
Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 49 - 57
May 26, 2022 c©2022 Association for Computational Linguistics

Comparative Snippet Generation

Saurabh Jain, Yisong Miao, Min-Yen Kan
National University of Singapore

saurabhjain@u.nus.edu, miaoyisong@gmail.com,
kanmy@comp.nus.edu.sg

Abstract
We model product reviews to generate compar-
ative responses consisting of positive and nega-
tive experiences regarding the product. Specifi-
cally, we generate a single-sentence, compara-
tive response from a given positive and a nega-
tive opinion. We contribute the first dataset for
this task of Comparative Snippet Generation
from contrasting opinions regarding a product,
and a performance analysis of a pre-trained
BERT model to generate such snippets.

1 Introduction

The proliferation of opinions on the Web has trans-
formed the way users express their opinions and
experiences about aspects of products and services.
Online user reviews contribute personal opinions,
and when aggregated together, these reviews play a
crucial role in purchasing decisions. However, due
to the large volume of reviews, it can be infeasible
for customers to skim all such sources. As users
have to navigate through a large pool of opinions
to make decisions, opinion mining and summariza-
tion grows in importance. As such, this area of
work has received significant attention.

Many e-commerce platforms provide function-
alities to compare products. These functionali-
ties may be template-based and compare products
on the basis of information provided by sellers.
Comparative opinions from customers, who are
experienced users of the product or service, are
largely missing from such template-based compar-
ison. On the other hand, question answering sys-
tems based on reviews, such as AmazonQA (Gupta
et al., 2019), often only tell one side of the story
in the response: either positive or negative. In
our opinion, there is a demand for compact repre-
sentations of both positive and negative opinions
of products. Such compact textual representation
could be enunciated by dialogue agents or shown
as a succinct summary to drill-down on in a mobile
interface. To the best of our knowledge, no such

Figure 1: Comparative Snippet Generation: taking a
positive and a negative opinion and generating a com-
parative response.

work has been done yet to provide comparative re-
sponses regarding a product to a user. We attempt
this novel task. We take as input a positive and
a negative opinion regarding a product and gener-
ate a comparative, single-sentenced fused response,
which we call a comparative snippet (Fig. 1).

We extract single-sentence summaries of pos-
itive and negative opinions, separately, from re-
views of 3,269 products mentioned by the Ama-
zon Reviews Dataset (2018). We chose to base
our corpus on this existing dataset to help spur fu-
ture research on our task that can leverage existing
work on the parent dataset. We then combine these
positive and negative opinions to generate compar-
ative responses. Our final dataset contains 174, 394
training instances, 19, 725 validation instances, and
21, 397 test instances1. We also successfully model
positive and negative opinions to generate a com-
parative response expressing both positive and neg-
ative opinions about a target product.

2 Related Work

Sentence Sentiment Detection. Sentiment detec-
tion classifies the opinion of a sentence into two
classes, Positive and Negative. Sometimes a third
class, Neutral, is also included. Early works focus
on unsupervised approaches and the use of senti-
ment lexicons to compute the overall sentiment of a
text; e.g., (Turney, 2002). Subsequently, the convo-

1https://github.com/WING-NUS/
comparative-snippet-generation-dataset

49

https://github.com/WING-NUS/comparative-snippet-generation-dataset
https://github.com/WING-NUS/comparative-snippet-generation-dataset


lutional neural network (CNN) architecture was in-
troduced to classify the sentiment of sentences Kim
(2014). Socher et al. (2011) use recursive neural
networks to learn sentiment at varying granularities
(i.e., words, phrases, and sentences). Many current
well-performing neural models use the attention
mechanism (Vaswani et al., 2017; Devlin et al.,
2019) to encode a text into a vector representation.

Opinion Summarization. Opinion summariza-
tion differs from other summarization tasks in two
aspects. First, it cannot rely on reference sum-
maries for training, as it is infeasible to get such
meta-reviews. To produce a reference summary
for a single product, a reviewer may have to go
through hundreds of reviews. Second, due to the
subjectivity and conflicting nature of reviews, the
notion of information importance applies differ-
ently. In this task, output summaries are based
on the popularity of opinions. Moreover to be vi-
able, approaches must be flexible with respect to
input size as products can be reviewed frequently,
resulting in increasing amounts of review content.

Opinion summarization can be either abstractive
or extractive. In abstractive summarization, sum-
maries are generated token-by-token to generate
new sentences that articulate prevalent opinions
from the inputs. These generated summaries of-
fer a solution to the lack of reference summaries,
and can be written in the style of the input re-
views. However, prior work have used unrealis-
tically small number of input reviews — 10 or
fewer — to generate output summaries Suhara et al.
(2020); Amplayo and Lapata (2021). Due to these
shortcomings, we chose the alternative style of
extractive summarization, which generates sum-
maries by selecting phrases from the inputs. As a
foundation, we base our method on Angelidis et al.
(2021), who used the Vector-Quantized Variational
Autoencoder (VQ–VAE) in their extractive opinion
summarization. First introduced by van den Oord
et al. (2017), VQ–VAE is used to learn discrete
latent variables. It passes encoder output through a
discretization bottleneck by lookup in the space of
latent code embeddings. Specifically, we use the
Quantized Transformer (cf. § 3.1), an unsupervised
neural model inspired by VQ–VAE, to generate
popularity-driven opinions. This method does not
depend on vector averaging, nor does it suffer from
information loss, which motivates us to use it as it
easily accommodates large numbers of reviews.

Sentence Fusion. Sentence fusion combines

multiple sentences, which may contain redundan-
cies, into one coherent sentence. The output sen-
tence not only should preserve input information
but also any semantic relationships among sen-
tences. Sentence fusion requires understanding the
discourse semantics between the input sentences.
Previously, feature-based approaches were used to
combine sentences due to the lack of annotated data.
Recently, a large-scale sentence fusion dataset, Dis-
coFuse Geva et al. (2019), was introduced, which
has enabled the training of neural network-based
models for the fusion task. The authors also train
the sequence-to-sequence model to fuse the input
sentences and find that the trained model succeeds
in combining the sentences through structural con-
structions, but performs badly when fusion involves
inserting discourse connectives. Recently, Rothe
et al. (2020) uses a BERT-based encoder–decoder
model. Although this work improves the accuracy,
it struggles in detecting the semantic relationships
correctly between the input sentences.

Predicting discourse markers or connecting
strings is a sister task of sentence fusion. It is
typically utilized as an intermediate step to im-
prove downstream tasks. Ben-David et al. (2020)
train a model to learn both the discourse relation
and discourse connective together in a multi-task
framework. In our work, similar to Rothe et al.
(2020), we fuse two sentences together by train-
ing a model to learn the appropriate insertion of a
discourse connective.

3 Dataset Generation

An instance of our dataset contains positive and
negative opinions as an input and a comparative
response as an output as shown in Table 2. Since no
such dataset is available for reviews, we generate it
from scratch. Here, dataset generation includes the
tasks of opinion extraction and rule-based response
generation sub-tasks. The task of opinion extrac-
tion itself includes subtasks of extraction, polarity
classification, and summarization of segments.

3.1 Opinion Extraction

Segment Extraction. A sentence of a review may
contain more than one opinion. For e.g., “dis-
play was quite bland, didn’t enjoy much, but speed
was brilliant.” This sentence contains a positive
opinion, “but speed was brilliant”, and a negative
opinion, “display was quite bland”. Therefore, as
suggested by Angelidis and Lapata (2018), it is

50



Review In the end, take this tablet for what it
is, a low end budget tablet that runs
Lollipop smoothly but has a less than
desirable screen resolution.

EDUs
In the end, take this tablet
for what it is, a low end budget table
that runs Lollipop smoothly
but has a less than desirable screen
resolution.

Table 1: A review and its extracted segments.

Input the display is awesome. camera is not
good.

Output the display is awesome. however,
camera is not good.

Table 2: An instance of our dataset.

beneficial to process phrases and discourse units
extracted from review sentences compared to pro-
cessing these sentences directly. Hereafter, we re-
fer to these phrases and units as segments. We
use work done by Feng and Hirst (2014) to extract
segments from reviews (as shown in Table 1’s ex-
ample). After extracting segments, we perform
the following five post-processing steps to improve
overall quality:

1. We remove segments having less than three
words, e.g. “good product”, “best product”,

“very sad”, etc. Such short segments are not
relevant to our work.

2. We remove leading and trailing punctuations;
e.g., “.”, “!”. “,” and “-”.

3. We remove segments that do not contain at
least one noun or pronoun and one main or
auxiliary verb; e.g., “the only problem”, “and
was destroyed” and “which is annoying”. We
use Spacy2 to extract a noun and a verb from
a segment.

4. Since we focus on working with segments
with third-person narrative, we discard seg-
ments containing first-person words: “i”,
“me”, “my”, “myself”, “mine”, “we”, “us”,
“our”, “ourselves”. While our extractive sum-
marization approach (§3.1) will eventually
rank such segments low, we prefer to drop
these here for efficiency.

2https://spacy.io/

5. If a segment starts with We delete any leading
occurrences of “because”, “and”, “before”,
“but”, “however”, “now”, “of”, “then”, “&”,
“or” from the segment. As an example, we
edit “but it is not that great” into “it is not
that great”, by omitting the leading “but”.

Segment Sentiment Classification. We next
classify each segment into one of two categories,
positive or negative. Reviews from different
domains may differ in syntactic properties — e.g.,
length and vocabulary — however, the underlying
semantics and discourse properties remain the
same. To the best of our knowledge, there are
no segment-level polarity-annotated datasets that
build from the Amazon Reviews. As such, we use
SPOT: Sentiment Polarity Annotation Dataset3,
which contains 197 reviews taken from the Yelp
Tang et al. (2015) and IMDB Diao et al. (2014)
datasets, annotated with segment-level polarities
for positive, neutral, or negative sentiments. AS
our work only utilizes positive and negative
opinions to generate a comparative response, we
discard the neutral segments. We fine-tune BERT
Devlin et al. (2019) for polarity classification using
the SPOT dataset. Then we classify extracted
segments into positive or negative class using the
fine-tuned model.

Segment Summarization. Products may
have a large number of reviews. In our dataset,
the single most-reviewed product has a massive
10, 222 reviews, generating 90, 314 segments –
completely infeasible to manually process. Also,
many reviews may express the same meaning.
These two characteristics strongly motivate the
need for a summarization algorithm to extract
popular segments. Our summarization algorithm
should satisfy the following requirements: 1) it
must be unsupervised, since we do not have refer-
ence summaries; 2) it must be highly scalable since
reviews per product regularly exceed 1, 000 inputs;
and 3) it should extract frequently-occurring
segments. In the case of reviews, we observe
that the popularity of a segment is generally
associated with their frequency of repetition. If
several reviewers talk about a specific segment,
e.g., “display is very good”, in their reviews for a
product, it becomes a popular segment.

To satisfy these requirements, we employ the
3https://github.com/EdinburghNLP/

spot-data

51

https://spacy.io/
https://github.com/EdinburghNLP/spot-data
https://github.com/EdinburghNLP/spot-data


Positive Negative
it is great battery life is lackluster
the display is awesome camera is not good
screen is great does have some issues with

clearing memory
meets all expectations it ’s just annoying
this tablet is fantastic eventually it refuses to turn

on at all

Table 3: Extracted Summaries. This table depicts five
segments each of positive and negative opinions from a
extracted summary of a product.

technique of Angelidis et al. (2021). They train an
embedding space consisting of latent codes. Each
latent code is a randomly-initialized vector that
groups semantically similar segments. Then, a later
part of the algorithm extracts top segments from
each code which are considered popular segments.

Our work uses a slightly different approach to
determine segments to extract. While Angelidis
et al. (2021) use a threshold for the total number of
words in the desired output summary, our method
emphasizes popularity: we select segments for the
output summary which are sampled greater than a
tunable threshold t times. With an overly high t
(e.g., t = 50), too few segments are selected; but
if set too low (e.g., t = 5), the resultant segment
quality is often poor and also often syntactically
invalid, semantically incomplete or repetitive. We
set the threshold to t = 18, based on appropriate
empirical tuning on our validation set. For each
product, we perform summarization on positive and
negative opinions separately. Table 3 illustrates a
few examples of extracted summaries.

3.2 Rule-based Response Generation
After extracting popular positive and negative seg-
ments separately, our final step is to generate the
contrastive snippets, conforming to the format ex-
emplified by Table 4.

We first analyzed sampled extracted reviews to
understand how users actually combine two con-
trasting opinions when writing their own reviews.
As a result, we inventoried seven common tem-
plates that users employ to combine both positive
(POS) and negative (NEG) opinions:

1. {POS} . but , {NEG} .

2. {POS} . however {NEG} .

3. {POS} . on the other hand , {NEG} .

4. although {POS} , according to a few users
{NEG} .

Figure 2: Model Architecture from Rothe et al. (2020).

5. {POS} . yet , some users have also mentioned
that {NEG} .

6. {POS} . however , there are people who have
complained that {NEG} .

7. {POS} . on the other hand , a few users have
complained that {NEG} .

For a given product e, let Op and On represent a set
of positive and negative opinions, respectively, ex-
tracted by our opinion extraction method. We com-
bine op ∈ Op, and on ∈ On using the templates,
as illustrated in Table 4, to generate an output re-
sponse. Then, for each product, we combine each
positive segment, op, with each negative segment,
on, present in the respective extracted summaries.

4 Model Architecture

Given a positive opinion op ∈ Op, and a negative
opinion on ∈ On, our task is to generate a re-
sponse R as shown in Table 4. We use an Encoder–
Decoder based architecture similar to Rothe et al.
(2020), as depicted in Fig. 2. For the encoder, we
inherit BERT Transformer layer implementations
which differs slightly than the canonical Trans-
former layer implementation Vaswani et al. (2017);
as BERT replaces the standard RELU with GELU
activation (Hendrycks and Gimpel, 2016). The im-
plementation of our decoder is also similar to BERT
with two modifications: First, the self-attention
mechanism is modified to look only at the left con-
text. Second, an encoder–decoder attention mecha-
nism is added. We initialize both the encoder and
decoder with publicly available pre-trained check-
points from the uncased base model of BERT to
learn and decode hidden representations. We join
op and on, respectively, with a full stop (.) to make
an input sequence. We use mean cross entropy
(MCE) to compute loss. We fine-tune our model to
generate a response fusing a positive and a nega-
tive opinion. In the next section, we describe our
experimental settings and analyze results in detail.

52



Input Positive Opinion: it works great.
Negative Opinion: camera is not good.

Response Format {POS} . However , some users have also mentioned that {NEG} .
Generated Response it works great . However , some users have also mentioned that camera is not good .

Table 4: Response generation example: a tuple of consisting of a template-based response, generated from an
extracted positive and a negative opinion of a product.

5 Evaluation and Results

Dataset. We use reviews of products from the
“Electronics” category of Amazon Reviews Dataset
(2018) Ni et al. (2019). We generate our dataset in
two phases, following the steps in § 3. In the first
phase, we consider reviews of 74 products only
and hand-curate segments in the generated sum-
maries. We consider syntactically and semantically
valid segments only. In the second phase, we scale
the number of products and consider reviews of
3, 269 products. After extracting segments from
these reviews, we consider only those segments for
the summary generation which have part-of-speech
patterns similar to hand-curated segments extracted
in the first phase. Thus, we can ensure syntactic
validity of the segments. Our final dataset con-
tains 174, 394 training instances generated from
reviews of 2, 569 products, 19, 725 validation in-
stances generated from reviews of 321 products,
and 21, 397 test instances generated from reviews
of 379 products.

5.1 Implementation Details

We use the Transformer architecture in segment
summarization model and uncased base BERT
architecture for our response generation model.

Segment Summarization. As our summa-
rization model is similar to Angelidis et al. (2021),
we retain their settings in our experiments. We
use a unigram LM SentencePiece vocabulary
of size 32K4 to encode opinion segments. Our
Transformer has a dimension size of 312, while its
feed-forward layers are of size 512. It uses 3 layers
and 4 internal heads. The input embedding layer
is shared between the encoder and decoder, and
H = 8 sentence heads are used to represent every
sentence. For the quantizer, we set number of
latent codes k = 1024 and sample m = 30 codes
for each segment. We use the Adam optimizer
(Kingma and Ba, 2015) with an initial learning
rate of 10−3 and a learning rate decay of 0.9.

4https://github.com/google/
sentencepiece

We disable segments assignments to latent codes
for the first 4 epochs as warm–up steps for the
Transformer. We train the model for a total of 20
epochs. At prediction time, in two-step sampling,
we sample 300 latent codes, and for each code, we
sample n = 30 segments.

Response Generation. Due to the effectiveness
of BERT over Transformers in text generation
tasks (Devlin et al., 2019), we use the base BERT
model for our encoder and decoder. Since we
initialize both the encoder and decoder with
uncased base BERT pre-trained checkpoints, our
experimental settings are similar to what were
used while training the base BERT model. It
has 12 layers, hidden size of 768, 12 attention
heads, and vocabulary of ∼ 30K word pieces. We
fine-tune this model for 5 epochs with a batch size
of 32. Inputs and outputs are padded to a length of
the largest available instance present in training,
validation, and test sets.

5.2 Metrics

An output response should be evaluated on the
basis of three aspects:

1. Preservation of input information. There
should not be any change in positive and negative
opinions. The semantic meaning and the syntactic
structure of these opinions should be preserved.
We use ROUGE-L to evaluate this aspect. It mea-
sures the longest common subsequence between an
output sentence and a reference sentence. Since we
do not modify the positive and negative opinions,
the longest common subsequence is identical to
one of the input opinions. For example, for an
input sentence “display is awesome. battery takes
long time to charge.” and the corresponding output
sentence “display is awesome. however, battery
takes long time to charge.”, the longest common
sub-sequence is “display is awesome. battery takes
long time to charge.”

2. Quality of output. In this aspect, we

53

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece


Recall
Model
Based

Rule
Based Comparison Source

ROUGE-L 0.9876 1.0 Input and predicted output
ROUGE-3 0.8563 1.0 Prediction output and the most similar reference
ROUGE-4 0.7885 1.0 Prediction output and the most similar reference
ROUGE-2 0.8376 1.0 Connecting strings from the prediction output and the most similar reference
ROUGE-3 0.7884 1.0 Connecting strings from the prediction output and the most similar reference

Table 5: Comparative Snippet Generation Model Evaluation (Column 2; “Model Based”). The first row (ROUGE-L)
measures input information preservation. The next two rows (ROUGE-3 and -4) measure the quality of predicted
outputs, and the last two rows’ entries measure the quality of the model-proposed connecting strings.

measure whether the order of words is correct,
and connecting string is inserted at the right place.
We use ROUGE-3 and ROUGE-4 to measure
this aspect. These metrics measure the number
of common trigrams and quadgrams between a
generated output and a reference. We compare a
generated output with each reference separately,
and consider the score corresponding to the closest
matching reference.

3. Quality of connecting string. This as-
pect measures whether words in connecting string
are in the correct order and represent a valid
sentence connector. For example, the connecting
string “on the other hand, some users have also
mentioned that” is of higher quality than the string

“on, some users have also mentioned that”. We
use ROUGE-2 to measure this aspect. Since a
valid connecting string may comprise of part of
two or more connecting strings, we do not use
ROUGE-3 and ROUGE-4 to avoid heavy penalties.
We remove those tokens from an output that are
also present in the input sentence. We assume
that thus remaining sub-string comprises tokens
only from connecting strings. We repeat the
same for all the references. Then we compute the
ROUGE-2 metric between the processed output
and references.

5.3 Results and Analysis

Overall Performance. We compute ROUGE-L-
recall between input and a generated output to eval-
uate the model’s performance in preserving input
information. As shown in Table 5, recall of model-
based generations is high: 0.9876; yet less than the
perfect rule-based generation method that created
the dataset. We consider recall values of ROUGE-
3 and ROUGE-4 metrics to measure the quality
of generated outputs with respect to the reference
outputs. As shown in Table 5, recall values of
ROUGE-3, and ROUGE-4 metrics for model-based

Connecting String %age
but, 0.64%
however 44.68%
on the other hand, 33.65%
yet, some users have also mentioned that 0.86%
although [positive opinion], according to a few
users

0.57%

on the other hand, a few users have complained
that

10.79%

however, there are people who have com-
plained that

8.82%

Table 6: Distribution of connecting strings for which a
prediction output matches with one of the references.
This distribution is with respect to the total number of
exact matches.

generations are 0.8563, and 0.7885, respectively,
which we believe is adequate. Finally, we com-
pute the ROUGE-2 metric specifically confined
specifically to the connecting string, in the man-
ner described in (cf. § 5.2). As shown in Table 5,
the recall of ROUGE-2 for our model-based gen-
eration is 0.8376. We believe that the connecting
string quality is adequate but can definitely be im-
proved with more careful modelling, and that the
connecting string realization is a key component
also contributing to overall quality in our second,
overall output quality evaluation.
Study on Connective Prediction. We examine
the connective prediction in more detail as this is
the key aspect that is variable in the generation
task. The model’s prediction outputs exactly match
with one of the references in 13.09% test cases.
Table 6 shows distribution of connecting strings
corresponding to these exact matches. Our model
not only learns to generate comparative responses
by fusing positive and negative opinions but also
learns to generate new connecting strings by fus-
ing words of two separate connecting strings or by
appending a punctuation symbol with a connecting
string. Our model fuses an additional 13.94%
test cases with newly-generated connecting strings.
Table 7 shows the distributional analysis of such

54



New Connecting String Percent.
yet, there are people who have complained that 0.07%
but, there are people who have complained that 0.07%
however, some users have also mentioned that 48.74%
but, some users have also mentioned that 0.23%
however, 48.34%
yet, 1.51%
but 0.10%
yet 0.94%

Table 7: Distribution of new connecting strings. This
distribution is with respect to the total number of newly-
generated connecting strings.

Error Type Percent.
Incorrect mixing 48.22%
Missing although word 17.82%
Single word “on” insertion 14.65%
Input information modification 19.26%

Table 8: Common generation errors from our pre-trained
BERT model’s output.

newly-generated connecting strings. We can see
that “however, some users have also mentioned that”
occurs the maximum number of times in such test
cases and has been generated by fusing “however”,
and “some users have also mentioned that”. The
second most-frequent generated string is “however,”
in which a comma (“,”) has been appended to a
connecting string.

Our model also generates incorrectly fused sen-
tences. Table 8 shows main types of error. The
maximum number of failure cases occur due to
incorrect mixing of parts of different connecting
strings. In such cases, either an extra word is in-
serted, or more words are missing from the con-
necting string. Table 9 depicts top incorrect mixing
patterns. In the four patterns, we can see that the
first word of negative opinion is inserted in between
the connecting string. Our analysis shows that it
happens due to the ambiguity present in our train-
ing dataset. For example, our training dataset con-
tains connecting strings “however”, and “however,
there are people who have complained that”. In the
case of the former, just after the connecting string

“however”, the model inserts words from the nega-
tive opinion. While in the latter case, words from
a connecting string are inserted after “however”.
Therefore, we assume that at prediction time prob-
ability of inserting the first word of the negative
opinion after “however” becomes highest, thus re-
sulting in an incorrect mixing of connecting strings.
A similar argument exists for the incorrect cases
containing string “on the other hand”. Table 10

shows an example of incorrectly mixed connecting
string.

The second most common failure case is
associated with input information modification.
Ideally, a comparative output sentence must
contain positive and negative opinions without
modification. But our model, sometimes, generates
an output sentence that either deletes or repeats
one or more words from the input or replaces a
word with its synonym or base form (Table 10). As
mentioned in the section (cf. § 3.2), except one,
in all other templates connecting string is inserted
between the positive and negative opinions. In case
of although POS, according to a few users NEG,
we also prepend a word “although” in the output
sentence. Since most of the training instances
insert a connecting string only in between, our
model does not learn properly to prepend a word

“although” and thus gives rise to the third most
occurring failure cases in which the first word
of the positive opinion is repeated instead of
prepending a word “although”. An example of
such a case has been shown in Table 10. The last
most occurring errors are associated with single
word insertion “on” between the positive and
negative opinions, as shown in Table 10.

Why not use rules to generate responses if these
give better performance? As shown in our re-
sults, rule-based generations outperform model-
based generations. Therefore, an obvious question
arises on the use of model-based generations. Tem-
plates used for generating rule-based generations
have been manually selected from a random anal-
ysis of reviews. But, in the future, we want our
model to automatically learn styles of compara-
tive response generations from the given dataset
and use these styles to fuse positive and negative
opinions. Therefore, we prefer to use model-based
generations and improve their accuracy.

6 Conclusion and Future Work

We introduced a novel task of generating a compar-
ative response (or “snippet”) regarding a product
that combines positive and negative opinions to-
gether in a single sentence. As such comparative
responses are not easily found in natural review
environments, we generate such comparative re-
sponses through extractive summaries of product
reviews using an unsupervised approach. To spur
future research in this area, we have also made our

55



Incorrect Mixing Pattern Distribution
however the other hand, [first word from the negative opinion] few users have complained that 9.85%
however [first word from the negative opinion] there are people who have complained that 7.83%
on the other hand, [first word from the negative opinion] few users have complained that 5.83%
on [first word from the negative opinion] there are people who have complained that 7.38%
on, some users have also mentioned that 8.15%
however the other hand, 6.40%

Table 9: Top incorrect mixing patterns. Here percentage is w.r.t. all the failure cases.

Incorrect
mixing

Expected the entire set is comfortable. on the other hand, a few users have complained that right side
slides down.

Predicted the entire set is comfortable. on the other hand, right few users have complained that right side
slides down.

Missing
“although”

Expected although the retractil system works fine, according to a few users the pads are sort of squarish.
Predicted the the retractil system works fine, according to a few users the pads are sort of squarish.

Insertion
of “on”

Expected the 415’s are a great upgrade from the oem earbuds. but, it is super uncomfortable.
Predicted the 415’s are a great upgrade from the oem earbuds. on, it is super uncomfortable.

Information
modification

Expected sound is pretty good. but, the movement is actually more like a saw.
Predicted sound is pretty good. however, the movement is actually more like a see.

Table 10: Examples of top errors.

dataset public and leveraged the prior Amazon re-
views corpus, popular with the research community.
Throughout our work we assume that all reviews
are genuine and have been written by buyers who
have used the product. We investigate and bench-
mark a baseline model for this task that combines
state-of-the-art text representation (BERT) in an
encoder–decoder architecture to generate a com-
parative response. Our analysis of the output results
shows that even such a state-of-the-art pre-trained
model does not generate perfect responses.

There are limitations of our work that we hope
to address in the future. Currently, positive and
negative opinions in a generated response may or
may not be related to the same aspect. As such,
improvements to better generate more naturalis-
tic responses may restrict generation to opinions
where both the positive and negative discuss the
same product aspect. In future we would also like
to quantify the veracity of the opinions and weight
them accordingly.

Acknowledgements

We acknowledge the support of NVIDIA Corpo-
ration for their donation of the Titan X GPU that
facilitated this research.

References
Reinald Kim Amplayo and Mirella Lapata. 2021. Infor-

mative and controllable opinion summarization. In
EACL.

Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko

Suhara, Xiaolan Wang, and Mirella Lapata. 2021.
Extractive opinion summarization in quantized trans-
former spaces. Transactions of the Association for
Computational Linguistics, 9:277–293.

Stefanos Angelidis and Mirella Lapata. 2018. Multiple
instance learning networks for fine-grained sentiment
analysis. Transactions of the Association for Compu-
tational Linguistics, 6:17–31.

Eyal Ben-David, Orgad Keller, Eric Malmi, Idan Szpek-
tor, and Roi Reichart. 2020. Semantically driven
sentence fusion: Modeling and evaluation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1491–1505, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alex
Smola, Jing Jiang, and Chong Wang. 2014. Jointly
modeling aspects, ratings and sentiments for movie
recommendation (jmars). Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints and
post-editing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 511–521,
Baltimore, Maryland. Association for Computational
Linguistics.

56

https://doi.org/10.1162/tacl_a_00366
https://doi.org/10.1162/tacl_a_00366
https://doi.org/10.1162/tacl_a_00002
https://doi.org/10.1162/tacl_a_00002
https://doi.org/10.1162/tacl_a_00002
https://doi.org/10.18653/v1/2020.findings-emnlp.135
https://doi.org/10.18653/v1/2020.findings-emnlp.135
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P14-1048
https://doi.org/10.3115/v1/P14-1048
https://doi.org/10.3115/v1/P14-1048


Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. DiscoFuse: A large-scale dataset for
discourse-based sentence fusion. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3443–3455, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda,
Anirudha Rayasam, and Zachary Chase Lipton. 2019.
Amazonqa: A review-based question answering task.
In IJCAI.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging non-
linearities and stochastic regularizers with gaussian
error linear units. ArXiv, abs/1606.08415.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 188–197, Hong
Kong, China. Association for Computational Lin-
guistics.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Associ-
ation for Computational Linguistics, 8:264–280.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 151–161, Edinburgh,
Scotland, UK. Association for Computational Lin-
guistics.

Yoshihiko Suhara, Xiaolan Wang, Stefanos Angelidis,
and Wang-Chiew Tan. 2020. OpinionDigest: A sim-
ple framework for opinion summarization. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5789–
5798, Online. Association for Computational Lin-
guistics.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1422–1432, Lisbon, Portu-
gal. Association for Computational Linguistics.

Peter Turney. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifica-
tion of reviews. In Proceedings of the 40th Annual
Meeting of the Association for Computational Lin-
guistics, pages 417–424, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. In NIPS.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

57

https://doi.org/10.18653/v1/N19-1348
https://doi.org/10.18653/v1/N19-1348
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://aclanthology.org/D11-1014
https://aclanthology.org/D11-1014
https://doi.org/10.18653/v1/2020.acl-main.513
https://doi.org/10.18653/v1/2020.acl-main.513
https://doi.org/10.18653/v1/D15-1167
https://doi.org/10.18653/v1/D15-1167
https://doi.org/10.18653/v1/D15-1167
https://doi.org/10.3115/1073083.1073153
https://doi.org/10.3115/1073083.1073153
https://doi.org/10.3115/1073083.1073153

