. Overall, these results demonstrate that
model-based baseline dilutions, whether text-only
(GPT and GPT-FT) or cross-modal (using SCST
and XLAN caption generation models), severely
affect the performance of multimodal classifiers
but lack in terms of relevance and coherence.

Effect of proposed cross-modal dilutions: The
cross-modal dilutions added using our approach
lead to a drop in F1 scores from 0.734 to 0.564
(23.3%) and from 0.793 to 0.614 (22.5%) for the
Crisis Humanitarianism and Sentiment datasets, re-
spectively. This is by far the most effective dilution
strategy that also demonstrates high relevance with
the original text and image, high correspondence
similarity, and low topical difference. The observed
trends are consistent across both datasets. The su-
perior performance of XMD across all metrics can
be attributed to several design choices. First, XMD
is designed to exploit the model vulnerabilities by
encouraging misclassification via an adversarial
loss component in the training objective. Second,
while dilution using GPT-FT only considers the
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CLASSIFICATION PERFORMANCE ↓ RELEVANCE ↑ DIVERSITY ↓ TOPICAL DIFF. ↓
F1 Prec. Recall Acc. Simtext Simimg Simcorr Self-BLEU KL Div.

Original 0.734 0.742 0.725 0.828 – 0.292 0.999 0.048 –

Rule-based
Random URL 0.705 0.747 0.672 0.817 0.467 – 0.967 – –
Image KW 0.733 0.735 0.757 0.822 0.498 0.194 0.989 – 4.383
Text KW 0.736 0.744 0.736 0.823 0.703 0.233 0.991 – 2.022
Text + Image KW 0.706 0.716 0.702 0.824 0.656 0.232 0.988 – 4.618
Similar image’s desc 0.642 0.624 0.677 0.751 0.597 0.204 0.962 0.049 10.104

Model-based
GPT 0.684 0.693 0.677 0.783 0.562 0.221 0.971 0.081 9.251
GPT-FT 0.628 0.616 0.629 0.754 0.614 0.216 0.981 0.063 8.182
SCST Captions 0.666 0.696 0.663 0.774 0.502 0.200 0.979 – 11.443
XLAN Captions 0.673 0.703 0.677 0.782 0.534 0.218 0.980 – 10.733

XMD (Ours) 0.564 0.571 0.552 0.718 0.715 0.232 0.985 0.035 6.113

Table 1: Results on the multimodal Crisis Humanitarianism dataset. We evaluate dilution methods based on
classification performance (lower values denote greater adversarial effectiveness of dilutions), relevance (higher
similarity scores denote more relevance), diversity (lower Self-BLEU score denote more diverse sentences in
generation), and topical differences (lower KL Divergence denotes better topical coherence). Our proposed method
is compared against rule-based and model-based baselines.

F1 ↓ RELEVANCE ↑ TOPICAL DIFF. ↓
Simtext Simimg Simcorr KL Div.

Original 0.793 – 0.314 0.999 –

Rule-based
Random URL 0.773 0.538 – 0.960 –
Image KW 0.783 0.559 0.204 0.983 5.163
Text KW 0.792 0.834 0.231 0.992 3.114
Text + Image KW 0.774 0.689 0.231 0.988 5.877
Similar image’s desc 0.665 0.611 0.268 0.963 11.980

Model-based
GPT 0.691 0.620 0.274 0.978 11.638
GPT-FT 0.652 0.642 0.261 0.981 10.091
SCST Captions 0.671 0.553 0.251 0.971 13.427
XLAN Captions 0.651 0.588 0.261 0.979 14.612

XMD (Ours) 0.614 0.795 0.298 0.984 9.137

Table 2: Results on the multimodal Sentiment De-
tection. Similar trends on a different dataset reinforce
the adversarial effectiveness of XMD while generating
relevant and coherent dilutions. Complete results are
presented in Appendix A.7.

original text as context, XMD generates text based
on the keywords from both the original text and
the image. This results in relatively higher rele-
vance to the original text and the image. Finally,
even though both GPT-FT and XMD are trained
to generate in-domain text via task-specific fine-
tuning, XMD exceeds in terms of topical similarity
between inserted and original text (KL Div: 6.113
versus 8.182 for Crisis Humanitarianism dataset).

It is worth mentioning that our proposed method
(XMD) also generates text with the highest diver-
sity across generated sentences compared to all the
baselines. This is demonstrated by lowest Self-
BLEU scores in Tables 1 and 2. However, since the
values for all the methods are consistently small, all
the dilutions can be considered sufficiently diverse.

To summarize, we observe that deep multimodal
classifiers are not overly sensitive to minor content
dilutions like the insertion of random URLs or key-
words from the original content. However, adding
dilutions based on text-alone (GPT, GPT-FT) or
cross-modal (Captions, XMD) causes a notable
drop in the classification performance of multi-
modal models. To this end, our proposed XMD
generates the most effective dilutions in terms of
the observed drop in classification performance
while maintaining relevance with the original im-
age and text and topical coherence.

7 Analysis of Cross-Modal Dilutions
Next, we further analyze the dilutions generated by
our proposed method (XMD). We focus on the Cri-
sis Humanitarianism dataset for our analyses. In ad-
dition to the analyses presented here, we investigate
the effect of the length of dilutions (i.e., number of
inserted words) on classification performance and
observe no notable difference in observed trends
with similar dilution lengths; see Appendix A.10.
In Appendix A.11, we analyze the sensitivity of
quantified metrics with respect to variations in λ.
Finally, we conduct a human evaluation to assess
how realistic the diluted multimodal examples are
when compared against real multimodal examples.

Subjective Assessment of Dilutions: Figure 3
shows examples of the dilutions generated by XMD
from the Crisis Humanitarianism dataset along with
dilutions obtained from the baselines.

To further assess the quality of generated dilu-
tions, we conducted a survey on Amazon Mechan-
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children unable to attend school in devastated 
puerto rico. so many others are unable to go to 
school in puerto rico like this man in shirt as he 

looks over the hill by a damaged roof and 
building.

children unable to attend school in devastated 
puerto rico. unable school  puerto rico man shirt 

hill roof building.

Original + Text & Image KWs

Original + XMD Dilution

Predicted label: infrastructure damage

(a)

(e)

deadly wildfires threaten thousands of acres of 
pot farms in california. sometimes even during 
deadly fires thousands of dollars are wasted as 

trees are burnt and chair is broken due to 
collapsing wall.

deadly wildfires threaten thousands of acres of 
pot farms in california. startling footage shows 

californian wildfire impact.

Original + Most similar image’s desc

Original + XMD Dilution

Predicted label: relevant information

(b)

(f)

after hurricane irma, group handing out bulk 
bbq at germain arena. best way to help with the 

hurricane. small group of 16 has packed 
supplies into the arena by packing in my truck 

near tire.

after hurricane irma, group handing out bulk 
bbq at germain arena. a little over 5 millions 

gallon of water is a good thing. so if you are not 
getting that make sure.

Original + GPT-FT Dilution

Original + XMD Dilution

Predicted label: not humanitarian

(c)

(g)

colorado based supertanker takes on california 
wildfires. this time the colorado based flight to 

california flew past the fire. the risky plane 
journey from california ended in a thick cloud.  

colorado-based supertanker takes on california 
wildfires. unable school  puerto rico man shirt 

hill roof building.

Original + Image caption (SCST)

Original + XMD Dilution

Predicted label: infrastructure damage

(d)

(h)

Original label: affected individuals Original label: infrastructure damage Original label: rescue & volunteering Original label: relevant information

Figure 3: Qualitative examples of XMD Dilutions and baselines. (a-d): Examples that are misclassified by the
multimodal classifier after adding dilutions generated by XMD; the original examples were classified correctly.
(e-h): For each example, we also show what a baseline method would have added as a dilution which did not lead to
incorrect classification. The original text is shown in black and the inserted dilutions are shown in red; extracted
keywords are in bold.

ical Turk (AMT). We instructed the annotators to
compare two multimodal posts — one containing
dilutions from XMD and the other containing dilu-
tions from GPT-FT for the same multimodal exam-
ple. The posts were randomly ordered to mitigate
position bias. Annotators were asked to respond
on a 5-point Likert scale (1: strongly disagree, 5:
strongly agree) to the following question: Based
on the quality of the text and its relevance with the
image, is the post on the right more likely to be an
actual social media post than the post on the left?
We obtained 5 annotations for each of the 200 ex-
amples that were randomly sampled from the test
set of the Crisis Humanitarianism dataset. Overall,
the results showed that annotators consider the di-
lutions generated by XMD to be more realistic than
GPT-FT. The percentage of examples for which the
majority of annotators preferred XMD dilutions
over GPT-FT dilutions were: 32.1% (strongly) and
46.4% (moderately). For 12.2% examples, the ma-
jority of annotators were neutral and preferred GPT-
FT dilutions over XMD dilutions for 9.3% exam-
ples. See Appendix A.8 for more details about
human evaluation, recruitment, and compensation.

Ablations: We aim to understand the role of two
key components in XMD – the incorporation of the
adversarial loss component in the training objec-
tive and the inclusion of textual keywords. For the
Crisis Humanitarianism dataset, Table 3 shows that
(a) XMD without the adversarial loss component
and without infusing keywords from the original
text (i.e., XMD (Plain)) lacks in generating rele-
vant and topically coherent dilutions. On adding

CLASSIFICATION PERFORMANCE ↓ RELEVANCE ↑ TOP. DIFF. ↓
F1 Prec. Recall Acc. Simtext Simimg KL Div.

XMD (Plain) 0.643 0.656 0.651 0.770 0.493 0.195 9.246
XMD (Adv) 0.624 0.632 0.621 0.739 0.483 0.193 9.275
XMD (Full) 0.564 0.571 0.552 0.718 0.715 0.232 6.113

Table 3: Ablation Results for Crisis Humanitar-
ianism Dataset. Plain is trained with Lgen alone
and only uses image keywords. Adv is trained using
Lgen + λLadv . Full includes adversarial training + text
& image keywords.

adversarial loss component to the objective (i.e.,
XMD (Adv)), the classification performance de-
creases further with little effect on relevance and
coherence. Keeping the adversarial loss while in-
fusing keywords from the original text (i.e., XMD
(Full)) leads to the largest drop in classification
performance while improving relevance (with both
text and image) as well as topical coherence. Ab-
lations on the Sentiment Detection task show the
same trends; see Appendix A.9.

Are cross-modal content dilutions realistic? We
now focus on assessing how realistic the diluted ex-
amples are when compared to the real social media
examples. To this end, we conduct an AMT survey
that requires users to compare multimodal exam-
ples with inserted dilutions against different but
original multimodal examples. To prime the anno-
tators, we first show them 5 unmodified multimodal
examples and subsequently ask them to analyze
a list of randomly-ordered multimodal examples,
half diluted and the other half original unmodified
examples. We use the dilutions generated by XMD.
For each example in the list, the annotators are
asked to respond to the following question on a
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5-point Likert scale: Do you think this post (text
and image) could be a real post from social media
website? We select a subset of 100 examples from
the test set of the Crisis Humanitarianism dataset
and obtain 3 annotations for each example. The av-
erage Likert score for original examples is 3.61 (±
0.53), whereas that for diluted examples is 3.38 (±
0.39). The inter-rater agreement indicated strong
reliability of annotations (Krippendorf’s α = 0.83).
An independent two-sided t-test (assuming unequal
variances) resulted in a p-value of 0.24, indicating
no evidence that the average Likert scores of the
original and diluted examples are from different
distributions. These results show that the annota-
tors asses the diluted and original examples to be
similar, reinforcing the realistic nature of dilutions.

8 Conclusion and Future Work

In sum, our work is the first investigation of the
robustness of multimodal classifiers to cross-modal
dilutions. We establish the plausibility of such dilu-
tions via human evaluations and develop a model to
emulate adversarial scenarios reliably. We find that
multimodal classifiers that fuse the state-of-the-art
modality-specific representations are not robust to
cross-modal dilutions generated by XMD.

Deep classifiers are increasingly being used for
crucial applications that involve the joint under-
standing of user-generated multimodal data. Our
broader goal in this work is to analyze and advo-
cate for the robustness of multimodal models with
societal applications, while focusing on the most
representative fusion-based multimodal classifica-
tion technique. In the future, we intend to leverage
the knowledge of vulnerabilities identified in the
current work to develop more robust multimodal
models. We encourage interested researchers to in-
vestigate other cross-modal variations pertinent to
multimodal data and assess the robustness of multi-
modal learning approaches to these variations.

9 Limitations and Broader Perspective

It is important to be clear about the limitations of
this work. Our approach hinges on extracting infor-
mative keywords from both the image and the text
to ensure the relevancy of the generated dilutions.
In scenarios where the extracted keywords from
images are generic (like celebrity faces for multi-
modal fake news detection) or the contextual rela-
tionship between image and text modalities is not
straightforward (like multimodal hate speech), the

proposed method does not generate semantically
meaningful dilutions. We discuss the limitations in
greater detail in Appendix A.12.

This work emphasizes the possibility that the
lack of robustness of multimodal classification
models can cause societal harm, such as delay-
ing humanitarian interventions during crisis events.
As such, the trained adversarial dilution generation
models could be put to malicious use. We strongly
condemn the misuse of this research. We release
the code to aid reproducibility and promote future
research on this topic. We believe that this research
will encourage the community to investigate the
robustness of multimodal classifiers and minimize
real-world harm, leading to long-term benefits.
Bias of pre-trained models: It is known that pre-
trained models used in our study demonstrate
many biases (Bender, 2019; Hendricks et al., 2018;
Garimella et al., 2021). This is often reflected in
the kind of keywords that are identified in images
and the resulting generated text (e.g., stereotypical
gender associations). We acknowledge that the cur-
rent state of deep learning research is limiting, and
the consequential shortcomings are reflected in our
work to some extent.
Annotations, IRB approval, and datasets: The an-
notators for this study were recruited via AMT. We
specifically recruited ‘Master’ annotators located
in the United States; and paid them at an hourly
rate of 10 USD for their annotations. The human
evaluation experiments were approved by the In-
stitutional Review Board at Georgia Tech. The
datasets used in this study are publicly available
and were curated by previous research.
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A Appendix

A.1 Text-only Classifier Training
Before training, we pre-process the text in mul-
timodal examples to remove URLs, emoticons,
platform-specific tokens (like ‘RT’ for indicating
retweets on Twitter), and symbols like @ and #.
We also expanded negatives like can’t and won’t
to ‘can not’ and ‘will not’. To train the text classi-
fier (Mtext), we fine-tune a pre-trained language
model, DistilBERT (Sanh et al., 2019; Devlin et al.,
2018), on the two datasets discussed in Section 4
by using the respective training sets. To train the
text classification models for each dataset, we use
Adam optimizer (Kingma and Ba, 2014) with a
learning rate initialized at 10−4; hyper-parameters
are set by observing the classification performance
achieved on the respective validation set. We use
early stopping (Caruana et al., 2000) to stop train-
ing when the loss value on the validation set stops
to improve for 5 consecutive epochs. The perfor-
mance of the trained classifier on the test sets of
Crisis Humanitarianism and Sentiment Detection
datasets are presented in Table 4.

A.2 Image-only classifier
We apply a standard image pre-processing pipeline
so that images with different dimensions can fit
the pre-trained VGG-16 model’s input requirement.
First, we resize the image so that its shorter di-
mension is 224. We then crop the square region
in the center and normalize the square image with
the mean and standard deviation of the ImageNet
images (Deng et al., 2009).

⋆ Crisis Humanitarianism CLASSIFICATION PERFORMANCE

F1 Prec. Recall Acc.

Text-only Classifier 0.713 0.725 0.703 0.801
Image-only Classifier 0.429 0.456 0.426 0.528
Multimodal Classifier 0.734 0.742 0.725 0.828

⋆ Sentiment Detection CLASSIFICATION PERFORMANCE

F1 Prec. Recall Acc.

Text-only Classifier 0.732 0.739 0.733 0.742
Image-only Classifier 0.941 0.948 0.946 0.953
Multimodal Classifier 0.793 0.797 0.798 0.802

Table 4: Performance of text-only and image-only clas-
sifiers on the Crisis Humanitarianism and Sentiment
Detection tasks.
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To train the image-only classifier (Mimage), we
apply a fine-tuning approach to train the task-
specific image classifiers. We first freeze the
weights of VGG-16 (Simonyan and Zisserman,
2015), pre-trained on ImageNet (Deng et al., 2009),
and then swap the last layer from the original model
to three fully connected hidden layers with dimen-
sions 4096, 256, and num-of-classes. Fi-
nally, we retrain these three layers to adapt the
image distribution in each dataset. We use Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 10−4 for each dataset. To avoid overfitting,
we use early stopping to stop training when the
loss value on the validation set stops to improve for
10 consecutive epochs. Table 4 shows the perfor-
mance of image-only classifier.

A.3 Keyword Extraction from YAKE
For extracting keywords from the original text, we
use YAKE (Campos et al., 2018). We set the fol-
lowing hyper-parameters: maximum N-gram size
= 1; de-duplication threshold = 0.9; de-duplication
algorithm: ‘seqm’; window size = 1, maximum
number of keywords extracted from text = 5.

A.4 Baseline: Most similar image’s desc.
We create this baseline to emulate the scenario
where the user could have posted the multimodal
example after diluting the original text by adding
a highly similar image’s description. We find the
most similar image in the test set to an image of
a given multimodal example and append its cap-
tion to the text in the given multimodal example.
As mentioned in the main text, we use the cosine
similarity between the VGG-16 embeddings ob-
tained after task-specific for computing the similar-
ity. Overall, most similar images were found to be
highly similar, with an average highest similarity
score of 0.767 with a standard deviation of 0.067.
Nonetheless, as discussed in Section 6, this naïve
dilution strategy frequently leads to irrelevant and
topically incoherent.

A.5 Evaluation: Correspondence similarity
We explain the rationale behind adopting the cor-
respondence similarity score (i.e., Simcorr) as one
of our evaluation metrics. For context, the cross-
modal correspondence prediction task is a binary
classification task that aims to classify two input
modalities as corresponding or not. For instance, if
an image and text that are parts of the same multi-
modal example are provided as input, the correct

prediction is Label 1, indicating true correspon-
dence. Conversely, if the input text and image are
from different multimodal examples, the correct
prediction is Label 0, indicating false correspon-
dence. The correspondence prediction task has
been widely adopted as a pre-training step for mul-
timodal deep learning models (Arandjelovic and
Zisserman, 2017; Verma et al., 2019; Feng et al.,
2014). In this work, we train correspondence pre-
diction models using the fine-tuned image and text
representations of the dataset-specific undiluted
training set, and then report Simcorr — the average
probability score for Label 1 (i.e., true correspon-
dence) on the diluted dataset-specific test set exam-
ples. Effectively, the score indicates that given a
model trained to predict correspondence between
image and text from original unmodified training
examples; the model is successful in establishing a
correspondence between diluted text and images in
the test set examples.

To train the cross-modal correspondence predic-
tion model, we create negative examples by ran-
domly sampling 3 mismatched descriptions from
the training set for each image with the correct
description. We then take the fine-tuned represen-
tation of the input image and text and pass them
through a series of fully-connected layers of sizes
(1024 (input), 512, 256, 128, 64, 32, and 2 (output)).
As shown in Tables 1 and 2, the correspondence
prediction model provides a nearly-perfect Sim
score (i.e., 0.999) on undiluted test sets. However,
the scores for baselines and the proposed model
differ based on the dilution strategy adopted.

A.6 Topical Coherence
To measure the topical coherence between gen-
erated dilution and the original text, we com-
pute the KL Divergence between the topic dis-
tributions of the two text segments — i.e.,
DKL(Pdilution||Qoriginal). We train an LDA topic
model (Blei et al., 2003) using the text in a task-
specific training set. The presented KL divergence
scores are averaged over all the examples in the test
set. We set the number of topics to be 20 (based
on topic coherence score) for the results presented
in this paper. Additionally, we do not witness a
change in the observed trends with variations in the
chosen number of topics (n ∈ {5, 10, 15, 20}) for
LDA topic modeling.

For implementing the Self-BLEU metric for
quantifying diversity, we use NLTK’s BLEU score
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CLASSIFICATION PERFORMANCE ↓ RELEVANCE ↑ DIVERSITY ↓ TOPICAL DIFF. ↓
F1 Prec. Recall Acc. Simtext Simimg Simcorr Self-BLEU KL Div.

Original 0.793 0.797 0.798 0.802 – 0.314 0.999 0.053 –

Rule-based
Random URL 0.773 0.777 0.772 0.784 0.538 – 0.960 – –
Image KW 0.783 0.782 0.794 0.796 0.559 0.204 0.983 – 5.163
Text KW 0.792 0.791 0.798 0.801 0.834 0.231 0.992 – 3.114
Text + Image KW 0.774 0.771 0.768 0.785 0.689 0.231 0.988 – 5.877
Similar image’s desc 0.665 0.662 0.676 0.680 0.611 0.268 0.963 0.052 11.980

Model-based
GPT 0.691 0.695 0.683 0.697 0.620 0.274 0.978 0.086 11.638
GPT-FT 0.652 0.664 0.661 0.668 0.642 0.261 0.981 0.074 10.091
SCST Captions 0.671 0.675 0.681 0.680 0.553 0.251 0.971 – 13.427
XLAN Captions 0.651 0.663 0.656 0.665 0.588 0.261 0.979 – 14.612

XMD (Ours) 0.614 0.617 0.626 0.633 0.795 0.298 0.984 0.047 9.137

Table 5: Complete results for the multimodal Sentiment Detection dataset. We observe the same trends as we do
with the Crisis Humanitarianism dataset, demonstrating the generalizability of our approach.

CLASSIFICATION PERFORMANCE ↓ RELEVANCE ↑ TOPICAL DIFF. ↓
F1 Prec. Recall Acc. Simtext Simimg Simcorr KL Div.

XMD (Plain) 0.663 0.654 0.669 0.671 0.586 0.237 0.979 11.012
XMD (Adv) 0.652 0.644 0.651 0.655 0.571 0.232 0.964 11.157
XMD (Full) 0.614 0.617 0.626 0.633 0.795 0.298 0.984 9.137

Table 6: Ablation results for the multimodal Sentiment
Detection dataset.

# Words (std. dev.) Control tech. Updated F1

Original 12.12 (3.94) – 0.734
Rule-based

Random URL – repeat 5 times 0.693
Image KW + 3.18 (1.97) repeat 5 times 0.711
Text KW + 2.76 (0.51) repeat 8 times 0.726
Text + Image KW + 5.85 (2.13) repeat 4 times 0.681
Similar image’s desc + 11.72 (3.59) repeat twice

Model-based
GPT + 20.85 (8.64) no change 0.684
GPT-FT + 22.87 (6.52) no change 0.628
MM Captions + 9.11 (1.12) repeat twice 0.657
XLAN Captions + 8.63 1.96 repeat twice 0.662

Proposed
XMD (Plain) + 36.43 (10.16) truncate text 0.649
XMD (Adv) + 39.46 (11.34) truncate text 0.632
XMD (Full) + 37.97 (13.62) truncate text 0.571

Table 7: Numbers of words inserted by the dilution
methods and classification performance after controlling
for the number of inserted words (all methods have ~20
words after modifications).

function (Loper and Bird, 2002) and adopt the ap-
proach proposed in Zhu et al. (2018).

A.7 Results on Sentiment Detection
The main text presents an abridged version of the
results on the Sentiment Detection dataset. The
complete results are presented in Table 5.

A.8 Human evaluation details
For both our annotation tasks, we recruited anno-
tators using Amazon Mechanical Turk. We set the
criteria to ‘Master’ annotators who had at least 90%
approval rate and were located in the United States.

The rewards were set by assuming an hourly rate
of 10 USD for all the annotators. In addition, the
annotators were informed that the aggregate statis-
tics of their annotations would be used and shared
as part of academic research.

The annotators were primed to identify real so-
cial media posts by showing them 5 original mul-
timodal examples. Previous research has demon-
strated the role of providing examples in obtaining
high-quality annotations (Khashabi et al., 2021).
For both our human evaluations, we also inserted
some “attention-check” examples during the anno-
tation tasks to ensure the annotators read the text
carefully before responding. This was done by ex-
plicitly asking the annotators to mark a randomly-
chosen score on the Likert scale regardless of the
actual content. We discard the annotations from
annotators who did not correctly respond to all the
attention-check examples.

A.9 Ablations for Sentiment Detection
The ablation results on the Sentiment Detection
dataset are presented in Table 6. The results follow
the same trends as discussed in Section 8 for the
Crisis Humanitarianism dataset.

A.10 Length of Dilutions
To examine whether the drop in performance is
contingent on the number of words inserted for di-
lution, we first report the number of words inserted
using each of these methods (see Table 7). Then,
we control for the number of words inserted by
employing either repetition or truncation so that
each method inserts a comparable number of ~20
words for dilution. As shown in Table 7, even with
comparable number of inserted words, the trends
observed in Section 6 persist. This reinforces that
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Figure 4: Effect of varying λ. As λ is increased, the
adversarial effectiveness of the generated dilutions in-
creases (lower F1) but at the expense of relevance with
original text & image (lower Simtext and Simimg).

it is not merely the dilutions’ length that precipi-
tates the drop in classification performance but the
sensitivity to the inserted content.

A.11 Effect of variations in lambda
Our main results and subsequent analyses are based
on λ = 0.01, which controls the contribution of ad-
versarial loss in the overall objective (see Equation
1). Figure 4 shows the variation in classification
performance on the crisis humanitarianism dataset
with respect to the variations in λ. We find that
as λ increases, the classification performance de-
teriorates further. However, increasing λ hurts the

relevance of the generated dilution with the original
text and image, as well as the topical coherence –
the relevance and coherence scores drop quickly as
the relative contribution of Lgen is reduced.

A.12 Limitations
As indicated in Section 8, in some scenarios, the ex-
tracted keywords from the images could be generic
and do not extract meaningful keywords towards
the specific task at hand. For instance, for mul-
timodal fake news detection, the extracted key-
words from pictures of celebrity faces are typically:
man, woman, eye, smile, dress etc. However, these
keywords are unrelated to the larger (true/false)
discourses centered around the celebrity. Simi-
larly, for multimodal hate speech detection, the
extracted keywords are often literal (such as hat,
clown, monkey) while the original text aims to es-
tablish provocative parallels like calling a person
clown or associating certain groups with animals.
Our current work is best applied to settings where
the contextual relationship between the visual and
textual modalities is straightforward, and extracted
keywords provide a good representation of the cu-
mulative expression. As part of our future work,
we intend to develop cross-modal dilution strate-
gies that can work with a wider variety of user-
generated multimodal data.
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