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Abstract

Multi-modality support has become an inte-
gral part of creating a seamless user experience
with modern voice assistants with smart dis-
plays. Users refer to images, video thumbnails,
or the accompanying text descriptions on the
screen through voice communication with AI
powered devices. This raises the need to either
augment existing commercial voice only dia-
logue systems with state-of-the-art multimodal
components, or to introduce entirely new ar-
chitectures; where the latter can lead to costly
system revamps. To support the emerging vi-
sual navigation and visual product selection
use cases, we propose to augment commer-
cially deployed voice-only dialogue systems
with additional multi-modal components. In
this work, we present a novel yet pragmatic
approach to expand an existing dialogue-based
context carryover system (Chen et al., 2019a)
in a voice assistant with state-of-the-art multi-
modal components to facilitate quick deliv-
ery of visual modality support with minimum
changes. We demonstrate a 35% accuracy im-
provement over the existing system on an in-
house multi-modal visual navigation data set.

1 Introduction

Figure 1: Product Selection Use Case

Tracking the state of the conversation and under-
standing context is a crucial component in voice-
based dialogue systems. The Context Carryover

Figure 2: Scene Selection Use Case. The images are
from unsplash.com and used here only for illustrative
purposes.

Figure 3: Video Selection Use Case

(CC) framework (Chen et al., 2019a; Naik et al.,
2018; Sharaf et al., 2018; Rastogi et al., 2019) is
a framework that handles identification and carry-
over of relevant context information in a multi-turn
dialog interaction between a voice assistant and
the user. The CC framework determines which
tokens and intents in the most recent system-user
interaction history are relevant as supporting infor-
mation to fulfill user’s current request. The details
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of the context carryover framework are well docu-
mented in (Chen et al., 2019a). One key limitation
of the framework is that it is purely text-based, and
therefore it struggles to capture user interactions
that involve visual components. In this work, we
introduce augmentations that enable the Context
Carryover framework to deal with multimodal use
cases. We focus on two specific use cases that’s
related to a user’s visual navigation and selection
experience: Visual product selection and visual
scene and video selection.

Visual product selection, demonstrated in Fig.
1, consists of the use case where the user is referring
to a single product on the screen. In the provided
example, the user is shopping for a handbag and the
voice assistant is displaying a number of handbags
on the screen. The user selects one out of many
handbags on the screen using a referring utterance,
for instance the color of the handbag. The user
is free to use any other natural language phrase
that can differentiate the product from the others
displayed on the screen.

In visual scene and video selection, as seen in
Fig. 2, and Fig. 3, the user can refer to a scene or
movie that has multiple products with a more clut-
tered visual landscape. Here, a “scene image” is
defined as an image of an individual in a landscape
wearing multiple products (dress, hat, purse, sun-
glasses etc.). The user then tries to select a scene
using a referring expression (e.g., “The scene with
the lady in the denim jacket”). In Fig. 3, a movie
can be associated with multiple frames and the user
can refer to the movie by referring to an action or
content from a specific frame.

The main contributions of our work are:

1. We introduce a Vision Augmentation
scheme that enables ingestion of visual
content in a dialogue-based context carryover
framework.

2. We introduce an Aligned Vision and Text
Augmentation that incorporates the latest
state-of-the-art developments in multi-modal
contrastive learning to a dialogue-based con-
text carryover framework.

3. The newly proposed methods result in signif-
icant accuracy improvements on an in-house
data collected through Amazon Mechanical
Turk (MTurk). We present sensitivity analy-
ses that display the effectiveness of the var-
ious suggested model augmentations on our

in-house dataset.

4. We introduce a synthetic data generation
pipeline that generates synthetic visual prod-
uct selection data that helps to train the mod-
els and cuts down on manual annotation and
MTurk survey costs.

2 Related work

Thanks to the advent of Transformer-based models
over the past few years, multimodal representations
have seen significant advances. The types of mul-
timodal models can be roughly categorized into
three, a) Single Encoder (Girshick et al., 2013;
Long et al., 2014; Simonyan and Zisserman, 2014;
Tan and Bansal, 2019; Chen et al., 2019b; Zhang
et al., 2021; Li et al., 2020; Wanigasekara et al.,
2022), b) Dual Encoder (Radford et al., 2021; Li
et al., 2021a; Zhang et al., 2020; Jia et al., 2021;
Yuan et al., 2021), and c) Encoder-Decoder mod-
els (Vinyals et al., 2014; Wang et al., 2021, 2022;
Piergiovanni et al., 2022; Li et al., 2022). Attempts
at unifying these foundational models have also
been made in (Yu et al., 2022; Singh et al., 2021).
Single Encoder models appear early in the multi-
modal literature and pave the way for the other 2
types of models. For this family of models, usually
the image and text representations exist in sepa-
rate spaces and there is an ensuing fusion layer.
Dual Encoder models leverage image-text con-
trastive loss (Oord et al., 2018; He et al., 2019;
Chen et al., 2020; Tian et al., 2019) during train-
ing, exhibit higher image-to-text alignment and
bring the image, text representations to a common
more aligned representation space. They perform
well on image-text retrieval tasks but underperform
in vision-language understanding tasks requiring
higher reasoning, e.g., Visual Question Answering
(VQA), and Natural Language Inference (NLI).

Our current task of Multimodal Context Carry-
over uses the latest advances in the multimodal
representation learning space and injects state-of-
the-art components with minimal changes into a
framework for dialog tracking and slot selection,
and results in a system that can handle multimodal
user-system dialog interaction. Our current multi-
modal use cases are set up to be similar to a text-
to-image retrieval task that occur within the con-
text of a user-system dialog interaction. Thus, we
incorporate the latest developments in Dual En-
coder design in our work, since the approach is
well suited for the multimodal text-to-image re-
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trieval step. The latest state-of-the-art models that
incorporate multimodal representations to dialogue
state tracking systems, e.g., VDST (Pang and Wang,
2019), Flamingo (Alayrac et al., 2022), and VDTN
(Le et al., 2022), would require costly system re-
vamps.

Recently, Kottur et al. (2021) released a novel
multimodal conversation dataset with labeled dia-
logue state (e.g., entity and dialogue act), which
motivated further studies (Garcia et al., 2022; Agar-
wal et al., 2021). These datasets contain dialog act
and products but do not have the scene and video
information required for our purposes. For our cur-
rent study we resort to collecting our own dataset
through Amazon Mechanical Turk which is catered
for our commercial needs.

3 Models

3.1 Problem Formulation

Each interaction between the user and the sys-
tem can be formulated as a sequence of utter-
ances �, consisting of alternating utterances be-
tween the user * and the system (: � =
(ℎ*0 , ℎ

(
1 , ℎ

*
2 , ...., ℎ

{*,( }
38BC

), where each element ℎ ∈
� is an utterance either by the user, ℎ* or the sys-
tem, ℎ( . We refer to � as the dialog history. A
subscript 38BC denotes the utterance distance, which
measures the offset from the most recent user ut-
terance (ℎ*0 ). The 8Cℎ token of an utterance with
distance 38BC is denoted as ℎ38BC [8].

Each utterance in the dialog history, � consists
of slots. A slot G = (38BC, :G , EG) in a dialog is de-
fined as a key-value pair that contains information
about an entity. For e.g., in Fig. 1 the user says,
“Show me the one with the brown handle”. Here
one of the slots would be [COLOR:Brown]. Each
slot is defined by the distance of it’s corresponding
utterance 38BC, slot key :G and slot value EG . We
refer to - as the context slots which comprise of
all the slots in the dialog history.

In addition to the context slots - which are de-
rived from the dialogs, we also have on-screen lists
which can be present in the current turn as shown
in Fig. 1. Users can reference items in these lists
either through visual features or through references
to the title, e.g., “Canvaslove Rose one ...”. A list
object ; = (:;, E;, �;) in the current turn is defined
as a key-value pair along with the associated image.
The key :; in our case is ProductTitle, the value E;
is the title itself and �; refers to the image associ-
ated with the list object. We refer to ! as all the list

objects in the current turn.
Given the dialog history �, context slots - and

the on-screen list !, we can define the candidate
slots as � = (- ∪ !). The task can be formulated as
correctly identifying the subset of candidate slots
� which are relevant to the current turn. A binary
decision is made jointly over each of these can-
didate slots � by the model �9>8=C , which takes
the slot interdependencies into consideration, i.e.,:
�9>8=C (�, �) = �20AA H , where �20AA H ⊆ �.

The full details of the context carryover (CC)
architecture which forms our baseline are provided
in Appendix A.1. The baseline solution is not ca-
pable of ingesting visual content and hence cannot
perform selection based on visual features. In Sec-
tion 3.2, we introduce the vision and vision aligned
text augmentations to the CC model, which add
the capability to process visual features and are the
main contributions of this paper.

3.2 Augmentations

3.2.1 Vision Augmentation

Recently CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021), ALBEF (Li et al., 2021b), ConVIRT
(Zhang et al., 2020) train dense, aligned image-text
embeddings using contrastive loss. The training re-
quires having # matched (image, text) pairs where
the text can be free form. The bidirectional con-
trastive losses for the 8Cℎ image-text pair is given
in equation 1 and equation 2 in Appendix A.2. The
image and text are projected onto a shared embed-
ding space I ∈ R3 , T ∈ R3 respectively. 〈I8 ,T8〉
represents the cosine similarity and g ∈ R+ is a
temperature parameter. The losses are then added
as seen in equation 3 in Appendix A.2.

Our on-screen image selection use case
is slightly different from this generic paired
(image, text) training setting. In our case, the user
makes a reference to a specific product, scene, or
movie that is shown on the screen, which is more
akin to a text-to-image retrieval task. The user also
focuses on differentiating the desired product from
the list of products shown on the screen. This is
slightly nuanced than a generic text description of a
product as the referring utterance is conditioned on
the desired image and other surrounding images.

In our initial solution, we obtain the CLIP vision
embeddings for the product images and add it to the
CC framework as shown in Fig. 4a) which we term
as the Vision Augmentation. In Fig. 4a), b), the
term List SeMI stands for a List of [Se]mantically
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Figure 4: Augmented Context Carryover Models. Vision only augmentation (a), Vision, text and similarity score
augmentation (b)

[M]eaningful [I]mages. More concretely, each
product shown to the customer is represented by
a list object ; = (:;, E;, �;) and considered as a po-
tential carryover candidate as mentioned in Section
3.1. As part of the Vision Augmentation, we use the
CLIP visual embedding of the product image as �; .
These product list objects with CLIP visual embed-
dings are then sent to the CC Candidate Encoder.
The CC Encoder-Decoder framework subsequently
decides whether to carry over the list product ob-
ject to the next dialogue state, which would signify
a product selection. The rationale here is to simply
augment the existing system with the visual modal-
ity and evaluate the effectiveness on a multimodal
dataset. Even though we select CLIP as our initial
vision embedding, the system is compatible with
any embedding trained with a contrastive loss (e.g.
we also show similar performance improvements
on ALBEF (Li et al., 2021b)).

3.2.2 Aligned Vision and Text Augmentation

Using the notation from Section 3.1, at a given
moment, there are = product list item objects
; = (:;, E;, �;) shown to the user. Here, :; is the key
word ProductTitle, the value E; is the actual title
itself and �; is the associated image. Given the prod-
uct images {�1, �2, ...�=}, their titles {E1, E2, ..., E=},
and the most recent user referring utterance ℎ*0
which is obtained from the dialog history, our task
here is to find the best product list object ; that
matches the user’s request ℎ*0 . We utilize CLIP
to bring images {�1, �2, ...�=} and the textual refer-

ring expression ℎ*0 to the same embedding space,
and get the dot product similarity between each im-
age in {�1, �2, ...�=} and ℎ*0 , as shown in Fig. 4b).
In other words, we obtain the similarity score per
candidate list image with the referring utterance.
We term this as the Aligned Vision and Text Aug-
mentation. The pseudocode for this operation is
shown in Fig. 7, in Appendix A.3. The resulting
multimodal dot product tensors are shown in Fig.
8, in Appendix A.4.

4 Experiments

4.1 Datasets

In this section, we describe the newly gathered
Amazon Mechanical Turk (MTurk) multimodal
dataset and the pre-existing text-only dataset.

4.1.1 Multimodal dataset
The MTurk dataset is created by showing Mechani-
cal Turkers (MTurkers) product images, scene im-
ages, video thumbnails and asking them to pick
one out of the many products, scenes or movies
using a single referring utterance. We define one
such referring act that includes multiple images
and a single referring utterance as a single “in-
stance”. The newly collected MTurk dataset has
a Train/Dev/Test split sizes of 33,526/4,087/4,152
instances respectively. Additional details about the
dataset are included in the Appendix A.5.

We also utilize an internally annotated dataset,
that we refer to as the existing Context Carryover
dataset, details of which can be seen in Appendix
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Table 1: Results on the multimodal test set for various CLIP augmentation schemes and the CC baseline. The +
<modality type> indicates an augmentation.

# Visual
Emb. Model

Slot Level

Weighted (P, R, F1) Accuracy Δ

P R F1 Δ

1 None Baseline 0.59 0.63 0.60 - 0.6301 -

2

CLIP

+ Utterance Text 0.65 0.67 0.54 -10.05% 0.6671 5.87%
3 + Similarity 0.81 0.80 0.78 30.41% 0.7955 26.25%
4 + Visual 0.78 0.78 0.78 31.12% 0.7811 23.96%
5 +Visual + Utterance Text 0.79 0.78 0.79 32.26% 0.7844 24.49%

6
{+ Visual + Utterance Text
+ Similarity }
(with non-contrastive fine-tuning)

0.80 0.80 0.79 33.35% 0.8003 27.01%

7 { + Visual + Utterance Text
+ Similarity } 0.85 0.85 0.85 42.15% 0.8484 34.65%

A.6.

4.1.2 Synthetic Visual Data Generation
Pipeline

Figure 5: Synthetic Data Generation

Even though we use MTurk data for our current
study, it is expensive to generate and infeasible to
extend to more domains. An alternative cheaper
and scalable approach to quickly collect carryover
data in multimodal settings is to employ a data syn-
thesizer. The synthetic data generation process is
as follows; for each synthetic data sample, we first
randomly sample a slot type (e.g., bag) and visual
attributes (e.g., red) to create slot candidates. Note
that for each slot, we only randomly select one type
from a pre-defined object list, and we sample three
different visual attributes under the same attribute
category (e.g., color) from a pre-define attribute
list. For example, we select one slot type bag from
the object list, and then we draw three visual at-
tributes red, blue, orange from the attribute list.
We then combine them to obtain three slots: red
bag, blue bag, orange bag to simulate the screen
shown to the user when shopping for bags. In the
second step, we retrieve an image from a product
image catalog for each generated slot. To do so,
we employ CLIP to get text embeddings of each
slot: {e1, e2, e3}. For each image in the product

catalog, we precompute the image embedding with
the same CLIP model: { p1, . . . , p# }. We use the
inner product as the similarity metric to perform
the image retrieval: �G = arg max8 e>G p8 , where �G
denotes the image selected for slot G. To add more
randomness, we retrieve the top-: similar images,
and randomly select one image from the : candi-
dates. After getting all of the product images (and
associated metadata), we simulate a user selection
phrase by randomly selecting one out of the three
generated slots as the ground-truth and fill it in a
predefined template.

4.2 Results

We compare various combinations of vision, text
and similarity augmentation schemes against the
baseline CC model in Table 1. All the models are
trained on a combined CC and multimodal MTurk
training dataset. Since we are interested in how our
models perform on multimodal use cases, we show
the results only on the multimodal test dataset. Fur-
ther details of the experiment setup, such as model
training details, are described in the Appendix A.7.

In Table 1, row 1 is the current baseline CC
model, and rows 2-7 are the augmentations. Aug-
menting the existing CC framework with only
CLIP Visual components (Table 1, row 4) gives a
23.96% accuracy improvement over the baseline on
the multimodal test set. When adding CLIP Vision
and CLIP user current utterance Text embeddings
(Table 1, row 5), we see accuracy gains increase to
24.49%. The highest improvement comes when the
CLIP vision, text embeddings and the dot product
similarity scores (Table 1, row 7) are given to the
CC framework with a 34.65% accuracy improve-
ment over the baseline. These methods keep the
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Table 2: Performance improvements on MTurk test data when MTurk training data is added to the CC train data
set.

# Model Train
Data

Slot Level

Weighted (P, R, F1) Accuracy Δ

P R F1 Δ

1 baseline CC 0.53 0.67 0.53 - 0.67 -
2 baseline MTurk 0.68 0.68 0.68 27.81% 0.68 2.34%
3 baseline CC + MTurk 0.59 0.63 0.60 11.48% 0.63 -5.31%
4 Visual CC + MTurk 0.78 0.78 0.78 46.17% 0.78 17.39%

CLIP embeddings frozen, but in Table 1, row 6 we
attempt to fine-tune the CLIP embeddings in an
end-to-end fashion using the CC framework. We
find that fine-tuning the CLIP embeddings in our
setting does not provide further gains. This maybe
because the generic loss of the CC framework is
non-contrastive (i.e., it’s cross-entropy based) and
thus it does not improve the effectiveness of CLIP
embeddings being further fine-tuned. A similar
observation is recorded in parallel work Flamingo
(Alayrac et al., 2022) and likened to “catastrophic
forgetting”. In Table 1, row 3, we exclude the vi-
sion and textual embeddings altogether and provide
only the dot product similarity scores. We find that
only providing similarity scores (row 3) is on par
with row 5 which is to provide both visual and tex-
tual embeddings. This has implications where the
CC encoder can simply work with similarity scores
instead of embeddings. Finally, in row 2 we only
give the CC framework the CLIP Text embeddings
(i.e., no vision components) and we find the perfor-
mance to be worse than the other augmentations.
We hypothesize that this is because the CC frame-
work gets textual information from two sources in
row 2. One from the dialogue history, which it
processes in the usual fashion described in Section
A.1 through the CC slot carryover framework, and
one via the CLIP Text embeddings. Since there
is no accompanying visual input, the CLIP Text
input is redundant and might add additional noise,
which leads to minor accuracy improvements and
a weighted F1 degradation seen in row 2.

We are also interested in seeing how the CC base-
line model behaves when the multimodal MTurk
training data is added to its training set. More
simply put, we want to check whether adding the
MTurk training data to the CC framework will im-
prove the performance of the CC baseline on the
multimodal MTurk test set, even if the CC baseline
is a purely text-based system that have no notion
of the visual modality. From Table 2, row 1 we

see that even when no multimodal training data is
added, the CC baseline still has an absolute accu-
racy of 67% on the MTurk test set. This can be at-
tributed to the CC framework using the product im-
age titles which are textual to make inferences. In
Table 2, row 2 when the baseline is only trained on
the multimodal MTurk dataset (without the 1.28M
pre-existing CC dataset) there is an 2.34% accuracy
improvement relative to the baseline, mainly due
to training and testing distributions being similar.
In Table 2, row 3, when the data sets are combined
during training, the baseline shows a −5.31% degra-
dation compared to Table 2, row 1 which indicates
that the CC baseline is not equipped to handle a
combined multimodal and non-multimodal dataset.
In Table 2, row 4 we see that the best results are ob-
tained when visual modality related model changes
are added and the model is trained on the combined
multimodal and pre-existing CC dataset.

We also experiment with ALBEF (Li et al.,
2021b) embeddings and show results in Appendix
A.8. We anticipate the science community to
produce ever-improving dense multimodal embed-
dings as time goes on, and hope that our simple yet
effective augmentation enables commercial frame-
works to utilize the latest state-of-the-art embed-
dings with minimal changes.

5 Conclusion

We augment the existing Context Carryover frame-
work with Visual and Vision Aligned Text com-
ponents. We collect a multimodal dataset which
mimics real world customer interactions to train
and evaluate our models. We show a 35% accuracy
improvement when the existing CC framework is
augmented with Vision and Vision Aligned Text
components.
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Limitations

Our solution is only limited to the English lan-
guage: our training data only contain products with
English titles and all of the referring expressions
are in English. Transferring the model to another
language will require re-training the model and
potential architecture changes. Furthermore, the
Mturkers who provided the experssions in our study
may not be representative of the user demographics,
and the data may not provide a well grounded proxy
of user behavior. While collecting more data can
mitigate some of these limitations, curation and val-
idation of visual expressions is a time-consuming
and expensive process, which is why our dataset is
limited in size.

Our models leverage visual embeddings from
systems such as CLIP, ALBEF which have their
own set of limitations. For instance, CLIP is known
to fail in cases which requires counting objects, or
relations of multiple objects in an image. Thus,
visual models leveraging CLIP embeddings will
have issues with referring expressions that refer to
counts of objects. Further, we need to be cognizant
and optimize for inference latency, which prevents
us from using large scale language or vision models
which could potentially improve upon the current
solution.

Ethics Statement

Although our solution has no unethical applications
or risky broader impacts, we need to consider as-
pects of fairness. In our setting, the images shown
to the users can contain images of people along
with the products. We need to consider how sen-
sitive queries, e.g., ones that refer to protected at-
tributes of the people in the image or expressions
that contain hateful or derogatory speech, should
be resolved.

During the data collection and model training
process we take strong consideration on the type
of referring expression we are curating and using
to train the model. Expressions that contain ref-
erences to protected and/or physical attributes of
people are filtered out to ensure that our model is
not capable of handling sensitive queries.
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A Appendix

A.1 Existing Context Carryover framework

Our baseline architecture follows a similar ap-
proach to Chen et al. (2019a), where they jointly
model the slots to make a slot carryover decision.
One of the key differences in our model is that
we act on entities extracted from an on-screen list
along with the entities in the discourse history. We
highlight the components of the existing CC model
as follows:

Candidate Generation We create candidates
based on a handcrafted slot map, which defines
carryover compatibility between each pair of slots.
We create a set of slots - from the context by lever-
aging the slot map to identify slots compatible with
the current turn slots. We also append the candi-
dates with the on-screen list entities.

Slot Encoder Given a candidate slot, which is
represented as a (slotKey, slotValue), we average
the word embeddings of the slot pair tokens and
convert them into a fixed-length vector representa-
tion x ∈ '3G .

Dialog Encoder We serialize the tokens in the
dialog and use an LSTM (Hochreiter and Schmid-
huber, 1997) to create a fixed length embedding.
c380;>6 = !()"(�), where c380;>6 is the dialog
encoding and H is the dialog.

Intent Encoder The intent tagged by an up-
stream Natural Language Understanding module
is encoded by averaging the word embeddings
of the tokens to create a fixed length embedding
int ∈ '38=C .

Decoder Given the encoded representation of
the slots {G1, ..., G=}, dialog c380;>6, and intent
int, we use the self-attention decoder presented
in (Chen et al., 2019a). Self-attention allows the
decoder to model relationships between all the slots
in the dialog, which is shown to yield better results.
In our model, we use 12 attention heads, which
allows the model to jointly attend to information
from different perspectives at different positions.

A.2 Contrastive Learning equations

L(8<064→C4GC)
8

= − log
exp (〈I8 ,T8〉 /g)∑#
:=1 exp (〈I8 ,T:〉 /g)

,

(1)

L(C4GC→8<064)
8

= − log
exp (〈T8 , I8〉 /g)∑#
:=1 exp (〈T8 , I:〉 /g)

.

(2)
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The final loss is a weighted combination of the
two losses averaged over the training dataset. Here
_ ∈ [0, 1] is a scalar weight.

(3)
L =

1
#

#∑
8=1

(
_L(8<064→C4GC)

8

+ (1 − _)L(C4GC→8<064)
8

)
.

A.3 Pseudocode for the vision aligned text
dot product

The pseudocode for the vision aligned text dot prod-
uct is shown in Fig. 7.

A.4 Multimodal dot product tensors

Fig. 8 a) shows the dot product between the utter-
ance text and the product visual embeddings for
visual product selection for each carryover candi-
date. Fig. 8 b) shows the dot product between the
utterance text and scene or video and associated
product’s visual embeddings for visual scene and
video selection. Fig. 8 c) shows the dot product
between the utterance text and the product meta-
data text associated with each candidate, where
the product metadata can be available for both vi-
sual product selection and visual scene and video
selection.

A.5 Additional Details on the multimodal
dataset.

Some randomly sampled instances from the multi-
modal MTurk dataset for visual product selection
are given in Fig. 6. To better simulate a real-world
customer interaction with the voice assistant, the
MTurkers are free to use any phrase to refer to the
product image. Some MTurkers use specific prod-
uct attributes like color, size, shape, product ma-
terial, product label text while there are instances
where more ambiguous terms are used (e.g., “the
animal one”). To dissect the dataset further, we en-
code a few randomly selected product images and
their associated labels in a joint CLIP embedding
space.

As seen in Fig. 9a. The product images are
shown on the horizontal axis and the product labels
are shown on the vertical axis. The numbers in the
table are CLIP similarity scores ∈ [0, 1] between
the images and the product labels (higher scores
mean higher similarity). Fig. 9a has a dual pur-
pose: first, it shows the products and their labels
in a matrix format where products that match with

multiple labels or labels that match with multiple
products can be clearly seen; second, it shows the
effectiveness of CLIP embeddings in terms of quan-
tifying image-text similarity. Ideally, the diagonal
elements of the matrix should contain the largest
scores, but we can see that there are a few off di-
agonal high similarity scores, which indicates that
there is high ambiguity. In Fig. 9b we look at the
alignment between the images, their labels and the
referring utterance. It can be clearly seen from Fig.
9b row 1 that the image that matches the referring
utterance (“the black one”) has the highest CLIP
similarity score (the middle image has the highest
alignment score; 0.24 with the referring utterance
compared to the other two images in row 1).

A.6 Existing Context Carryover Dataset
The existing CC dataset is created by internal anno-
tators who were shown the dialogue history, current
turn, context slots and were asked to select all the
appropriate slots for the current turn. The dialogs
originate from a commercial voice assistant, and
we process the data so that users are not identifiable
(“de-identified”). The dataset spans 30 domains,
500 intents and includes both within domain (dia-
log that span a single domain) and cross domain
cases (dialog than spans multiple domains). It has
an average dialog distance length of 3.94 which
is roughly 2 user turns and 2 system turns. The
existing CC dataset has a Train/Dev/Test split size
of 1,280,000/158,043/158,000 respectively.

A.7 Experimental Setup
We set the Context Carryover framework to the
settings that are similar to the current commercial
settings and run our experiments. The results in Ta-
ble 1 and Table 2 use a context carryover threshold
of 0.5. The context carryover threshold determines
the probability threshold above which the slot will
be labeled as a carryover instance (i.e., label of 1).
We get the pretrained CLIP embeddings from the
open-source CLIP (Radford et al., 2021) repo un-
der the MIT license. For the CC model we use an
embedding size of 300 for the dialog encoder and
intent encoder. For the slot encoder, CLIP visual
and CLP text we use an embedding size of 512.
We use CLIP (ViT-B/32) (Dosovitskiy et al., 2020)
as the vision encoder and a transformer (Vaswani
et al., 2017) based text encoder as described in
(Radford et al., 2019) for the CLIP text encoder.
For the decoder, we use a single layer transformer
based decoder with 12 attention heads which are
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Figure 6: Randomly sampled instances from the MTurk dataset. Each instance is a single referring utterance and
multiple associated product images. The label array signifies the ground truth label associated with the referring
utterance. A label of 1 signifies the ground truth true label, and 0 otherwise.

Figure 7: Pseudocode for vision-text embedding dot product similarity

Figure 8: Tensors that contain the dot product between the user’s referring utterance text and a) a candidate’s
single product visual embedding for the “Visual product selection" use case, b) a candidate’s scene or video and
multiple product visual embeddings for the “Visual scene and video selection" use case, c) a candidate’s metadata
text embeddings for both the use cases. Here, the metadata are the textual information that are associated with
commercial products provided by sellers, marketplace annotators and at times generated by the system. The
“candidates” here refer to the visual list item candidates.

then passed to a single layer feed-forward network
to make binary decisions over the slots. The model
is trained for 100 epochs using a batch size of 160
with an Adam optimizer and learning rate of 0.001.
We train on a single p3.16xlarge instance, which
consists of 8 GPUs.

A.8 ALBEF results
We also experiment with ALBEF (Li et al., 2021b)
embeddings trained using a Large Language Model
training framework (FitzGerald et al., 2022) and
find them to have a similar performance to CLIP as
seen in Table 3.
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Figure 9: CLIP image-text alignment between images, labels, and referring utterance.

Table 3: Comparison with CLIP and ALBEF

# Visual
Emb. Model

Slot Level

Weighted (P, R, F1) Acc. Δ

P R F1 Δ

1 None Baseline 0.59 0.63 0.60 - 0.6301 -

2
CLIP

+ Visual 0.78 0.78 0.78 31.12% 0.7811 23.96%

3
+ {Visual + Utterance Text
+ Similarity}

0.85 0.85 0.85 42.15% 0.8484 34.65%

4
ALBEF

+ Visual 0.77 0.78 0.77 29.97% 0.7772 23.35%

5
+ {Visual + Utterance Text
+ Similarity} 0.86 0.86 0.86 44.34% 0.8617 36.76%


