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Abstract

We propose a simple and effective re-ranking
method for improving passage retrieval in open
question answering. The re-ranker re-scores
retrieved passages with a zero-shot question
generation model, which uses a pre-trained lan-
guage model to compute the probability of the
input question conditioned on a retrieved pas-
sage. This approach can be applied on top of
any retrieval method (e.g. neural or keyword-
based), does not require any domain- or task-
specific training (and therefore is expected to
generalize better to data distribution shifts), and
provides rich cross-attention between query
and passage (i.e. it must explain every token in
the question). When evaluated on a number of
open-domain retrieval datasets, our re-ranker
improves strong unsupervised retrieval mod-
els by 6%-18% absolute and strong supervised
models by up to 12% in terms of top-20 passage
retrieval accuracy. We also obtain new state-
of-the-art results on full open-domain question
answering by simply adding the new re-ranker
to existing models with no further changes.1

1 Introduction

Text retrieval is a core sub-task in many NLP prob-
lems, for example, open-domain question answer-
ing where a document must be retrieved and then
read to answer an input query. Queries and docu-
ments are typically embedded in a shared represen-
tation space to enable efficient search, before using
a task-specific model to perform a deeper, token-
level document analysis (e.g. a document reader
that selects an answer span). We show that adding
a zero-shot re-ranker to the retrieval stage of such
models leads to large gains in performance, by do-
ing deep token-level analysis with no task-specific
data or tuning.

∗This work was done during an internship at Meta AI.
1Our codebase including data and checkpoints is avail-

able at: https://github.com/DevSinghSachan/
unsupervised-passage-reranking
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Figure 1: After UPR re-ranking of the Contriever’s
(unsupervised) (Izacard et al., 2022) top-1000 pas-
sages, we outperform strong supervised models like
DPR (Karpukhin et al., 2020) on Natural Questions and
TriviaQA datasets.

We focus on open-domain question answering
and introduce a re-ranker based on zero-shot ques-
tion generation with a pre-trained language model.
Our re-ranker, which we call Unsupervised Passage
Re-ranker (UPR), re-scores the retrieved passages
by computing the likelihood of the input question
conditioned on a retrieved passage.2 This simple
method enables task-independent cross-attention
between query and passage that can be applied on
top of any retrieval method (e.g. neural or keyword-
based) and is highly effective in practice (Figure 1).

In part, UPR is inspired by the traditional mod-
els of query scoring with count-based language
models (Zhai and Lafferty, 2001). However, in-
stead of estimating a language model from each
passage, UPR uses pre-trained language models
(PLMs). More recent work on re-rankers have fine-
tuned PLMs on question-passage pairs to gener-
ate relevance labels (Nogueira et al., 2020), some-
times to jointly generate question and relevance
labels (Nogueira dos Santos et al., 2020; Ju et al.,
2021). In contrast, UPR uses off-the-shelf PLMs,

2In this paper, we refer to the words documents and pas-
sages interchangeably. We consider the retrieval units as short
passages and not entire documents.
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does not require any training data or finetuning, and
still leads to strong performance gains (Figure 1).

Comprehensive experiments across a wide range
of datasets, retrievers, and PLMs highlight the
strengths of UPR:

• By re-ranking the top-1000 passages from Con-
triever (unsupervised), UPR obtains a gain of
6%-18% points absolute in the top-20 retrieval
accuracy across four QA datasets. UPR also
achieves new state-of-the-art results on the diffi-
cult SQuAD-Open and Entity Questions datasets,
outperforming BM25 by 14% and 8%.

• These performance gains are consistent across
both different kinds of retrievers and PLMs. Ab-
lation studies reveal that instruction-tuned mod-
els such as T0 perform the best as re-rankers.

• On the open-domain QA task, just by performing
inference with the re-ranked passages and a pre-
trained reader, we obtain improvements of up to
3 EM points on three benchmark datasets.

To the best of our knowledge, this is the first
work to show that a fully unsupervised pipeline
(consisting of a retriever and re-ranker) can greatly
outperform supervised dense retrieval models like
DPR (Karpukhin et al., 2020). As language mod-
els continue to improve rapidly (Rae et al., 2021;
Chowdhery et al., 2022), the performance of UPR
may see corresponding gains over time. UPR re-
quires no annotated data and uses only generic
pre-trained models, which means it may be easy to
apply to a wide range of retrieval problems.

2 Method

Figure 2 presents an overview of our approach for
open-domain retrieval, which introduces a new un-
supervised re-ranker (Sec 2.2) that can be applied
to any existing text retriever (Sec 2.1).

2.1 Retriever

Let D = {d1, . . . ,dM} be a collection of evidence
documents. Given a question (q), the retriever se-
lects a subset of relevant passages Z ⊂ D, one or
more of which will ideally contain the answer to
q. Our method will work with passages obtained
from any retriever — either based on sparse repre-
sentations like BM25 or dense representations like
DPR. We only assume that the retriever provides
the K most relevant passages. We denote this set
of top-K passages as Z = {z1, . . . ,zK}.

2.2 Unsupervised Passage Re-ranking (UPR)

Given the top-K retrieved passages, the goal of the
re-ranker is to reorder them such that a passage with
the correct answer is ranked as highly as possible.
The ordering is computed with a relevance score
p(zi | q) for each passage zi ∈ Z .

Our re-ranking approach is unsupervised, i.e.,
it does not use any task-specific training exam-
ples. We refer to it as UPR, for Unsupervised Pas-
sage Re-ranking. UPR uses a pre-trained language
model to score the probability of generating the
question q given the passage text z, as described
below. The question generation model is zero-shot,
allowing for dataset-independent re-ranking, and
also incorporates cross-attention between the ques-
tion and passage tokens while forcing the model to
explain every token in the input question. UPR is,
therefore, more expressive than using dense retriev-
ers alone, even if both methods fundamentally build
on top of the same (or very similar) pre-trained
models.

More specifically, we estimate p(zi | q) by com-
puting the likelihood of question generation condi-
tioned on the passage, i.e., the quantity p(q | zi).
This also naturally emerges when applying Bayes’
rule to p(zi | q) as

log p(zi | q) = log p(q | zi) + log p(zi) + c ,

where p(zi) is the prior on the retrieved passage
and c is a common constant for all zi.

As a simplifying assumption, we assume that
the passage prior log p(zi) is uniform, and can be
ignored for re-ranking. With this, the above expres-
sion reduces to

log p(zi | q) ∝ log p(q | zi), ∀zi ∈ Z .

We estimate log p(q | zi) using a pre-trained
language model (PLM) to compute the average log-
likelihood of the question tokens conditioned on
the passage:

log p(q | zi) =
1

|q|
∑

t

log p(qt | q<t, zi; Θ) .

where Θ denotes the parameters of the PLM and |q|
denotes the number of question tokens. We apply
the PLM in a zero-shot fashion with no finetuning
by simply appending the natural language instruc-
tion “Please write a question based on this passage”
to the passage tokens as shown in Figure 2.
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Figure 2: An illustration of the different components in UPR. For more details, please refer to text.

Dataset Train Ret. Train Dev Test

SQuAD-Open 78,713 70,096 8,886 10,570
TriviaQA 78,785 60,413 8,837 11,313
NQ 79,168 58,880 8,757 3,610
WebQ 3,417 2,474 361 2,032

Table 1: QA dataset statistics. Full training set examples
are used for the open-domain QA experiments, while
the retriever training examples are used for supervised
retriever training. We leverage these dataset splits as
provided by (Karpukhin et al., 2020).

The initial passage ordering is then sorted based
on log p(q | z). This enables us to re-rank the
passages by just performing inference using off-the-
shelf language models avoiding the need to label
question-passage pairs for finetuning. Because the
question generation model is applied zero-shot, this
overall approach can be applied to improve the
retrieval accuracy of any test collection, with no
dataset-specific models or tuning data.

3 Experimental Setup

In this section, we describe the datasets, unsuper-
vised and supervised retrievers, and language mod-
els used for our passage re-ranking experiments.

3.1 Open-Domain QA Datasets

Following previous work on passage retrieval, we
use the popular datasets of SQuAD-Open (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017),
Natural Questions (NQ; Kwiatkowski et al. (2019)),
and WebQuestions (WebQ; Berant et al. (2013)).
Their statistics are presented in Table 1.

Evidence Passages D. We use the preprocessed
English Wikipedia dump from December 2018 as
released by Karpukhin et al. (2020) as our evidence
passages. Each Wikipedia article is split into non-
overlapping 100 word passages. There are over 21
million total passages.

3.2 Keyword-centric Datasets

To examine the robustness of UPR to keyword-
centric datasets, we experiment with test collec-
tions where dense retrievers struggle and when the
questions are from different domains.

Entity Questions contains 22K short ques-
tions about named entities based on facts from
Wikipedia. Previous work on this dataset has
shown that dense retrievers struggle to retrieve rel-
evant passages while sparse approaches like BM25
are more successful (Sciavolino et al., 2021).

BEIR Benchmark is a test suite for benchmark-
ing retrieval algorithms and consists of multiple
datasets, where each dataset consists of test set
queries, evidence documents, and relevance doc-
ument annotations (Thakur et al., 2021). These
datasets contain different kinds of retrieval tasks
like fact-checking, question answering, etc. and
span diverse domains including news, technical,
and Wikipedia making it a challenging benchmark.

3.3 Retrievers

In our re-ranking experiments, we retrieve passages
from both unsupervised and supervised retrievers,
as detailed below.

3.3.1 Unsupervised Retrievers

BM25 ranks based on the term-frequency and
inverse document frequency of the keywords
present in the question and passage (Robertson
and Zaragoza, 2009). Prior work (Ma et al., 2021)
has shown that BM25 is a strong baseline for the
datasets we consider.

MSS is a dense retriever trained by predicting
masked salient spans like named entities with the
help of a reader network (Sachan et al., 2021a).
MSS pre-training has also shown to improve super-
vised retrieval performance.
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Contriever uses momentum contrastive training
to learn dense retrievers from text paragraphs (Izac-
ard et al., 2022). Such training has shown to obtain
strong zero-shot retrieval performance on many
benchmarks.

3.3.2 Supervised Retrievers
DPR uses annotated question-context paragraphs
and hard negative examples to train a supervised
dense retriever (Karpukhin et al., 2020).

MSS-DPR further improves DPR performance
by first pre-training the dense retriever using
MSS followed by DPR-style supervised finetun-
ing (Sachan et al., 2021a).

3.4 Pre-Trained Language Models (PLMs)

We use a range of pre-trained models for computing
our re-ranking relevance scores.

T5 Series These models consist of encoder and
decoder transformers pre-trained by denoising in-
put text sequences. We experiment with the T5
model (Raffel et al., 2020), its language model
adapted version (T5-lm-adapt; Lester et al. (2021)),
and the T0 language model (Sanh et al., 2022). T0
was trained by finetuning T5-lm-adapt with multi-
ple tasks defined by instructions. We use the “xl”
configurations that contain 3B parameters.

GPT These consist of a transformer decoder
trained with the autoregressive language model-
ing objective. We use the GPT-neo model with
2.7B parameters (Black et al., 2021).

3.5 Implementation Details

We run all the experiments on a cluster with V100-
32GB GPUs. We use PyTorch (Paszke et al., 2019)
to implement the UPR approach and relevant base-
lines. To get the top-K retrieved passages, we use
the open-source implementations of the retrievers
and their checkpoints. For BM25, we use the pre-
computed top-k passages outputs from the pyserini
toolkit (Lin et al., 2021).3 For MSS, DPR, and
MSS-DPR retrievers, we use the open-source im-
plementations from (Sachan et al., 2021b).4 For
Contriever and PLMs, we use their checkpoints as
hosted in Huggingface (Wolf et al., 2020).

3https://github.com/castorini/
pyserini/blob/master/docs/
experiments-dpr.md

4https://github.com/DevSinghSachan/
emdr2

For the dense retriever experiments, we use the
base configuration, which consists of 12 attention
heads, 12 layers, and 768 model dimensions. To ex-
periment with supervised retrievers, we train DPR
and MSS-DPR for 3 epochs on SQuAD-Open, 40
epochs on NQ and TriviaQA, and 20 epochs on
WebQ.5 Detailed hyperparameter settings are spec-
ified in Appendix A.1 and A.2.

4 Experiments: Passage Retrieval

We evaluate the performance of our proposed Un-
supervised Passage Re-ranker (UPR), conduct ab-
lations to better understand the approach, evaluate
robustness on challenging test collections, and dis-
cuss run-time efficiency.

Our goal is to improve the rankings of top-{20,
100} passages. Hence, in the first stage, a larger
candidate list is fetched by retrieving the top-1000
passages. Then, in the second stage, these passages
are re-ranked with the T0-3B PLM unless speci-
fied otherwise. To evaluate UPR performance, we
compute the conventional top-K retrieval accuracy
metric. It is defined as the fraction of questions
for which at least one passage within the top-K
passages contains a span that matches the human-
annotated answer to the question.

4.1 Main Task

We experiment with the four datasets and five re-
trievers as introduced in §3.1 and §3.3, respectively
and perform re-ranking with the T0-3B model. Ta-
ble 2 reports the top-20 and top-100 retrieval ac-
curacy before and after re-ranking. UPR provides
consistent improvements across all the retrievers
and datasets, improving unsupervised models by
6%-18% absolute and supervised models by up to
12% in top-20 accuracy.

Re-ranked Contriever outperforms DPR by an
average of 7% in top-20 and 4% in top-100 when
considering all the datasets. This shows that a
fully unsupervised pipeline of a retriever and re-
ranker can outperform strong supervised models
like DPR. Sparse representations still remain com-
petitive, with BM25 outperforming Contriever and
MSS on SQuAD-Open and TriviaQA re-ranking.

We also see that re-ranked MSS-DPR comes
close to or matches the performance of state-of-
the-art supervised retrievers (last row in Table 2).
Because these supervised models are based on end-

5In contrast to previous work on SQuAD-Open, we train
DPR and MSS-DPR for 3 epochs to prevent overfitting.
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Retriever SQuAD-Open TriviaQA NQ WebQ Average
Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100

Unsupervised Retrievers

MSS 51.3 68.4 67.2 79.1 60.0 75.6 49.2 68.4 56.9 72.9
MSS + UPR 75.7 80.8 81.3 85.0 77.3 81.5 71.8 80.4 76.5 81.9

BM25 71.1 81.8 76.4 83.2 62.9 78.3 62.4 75.5 68.2 79.7
BM25 + UPR 83.6 87.4 83.0 86.4 78.6 85.2 72.9 81.4 79.5 85.1

Contriever 63.4 78.2 73.9 82.9 67.9 80.6 65.7 80.1 70.0 80.5
Contriever + UPR 81.3 85.6 82.8 86.4 80.4 87.0 75.7 83.5 80.1 85.6

Supervised Retrievers

DPR 59.4 74.5 79.8 85.1 79.2 85.7 74.6 81.6 73.3 81.7
DPR + UPR 80.7 85.4 84.3 87.2 83.4 88.6 77.7 84.1 81.5 86.3

MSS-DPR 73.1 84.5 81.9 86.6 81.4 88.1 76.9 84.6 78.3 86.0
MSS-DPR + UPR 85.2 89.4 84.8 88.0 83.9 89.4 77.2 85.2 82.8 88.0

E2E Supervised - - 84.1 87.8 84.8 89.8 79.1 85.2

Table 2: Top-{20, 100} retrieval accuracy on the test set of datasets before and after UPR re-ranking of the top-1000
retrieved passages with the T0-3B model. Best results of the unsupervised retriever are underlined while those
of the supervised retriever are highlighted in bold. For reference, we also include the state-of-the art supervised
results in the last row, which is obtained from end-to-end or joint training of the retriever and language model using
question-answer pairs (Sachan et al., 2021a,b).

to-end training of the retriever and language model,
they are memory-intensive and too expensive to
train for very large models. As such, UPR offers a
viable alternative to expensive joint training.

Intuition behind the performance gains ob-
tained by UPR The question generation step in
the re-ranker involves expressive cross-attention
with the passage tokens. As a result, each ques-
tion token attends to all the passage tokens in each
decoder layer before predicting the next question
token. This results in an accurate estimation of the
relevance (or log-likelihood) scores than the orig-
inal retriever scores, thus leading to an improved
retrieval accuracy after re-ranking. This reason-
ing is further corroborated by our error analysis
in Appendix A.3, where we present several exam-
ples where UPR improves over the incorrect BM25
retrievals.

4.2 Ablation Studies

4.2.1 Importance of Question Generation

To understand the importance of re-ranking based
on question generation p(q | z), we compare
it with another unsupervised approach where re-
ranking is based on passage generation conditioned
on the question p(z | q). This quantity can be
estimated by computing the average log-likelihood
of generating the passage tokens using PLM and
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Figure 3: Comparison of two passage re-ranking ap-
proaches on the NQ development set: (1) when generat-
ing question tokens conditioned on the passage p(q | z),
and (2) when generating passage tokens conditioned on
the question p(z | q). Results highlight the usefulness
of question generation in UPR for re-ranking.

teacher-forcing as

log p(z | q; Θ) =
1

|z|
∑

t

log p(zt | z<t, q; Θ) ,

where Θ denotes the parameters of the PLM and
|z| denotes the number of passage tokens.

For this analysis, we work with the NQ develop-
ment set and obtain the union of top-1000 passages
from the BM25 and MSS retrievers. These pas-
sages are re-ranked with two PLMs: T0-3B and
GPT-2.7B. Our results in Figure 3 demonstrate that
question generation obtains substantial improve-
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Retriever / NQ (dev)
Re-Ranker Top-1 Top-5 Top-20 Top-100

BM25 22.3 43.8 62.3 76.0
MSS 17.7 38.6 57.4 72.4

T5 (3B) 22.0 50.5 71.4 84.0
GPT-neo (2.7B) 27.2 55.0 73.9 84.2
GPT-j (6B) 29.8 59.5 76.8 85.6
T5-lm-adapt (250M) 23.9 51.4 70.7 83.1
T5-lm-adapt (800M) 29.1 57.5 75.1 84.8
T5-lm-adapt (3B) 29.7 59.9 76.9 85.6
T5-lm-adapt (11B) 32.1 62.3 78.5 85.8
T0-3B 36.7 64.9 79.1 86.1
T0-11B 37.4 64.9 79.1 86.0

Table 3: Comparison of different pre-trained language
models (PLMs) as re-rankers on the NQ development
set. We re-rank the union of BM25 + MSS retrieved
passages with UPR. Results demonstrate that T0 PLMs
achieves the best top-K accuracy among the compared
PLMs.

ments over the BM25 and MSS, highlighting its
usefulness in passage re-ranking. On the other
hand, re-ranking based on passage generation leads
to a drop in retrieval accuracy in comparison to the
baseline retrievers, empirically confirming that this
approach does not work well in practice.

4.2.2 Impact of Pre-trained Language Models

To understand how much the choice of PLM con-
tributes to top-K accuracy, we compare the perfor-
mance of T5 (3B), T5-lm-adapt (different sizes),
T0-{3B, 11B}, and GPT-neo (2.7 B) (as introduced
in §3.4) on the NQ development set. We obtain the
union of top-1000 passages retrieved from BM25
and MSS and then re-rank them with UPR. Results
in Table 3 reflect that all the PLMs obtain signif-
icant improvements over the baseline retrievers,
with the T0 models achieving the best results. Scal-
ing up the PLM size, especially the T5-lm-adapt
models, leads to consistent performance improve-
ments.

When comparing across PLMs, we see that the
performance of T5 suffers especially on top-{1,
5} accuracy levels. This might be because it was
trained to predict corrupted spans, which is not
ideal for text generation. On the other hand, au-
toregressive PLMs such as GPT-neo and T5-lm-
adapt tend to be better re-rankers. Furthermore,
T0 obtains large improvements on top-{1, 5, 20},
demonstrating that finetuning with instructions on
unrelated tasks is also beneficial for re-ranking.

Number of Re-ranked Passages (BM25 retriever)

0

25
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100

0 100 250 500 750 900 1000

Top-20 Accuracy on NQ Dev Time / Question / A100 GPU (in seconds)

Figure 4: Effect of the number of passage candidates on
top-20 accuracy and latency when re-ranked with T0-3B
PLM. Evaluation is done on the NQ development set
using BM25 retrieved passages.

4.2.3 Passage Candidate Size vs Latency
We study the effect of the number of passage candi-
dates to be re-ranked on the retrieval performance
along with the time taken. For this, we consider
the NQ development set, re-rank up to top-1000
passages obtained from BM25, and use top-20 ac-
curacy as the evaluation criteria. Results in Figure 4
illustrate that a larger pool of passage candidates
indeed helps to improve the performance. However,
the gains tend to plateau as the number of passages
is increased.

With more passages, the latency in re-ranking
per question linearly increases reflecting the trade-
off between accuracy and throughput. The higher
latency can be partly alleviated with approaches
like weight quantization, efficient implementa-
tions of the transformer kernel, model distillation,
caching passage embeddings, and using data par-
allelism. However, we leave these explorations to
future work.

4.3 Zero-Shot Supervised Transfer
To gain a better understanding of the relative
strengths of UPR and supervised (or finetuned)
re-rankers, we perform zero-shot supervised trans-
fer experiments and compare the results with UPR.
We adopt the training method of Nogueira et al.
(2020), henceforth referred to as monoT5, who fine-
tune the T5 PLMs on the MS MARCO (Bajaj et al.,
2016) passage ranking dataset. To train, question
and passage tokens are concatenated and fed to the
T5 encoder. The decoder attends to the encoded
sequence and the T5 PLM is finetuned to maximize
the likelihood of the “true” label. To re-rank the
passages during inference, the log-likelihood score
of the “true” label is used as the relevance score.
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Retriever / NQ (dev)
Re-Ranker Top-1 Top-5 Top-20 Top-100

BM25 22.3 43.8 62.3 76.0

UPR (T0-3B) 36.1 62.8 76.8 83.1
monoT5 (250M) 39.1 62.4 75.6 82.6
monoT5 (800M) 43.5 66.1 77.5 83.3
monoT5 (3B) 44.2 68.3 78.7 83.7

Table 4: Zero-shot supervised transfer results on the
NQ development set. We use monoT5 (Nogueira et al.,
2020) checkpoints of different sizes finetuned on the
MS MARCO dataset to re-rank the top-1000 passages
retrieved by BM25. We also include the results of UPR
for reference.

Retriever Entity Questions
Top-20 Top-100

Baselines

MSS 51.2 66.3
DPR 51.1 63.8
MSS-DPR 60.6 73.7
Contriever 63.0 75.1
BM25 71.2 79.8
SPAR (Chen et al., 2021) 74.0 82.0

After Re-ranking with UPR (T0-3B PLM)

MSS 71.3 76.7
DPR 65.4 72.0
MSS-DPR 73.9 80.1
Contriever 76.0 81.6
BM25 79.3 83.9
BM25 + Contriever 80.2 85.4

Table 5: Top-{20, 100} retrieval accuracy on the Entity
Questions dataset before and after re-ranking.

We use the open-source checkpoints of monoT5
to re-rank the top-1000 passages retrieved by
BM25 and report results on the NQ development
set (Table 4).6 Interestingly, we see that supervised
transfer improves the top-1 and top-5 retrieval accu-
racy by a large margin over UPR. However, when
the set of retrieved passages increases, such as 20-
100, the results of UPR come close to or match
the results of monoT5. As end tasks such as open-
domain question answering rely on a larger set of
passages to achieve good results (as demonstrated
in Sec 5), this highlights the importance of UPR
over supervised models as it does not require col-
lecting annotated data for finetuning.

4.4 Evaluation on Keyword-centric Datasets
4.4.1 Entity Questions
We re-rank the top-1000 passages from every re-
triever with UPR. As the training set is not pro-

6https://github.com/castorini/pygaggle

Retriever BEIR
nDCG@10 Recall@100

Baselines

BERT (Devlin et al., 2019) 9.3 20.1
SimCSE (Gao et al., 2021) 27.4 48.1
REALM (Guu et al., 2020) 25.8 46.5
Contriever 36.0 60.1
BM25 41.6 63.6

After Re-ranking with UPR (T0-3B PLM)

Contriever 44.6 66.3
BM25 44.9 68.0

Table 6: Macro-average nDCG@10 and Recall@100
scores on the BEIR benchmark. Performance numbers
of the baseline models are from Izacard et al. (2022).

vided, we use the checkpoints of DPR and MSS-
DPR trained on NQ. Results are presented in Ta-
ble 5. Re-ranking leads to a gain of 8-20% absolute
in top-20 accuracy and 4-10% in top-100 accu-
racy, with BM25 achieving the best results after
re-ranking. It also substantially narrows the gap
between BM25 and dense retrievers. Re-ranking
the union of BM25 and Contriever outputs outper-
forms the current best results by 6% and 3% in
top-20 and top-100, respectively.

4.4.2 BEIR Benchmark
We re-rank the top-1000 documents from Con-
triever and BM25 with the T0-3B PLM. Follow-
ing convention, we report the macro average of
NDCG@10 and Recall@100 metrics in Table 6.
Results demonstrate the effectiveness of UPR as
NDCG@10 scores improve by 3-8% absolute and
Recall@100 improves by 5-6%. We include per-
formance numbers on individual datasets with fine-
grained analysis in Appendix A.4.

5 Experiments: Question Answering

Finally, we show that UPR improves the perfor-
mance of full open-domain QA systems.

5.1 Method
An open-domain QA system consists of a retriever
and a reader component. The reader attends to the
retrieved passages to produce a final answer to the
question. We use the Fusion-in-Decoder (FiD; Izac-
ard and Grave (2021b)) model as the reader. In
FiD, each retrieved passage is concatenated with
the question and is then passed as an input to the T5
encoder (Raffel et al., 2020). Then the encoded rep-
resentations for all the passages are concatenated
which the T5 decoder leverages for cross-attention.
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Model top-K SQuAD-Open TriviaQA NQ # of
dev test dev test dev test params

Baselines

BM25 + BERT (Lee et al., 2019) 5 28.1 33.2 47.2 47.1 24.8 26.5 220M
ORQA (Lee et al., 2019) 5 26.5 20.0 45.1 45.0 31.3 33.3 330M
REALM (Guu et al., 2020) 5 - - - - 38.2 40.4 330M
DPR (Karpukhin et al., 2020) 25 - 38.1 - 56.8 - 41.5 330M
RAG-Sequence (Lewis et al., 2020) 50 - - 55.8 56.8 44.0 44.5 626M
Individual Top-K (large) (Sachan et al., 2021a) - - - - 59.6 - 48.1 1.2B
Joint Top-K (large) (Sachan et al., 2021a) 50 - - - 68.3 - 51.4 1.2B
FiD-base (Izacard and Grave, 2021b) 100 - 53.4 - 65.0 - 48.2 440M
FiD-large (Izacard and Grave, 2021b) 100 - 56.7 - 67.6 - 51.4 950M
FiD-KD-base (Izacard and Grave, 2021a) 100 - - 68.6 68.8 48.0 49.6 440M
FiD-KD-large (Izacard and Grave, 2021a) 100 - - 71.9 72.1 51.9 53.7 950M
EMDR2-base (Sachan et al., 2021b) 50 46.8 51.1 71.1 71.4 50.4 52.5 440M

Our Implementation

FiD-base (MSS retriever, T5 reader) 100 36.2 39.6 60.9 60.3 43.7 44.5 440M+ Inference with UPR re-ranked passages 43.7 50.1 68.5 68.9 45.8 47.3

FiD-base (DPR retriever, T5 reader) 100 48.8 45.8 67.9 68.5 49.4 50.8 440M+ Inference with UPR re-ranked passages 51.5 54.0 70.1 71.2 49.8 51.3

FiD-base (MSS-DPR retriever, T5 reader) 100 50.1 52.2 69.9 70.2 49.7 50.8 440M+ Inference with UPR re-ranked passages 51.9 55.6 71.5 71.8 49.9 51.5

FiD-large (MSS-DPR retriever, T5 reader) 100 51.9 54.4 71.5 71.6 51.8 53.6 950M+ Inference with UPR re-ranked passages 53.1 58.1 72.7 73.2 51.5 54.5

Table 7: Exact match scores for the open-domain QA task. We train one FiD model for each retriever as indicated
and then perform inference with its respective re-ranked outputs. Top-K denotes the number of retrieved passages
that are used by the reader to produce an answer. We report the baseline performance numbers from the respective
papers. The best performing models are highlighted in bold.

We train the FiD reader using standard negative
log-likelihood loss and teacher-forcing to gener-
ate an answer autoregressively. To understand the
effect of UPR on answer generation, we then do
inference with the previously trained reader and the
re-ranked passages for each question.

5.2 Results

For training FiD models, we use the top-100 re-
trieved passages and a batch size of 64. De-
tailed training hyperparameters are provided in Ap-
pendix A.1. During inference, an answer is gener-
ated using greedy decoding. For our experiments,
we train the FiD base and large models using the
retrieved documents from MSS, DPR, and MSS-
DPR retrievers. We re-rank the top-1000 passages
with UPR using the T0-3B PLM and then perform
inference with the top-100 re-ranked passages. We
conduct experiments on SQuAD-Open, TriviaQA,
and NQ datasets and report the exact match (EM)
scores for evaluation. We employ the same set of
evidence passages for all the datasets.7

7Previous work has often used the 2016 Wikipedia dump as
evidence for SQuAD-Open. As our evidence set is larger and
newer, some questions may be unanswerable, which renders a

Results are presented in Table 7. More accurate
passages after re-ranking improve the performance
of the pre-trained FiD models for all the retrievers.
Performing inference on the FiD-large model with
re-ranked MSS-DPR passages achieves new state-
of-the-art results, outperforming the pre-trained
FiD model by 1-3 EM points. Overall, this provides
a simple approach for obtaining performance gains
without the need to iteratively re-train (Izacard and
Grave, 2021a) or perform expensive end-to-end
training (Sachan et al., 2021b).

6 Related Work

Our work is based on re-ranking passages for open-
domain retrieval using pre-trained language models
(PLMs) which we have covered in earlier sections.
Here, we instead focus on covering previous work
related to generative pre-training, query likelihood
for document ranking, and open-domain QA.

Generative Pre-training and Instruction Tuning
Recently, there has been an increased adoption of
the generative pre-trained transformer (GPT) se-

fair comparison difficult. However, to alleviate dataset-specific
design choices, we adopt a common experimental setup.
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ries of models by the NLP community (Radford
et al., 2019). Among the interesting properties of
GPT models is their ability to understand task in-
structions specified in natural language and then
perform well on tasks in a zero-shot or few-shot
manner (Brown et al., 2020; Smith et al., 2022).
The zero-shot performance of GPT models further
improves when finetuning them on multiple differ-
ent tasks using task-specific instructions, which is
also known as instruction-tuning (Sanh et al., 2022;
Wei et al., 2022; Min et al., 2022).

Document Ranking based on Query Likelihood
In information retrieval, an appealing approach to
rank documents is by utilizing language models to
compute relevance scores for a query (Ponte and
Croft, 1998). Prior approaches estimated a count-
based language model for each document that was
used to compute query likelihood scores for rank-
ing (Zhai and Lafferty, 2001). However, these ap-
proaches suffer from issues such as data sparsity.
More recent approaches utilize PLMs such as GPT
or T5 to compute query likelihood (Nogueira dos
Santos et al., 2020). To improve ranking accuracy,
they perform supervised finetuning using query-
document pairs (Ju et al., 2021). Our work also
utilizes PLMs, but instead, we leverage a larger
instruction-tuned language model and apply them
in a zero-shot manner without finetuning.

Open-Domain QA involves producing answers
to information-seeking questions from large doc-
ument collections. Typical approaches consist of
retriever and reader networks, where the retriever
identifies a small number of documents to aid the
reader in producing answers (Chen et al., 2017).
To be scalable, retrievers are often modeled us-
ing dual-encoders (Lee et al., 2019) or with multi-
vector encoders (Zhou and Devlin, 2021) and then
to further improve retieval accuracy, re-rankers are
employed (Nogueira et al., 2020). Given retrieved
documents, a reader is then trained to generate a
short answer to the question (Izacard and Grave,
2021b; Sachan et al., 2021b).

7 Conclusions and Future Work

In this work, we propose UPR, an approach to
perform unsupervised passage re-ranking for open-
domain retrieval. To re-rank, UPR computes a rele-
vance score for question generation conditioned on
each retrieved passage using pre-trained language
models. Extensive experiments across a wide range

of QA datasets show that an unsupervised pipeline
consisting of retriever and UPR greatly outper-
forms strong supervised retriever models. In addi-
tion, UPR further improves the performance of su-
pervised retrievers. On the open-domain QA task,
by just performing inference using re-ranked pas-
sages and a pre-trained reader model, we achieve
new state-of-the-art results.

UPR presents several interesting directions for
future work. First, its applications to other retrieval
tasks such as improving source-code retrieval based
on textual queries can be explored. Second, an-
other promising direction would be to tune instruc-
tions according to the nature of the retrieval tasks.
For instance, when retrieving similar sentences in
the BEIR benchmark, variations of the instruction
prompt used in UPR can be explored. Finally, it
would also be interesting to investigate the extent
to which specialized language models such as the
ones finetuned to generate questions using passage-
questions data would further help in improving
retrieval.
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Limitations

A limitation of UPR is that re-ranking a large pool
of passages can have a high latency as it involves
performing cross-attention whose complexity is
proportional to the product of the question and
passage tokens and the number of layers of the
pre-trained language model (PLM). We have also
discussed this quantitatively in Sec 4.2.3. UPR also
shares the inherent limitation associated with all
the re-ranking approaches in that its maximum pos-
sible performance is dependent on the first-stage
retrieval. For example, when processing the top-
1000 retrieved passages, the upper limit of top-100
re-ranking accuracy would be the top-1000 accu-
racy of the retrieved passages. Finally, we want to
remark that UPR results might be sensitive to the
training data used to train the PLM. As a result, in
a domain-specific retrieval or question-answering
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task, PLMs trained on in-domain text (Gururangan
et al., 2020) are expected to be more accurate than
those trained on broad-coverage text.

Ethics Statement

The experiments conducted in the paper demon-
strate the usefulness of large language models for
information retrieval tasks when using English
Wikipedia as the evidence source. However, when
deployed in production, our work shares the typical
ethical risks associated with large language models.
There are chances that the re-ranked results may
not be fair to all communities. This can potentially
lead to an increased discrimination and exclusion
of marginalized groups. These risks can also per-
petuate to question-answering applications such as
generating toxic or fake text as answers. Therefore,
care should be taken before deploying our approach
in real-world or customer facing applications; it is
advisable to conduct tests and benchmark the mod-
els covering these aspects.
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A Appendix

A.1 Training Hyperparameters

Supervised Retriever We use Adam opti-
mizer (Kingma and Ba, 2015), a batch size of 128,
1 hard negative example for each positive pair, a
learning rate of 2e-5 with a linear decay, weight de-
cay of 0.1, and train for 3 epochs on SQuAD-Open,
40 epochs for NQ and TriviaQA, and 20 epochs on
WebQ. Model training was performed on 16 GPUs.

Fusion-in-Decoder Reader We use Adam opti-
mizer (Kingma and Ba, 2015), a batch size of 64, a
learning rate of 2e-5 with a linear decay, a weight
decay of 0.1, gradient clipping with a maximum
value of 1.0, and train for 3 epochs on SQuAD-
Open, 10 epochs for NQ and TriviaQA. Model
training was performed on 64 GPUs. For our exper-
iments, we use the Fusion-in-Decoder model imple-
mentation from the open-source repository (https:
//github.com/DevSinghSachan/emdr2) (Sachan
et al., 2021b).

A.2 Instruction Prompt Selection

We cross-validate using several prompts formulated
as natural language instructions to aid in question
reconstruction. We re-rank top-1000 BM25 pas-
sages of NQ development set using different in-
structions including the case with no instruction.
Results in Table 8 reveal that when prompted via in-
structions, PLMs perform better than the case when
not given any instructions. We also note that simple
but effective instructions can lead to a higher top-1
accuracy. Due to its better accuracy, we use the
instruction "Please write a question based on this
passage" for all the experiments in this paper.

A.3 Analysis

In Table 9, we present some examples of ques-
tions and their BM25 retrieved and UPR re-ranked
top-1 passages. While BM25 retrieves passages
with high lexical overlap, UPR owing to its cross-
attention mechanism is more able to understand the
relationships between tokens in the question and
passage and thus leads to an improvement in pas-
sage rankings over the first-stage retriever. In the
last example, we note that although the BM25 re-
trieved passage contains the ground-truth answer, it
should be considered a false positive result. On the
other hand, UPR leads to the correctly ranked pas-
sage but the exact match evaluation metric marks

it as incorrect as it does not match the full ground-
truth answer.

A.4 BEIR Benchmark Results

We re-rank the top-1000 documents from the
BM25 and Contriever retrievers with the T0-3B
pre-trained language model and evaluate perfor-
mance with NDCG@10 and Recall@100 metrics.
We present the results of the individual datasets
included in the BEIR benchmark in Table 10. On
both the metrics, the initial scores of BM25 are
much higher than those of Contriever. After re-
ranking, BM25 retriever obtains improvements on
12 out of 15 datasets while Contriever obtains im-
provements on 13 out of 15 datasets. On aver-
age, NDCG@10 scores improve by 3-8% and Re-
call@100 improves by 5-6%. The performance gap
between BM25 and Contriever also narrows down
after re-ranking.

Due to the diversity in datasets, there is a con-
siderable variation in performance gains across
them. In the case of BM25, the highest relative per-
formance gains are obtained by UPR on datasets
containing information-seeking questions such as
FIQA-2018, NQ, MS-Marco, etc. Similarly, for
Contriever, the relative gains are much higher for
the datasets of Trec-Covid, NQ, HotpotQA, etc.,
where the queries are questions. On other datasets,
the relative gains from re-ranking are moderate to
little.

For both the retrievers, we also observe a drop
in performance on the fact-verification datasets
of Fever and Climate-fever (results highlighted in
red color in Table 10). In addition, re-ranking
BM25 also results in a drop in performance on
the Touche-2020 dataset. We note that in these
datasets, the queries are statements such as claims,
which presents a different retrieval challenge for
re-ranking. We anticipate that by experimenting
with different prompt instructions in UPR to better
suit the end-task and cross-validating with the num-
ber of top-K documents to be re-ranked, results can
be improved on these datasets. However, we leave
these explorations as a part of future work.

B Reproducibility Checklist

B.1 For all reported experimental results

• A clear description of the mathematical set-
ting, algorithm, and/or model: This is pro-
vided in the main paper in Sec. 2.
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Retriever / Instruction Prompt NQ (dev)
Re-Ranker Top-1 Top-5 Top-20 Top-100

BM25 22.3 43.8 62.3 76.0

+ UPR ‘’ 28.3 56.1 73.2 82.4
+ UPR ‘Score the following question based on this passage.’ 35.3 62.6 76.4 83.0
+ UPR ‘A possible question based on this passage is.’ 33.8 61.6 76.2 83.1
+ UPR ‘This is a relevant document for the following question.’ 33.7 61.8 76.0 83.0
+ UPR ‘Please write a question based on this passage.’ 36.1 62.8 76.8 83.1

Table 8: Comparison of different instruction prompts when applied to UPR framework and evaluated on the NQ
development set. Results highlight that UPR works better with simple instructions. Best results are highlighted in
bold.

• A link to a downloadable source code, with
specification of all dependencies, including ex-
ternal libraries: We are submitting the source
codes as a zip file.

• A description of computing infrastructure
used: We run experiments on a cluster con-
taining V100 GPUs where each node’s spec-
ifications are: Number of CPUs: 256, Phys-
ical Memory: 1.2TB, GPU model: 8 x
Nvidia V100, GPU architecture and memory:
Volta/32GB, Arch: x86_64, and Disk size:
4TB. For experiments in Sec. 4.2.3, we used
a single node of 8 x A100 GPUs of 40GB
memory.

• The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or esti-
mated energy cost: We discuss the average
runtime of performing inference with UPR in
Sec. 4.2.3. However, we want to highlight
that our codes were not carefully optimized to
minimize runtime or to make optimal use of
the hardware resources.

• Number of parameters in each model: We
provide these details in Sec. 3.4 and Table 7.

• Corresponding validation performance for
each reported test result: The re-ranking ex-
periments does not require validation set for
model selection, as we only perform inference
for each query using the language model and
retrieved passages. If the program committee
or reviewers require the validation set perfor-
mance, we will include it in the Appendix in
the final version of the paper. Our ablations
and analysis are conducted on the validation
set of datasets. For the open-domain QA ex-
periments, we also report the performance on
the validation set.

• Explanation of evaluation metrics used, with
links to code: Our evaluation metrics are
standard and widely used by the community.
We provide their details in the main paper in
Sec. 4. The code is submitted with the paper.

B.2 For all results involving multiple
experiments, such as hyperparameter
search

• The exact number of training and evaluation
runs: We provide training details for all mod-
els in Sec. 3.5.

• Hyperparameter configurations for best-
performing models: We provide the hyper-
parameter settings in Appendix A.1.

• The bounds for each hyperparameter: As
described in Appendix A.1, our model and
training setting uses standard hyperparam-
eters such as different dropouts ∈ [0, 1),
warmup ratio of optimizer ∈ [0.01, 0.05],
weight regularization ∈ [0, 1], and learning
rate ∈ [1e−4, 1e−5].

• Number of hyperparameter search trials:
maximum 5.

• The method of choosing hyperparameter val-
ues (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among
them (e.g., accuracy): For the open-domain
QA experiments, we performed manual hyper-
parameter tuning. We selected the best hyper-
parameter using EM results on the validation
set.

• Summary statistics of the results (e.g. mean,
variance, error bars, etc.): The re-ranking
experiments are based on performing infer-
ence using open-source PLMs using a single
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prompt. As such, these summary statistics are
not applicable to UPR. The open-domain QA
experiments are compute expensive utilizing a
lot of CPU and GPUs resources and take time
in the range of tens of hours. Therefore, due to
computational and time constraints perform-
ing multiple runs for each experiment was not
feasible. Therefore, we adopted the approach
of using the same seed value (1234) for all the
training runs.

B.3 For all datasets used
• Details of train/validation/test splits: We use

the standard training / dev / test splits whose
details are provided in Sec. 3.1 and Table 1.

• Relevant statistics such as number of exam-
ples and label distributions: We provide
dataset statistics details in Table 1.

• An explanation of any data that were excluded,
and all pre-processing steps: We include the
relevant details in Sec. 3.

• For natural language data, the name of the
language(s): Our datasets are in English lan-
guage.

• A zip file containing data or link to a down-
loadable version of the data: All the datasets
used in this work are open-source available
and widely used by the community. Please
refer to the respective dataset papers for the
download links.

• For new data collected, a complete descrip-
tion of the data collection process, such as
instructions to annotators and methods for
quality control: This is not applicable to this
work.
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Question / Answer BM25 BM25 + UPR

Question: when did
beauty and the beast
come out on dvd?
Answer: June 6 , 2017

Title: Beauty and the Beast: The Enchanted
Christmas
Passage: these traits were incorporated into
Forte, the pipe organ, who did not want the Beast
to become human again. Unlike the other charac-
ters, Forte was animated entirely by computers.
The film was first released on VHS on November
11, 1997. A bare-bones DVD was released on
October 13, 1998. Both editions were quickly
taken out of print and the film remained unavail-
able until Disney released the Special Edition
DVD and VHS on November 12, 2002, just af-
ter the studio released the original filmś Special
Edition DVD release. The new DVD featured a
remake music video of the song "As Long’

Title: Beauty and the Beast (2017 film)
Passage: Golden Globe Awards. Disney re-
leased the final trailer on January 30, 2017.
"Beauty and the Beast" was released on Blu-
ray, DVD and Digital HD on June 6, 2017. The
film debuted at No. 1 on the NPD VideoScan
overall disc sales chart, with all other titles in the
top 20, collectively, selling only 40% as many
units as "Beauty and the Beast". The movie re-
gained the top spot on the national home video
sales charts during its third week of release. The
movie became available on Netflix on Septem-
ber 19, 2017. "Beauty and the Beast" grossed
$504 million in the

Question: who sings i
’m back in the saddle
again?
Answer: Gene Autry

Title: Back in the Saddle (film)
Passage: remember her as "an interesting ac-
tress" who had talent, but "seemed doomed to
work in nothing but B-westerns." Remembering
her work on "Back in the Saddle", Wells would
later recall, "Actually, I didnt́ have much to do
with Gene in the film, I had more scenes with Ed-
ward Norris." Regarding the singing sequences,
she remembered, "Usually I was dubbed but, oc-
casionally, if it wasnt́ something too difficult, I
was allowed to do it. They prerecord the songs,
then a huge machine comes onto the stage and
you lip-sync to the recording." "Back in the Sad-
dle" was filmed January 21 to

Title: Back in the Saddle Again
Passage: "Gene Autryś Melody Ranch" which
premiered over the CBS Radio Network on Jan-
uary 7, 1940 where the show ran until 1956. The
song also became the title song for the Autry
film "Back in the Saddle" (Republic Pictures,
March 14, 1941). Gene Autry recorded "Back
in the Saddle Again" for the first time on April
18, 1939 in Los Angeles for Columbia Record
Corporation, matrix number LA 1865, which
was originally issued on Vocalion 05080. LA
1865 also issued on the Conqueror, OKeh, and
Columbia labels. Early Vocalion and Conqueror
labels say "BACK TO THE SADDLE". Con-
queror was a private.

Question: who did the
astros beat in the world
series?
Answer: Los Angeles
Dodgers

Title: History of the Houston Astros.
Passage: starters Ezequiel Astacio and Wandy
Rodríguez were also successful. In July alone,
the Astros went 22–7, the best single month
record in the club’s history. The Astros finished
the 2005 regular season by winning a wild card
berth on the final day of the regular season, just
as they did in 2004, becoming only the second
team to come from 15 games under .500 to enter
the post season, the other team being the 1914
Boston Braves, now the Atlanta Braves. (Those
Braves would go on and sweep the Philadelphia
Athletics in the World Series. Coincidentally,
the Astros beat out

Title: 2017 Houston Astros season
Passage: in four games. Houston then advanced
to the AL Championship Series (ALCS) and
defeated the New York Yankees in seven games
for their first American League pennant. It was
the second league championship in franchise
history, and first since 2005 and they became
the first team in history to make it to the World
Series as members of both the National League
and the American League. Finally, the Astros
faced and defeated the Los Angeles Dodgers
in seven games in the World Series, garnering
the first World Series title in franchise history.
During the regular season, the Astros featured
the

Question: who won the
big 10 football champi-
onship in 2016?
Answer: Penn State Nit-
tany Lions

Title: 2016 Big Ten Football Championship
Game
Passage: 2016 Big Ten Football Championship
Game The 2016 Big Ten Football Championship
Game was played December 3, 2016 at Lucas
Oil Stadium in Indianapolis, Indiana. It was
the sixth annual Big Ten Football Championship
Game to determine the 2016 champion of the
Big Ten Conference. The 2016 Big Ten Cham-
pionship Game pitted the Wisconsin Badgers,
champions of the West Division, who made its
fourth appearance in six years in the conference
title game, against the East Division champion
Penn State Nittany Lions, who made their first-
ever appearance in the conference championship
game. Penn State and Ohio State had identical
8–1

Title: 2016 Big Ten Conference football season
Passage: since the conference instituted divi-
sions. Wisconsin won the West Division for the
fourth time in the six years the division had ex-
isted. In the Big Ten Championship held on
December 3, 2016 at Lucas Oil Stadium in In-
dianapolis, Indiana, Penn State defeated Wis-
consin 38–31 to win the Big Ten. Several Big
Ten teams changed head coaches in 2016. Tracy
Claeys at Minnesota had the "interim" tag re-
moved from his title and served as the perma-
nent head coach. D. J. Durkin was the new head
coach at Maryland taking over for Randy Edsall
after having spent the previous year as the

Table 9: Selected examples from the NQ development set of the top-1 retrieved passage from BM25 and the top
passage obtained by UPR re-ranking of 1000 passages. If the answer exists in the passage it is highlighted in
bold. UPR leverages powerful cross-attention between the question and passage tokens and hence is able to obtain
improved passage rankings.
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Dataset #Q #E
NDCG@10 Recall@100

BM25 Contriever BM25 Contriever
original re-ranked original re-ranked original re-ranked original re-ranked

Scifact 300 5K 66.5 70.3 64.9 69.6 90.8 94.2 92.6 94.3
Scidocs 1000 25K 15.8 17.0 14.9 17.3 35.6 39.0 36.0 39.0
Nfcorpus 323 3.5K 32.5 34.8 31.7 33.3 25.0 28.0 29.0 31.3
FIQA-2018 648 57K 23.6 44.4 24.5 45.0 53.9 67.7 56.2 72.8
Trec-covid 50 0.2M 65.5 68.8 27.4 60.4 49.8 54.8 17.2 36.7
Touche-2020 49 0.4M 36.8 20.6 19.3 21.3 53.8 45.7 22.5 42.4
NQ 3452 2.7M 32.9 45.4 25.4 44.2 76.0 87.7 77.1 88.4
MS-Marco 6980 8.8M 22.8 30.2 20.6 30.7 65.8 76.9 67.2 79.1
HotpotQA 7405 5.2M 60.3 73.3 48.1 72.2 74.0 82.5 70.4 80.8
ArguAna 1406 8.7K 31.5 37.2 37.9 50.3 94.2 98.2 90.1 97.5
CQADupStack 13145 0.5M 29.9 41.6 28.4 41.7 60.6 70.1 61.4 71.3
Quora 10000 0.5M 78.9 83.1 83.5 82.8 97.3 98.8 98.7 98.9
DBpedia 400 4.6M 31.3 35.4 29.2 33.8 39.8 53.3 45.3 47.8
Fever 6666 5.4M 75.3 59.1 68.2 57.3 93.1 84.2 93.6 83.1
Climate-Fever 1535 5.4M 21.3 11.7 15.5 9.5 43.6 39.2 44.1 31.3

Average 41.6 44.9 36.0 44.6 63.6 68.0 60.1 66.3

Table 10: UPR re-ranking results on the BEIR benchmark (Thakur et al., 2021). #Q and #E denotes the number of
queries and evidence documents, respectively. Upon re-ranking the top-1000 documents with the T0-3B language
model, on average, the performance of both BM25 and Contriever improve on the NDCG@10 and Recall@100
metrics. We also observe a drop in scores on some datasets which is highlighted in red.
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