
DeeLIO 2022

Deep Learning Inside Out (DeeLIO 2022):
The 3rd Workshop on Knowledge Extraction and Integration

for Deep Learning Architectures

Proceedings of the Workshop

May 27, 2022



c©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-32-2

i



Preface

Welcome to the Third Workshop on Knowledge Extraction and Integration for Deep Learning Architectu-
res! Following the previous two successful editions of the workshop at EMNLP 2020 and NAACL-HLT
2021, DeeLIO 2022 continues to bring together the knowledge interpretation, extraction and integration
lines of research in deep learning, and to cover the area in between. Now in its third year, DeeLIO is an
established forum for the exchange of ideas on these topics, fostering collaboration within these research
fields.

The year 2022 has introduced the first hybrid edition of the workshop after two fully virtual events.
Following the changes in *ACL Conference organization, DeeLIO 2022 has undergone some other core
changes as well, including the full transfer of the reviewing process to the OpenReview platform, and the
opportunity to commit papers previously evaluated through the ACL Rolling Review process.

This volume includes the 10 papers presented at the workshop as posters. We received a batch of high-
quality research papers, and decided to finally accept 7 out of 14 fully reviewed submissions, and 3 out of
7 committed submissions. DeeLIO 2022 was co-located with the 60th Annual Meeting of the Association
for Computational Linguistics (ACL 2022) and was held on May 27, 2022 as a hybrid workshop.

It is again great to see that the accepted papers cover both thematic axes of DeeLIO: the extraction
of linguistic knowledge from deep neural models as well as the integration of knowledge from external
resources into the models, and all this for different languages and applications. All papers were presented
as posters during on-site and virtual poster sessions with live interactions and Q&A sessions.

We take this opportunity to thank the DeeLIO program committee for their help and thorough reviews.
We also thank the authors who presented their work at DeeLIO, and the workshop participants for the
valuable feedback and discussions. Encouraged by the great research presented at the workshop and
all the positive feedback received, we hope to continue with the DeeLIO organization in the years to
come. Finally, we are deeply honored to have three excellent talks from our invited speakers Yejin Choi,
Allyson Ettinger, and Tal Linzen.

The DeeLIO workshop organizers,

Eneko Agirre, Marianna Apidianaki, and Ivan Vulić
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Abstract

Cross-lingual Transfer Learning typically in-
volves training a model on a high-resource
source language and applying it to a low-
resource target language. In this work we
introduce a lexical database called Valency
Patterns Leipzig (ValPal) which provides
the argument pattern information about vari-
ous verb-forms in multiple languages includ-
ing low-resource languages. We also pro-
vide a framework to integrate the ValPal
database knowledge into the state-of-the-art
LSTM based model for cross-lingual semantic
role labelling. Experimental results show that
integrating such knowledge resulted in am im-
provement in performance of the model on all
the target languages on which it is evaluated.

1 Introduction

Semantic role labeling (SRL) is the task of identi-
fying various semantic arguments such as Agent,
Patient, Instrument, etc. for each of the target verb
(predicate) within an input sentence. SRL is use-
ful as an intermediate step in numerous high level
NLP tasks, such as information extraction (Chris-
tensen et al., 2011; Bastianelli et al., 2013), au-
tomatic document categorization (Persson et al.,
2009), text-summarization (Khan et al., 2015)
question-answering (Shen and Lapata, 2007) etc.
State of the art approaches to SRL such as (Zhou
and Xu, 2015; He et al., 2017a,b; Wang et al.,
2021) are supervised approaches which require a
large annotated dataset to be trained on, thus lim-
iting their utility to only high-resorce languages.
This issue of data-sparsity (in low-resource lan-
guages) has been effectively addressed with nu-
merous cross-lingual approaches to SRL includ-
ing Annotation Projection approaches (Padó and
Lapata, 2009; Kozhevnikov and Titov, 2013; Ak-
bik et al., 2015; Aminian et al., 2019a), Model
Transfer approaches (McDonald and Nivre, 2013;
Swayamdipta et al., 2016; Daza and Frank, 2019;

Cai and Lapata, 2020a) and Machine Translation
approaches (Fei et al., 2020).

In this work, we use the Valency Patterns
Leipzig (ValPal) online database1 (Hartmann
et al., 2013) which is a multilingual lexical
database, originally created by the linguistic re-
search community to study the similarities and dif-
ferences in verb-patterns for various world lan-
guages. Furthermore, we provide a framework to
utilise the knowledge available in Valpal database
to improve the performance of the state-of-the-art
cross-lingual approach to SRL task.

2 ValPal Database

Valency Patterns Leipzig (ValPal) is a comprehen-
sive multilingual lexical database which provides
semantic and syntactic information about different
verb-forms in various languages including many
low-resource languages. The ValPal database pro-
vides values for the following features for each
verb-form:

1. Valency: the total number of arguments that
a base verb-form can take.

2. Argument-pattern: the type and order of ar-
guments taken by a base verb-form in its most
common usage.

3. Alterations: the alternate argument-patterns
that can be taken by either the base verb-form
or any of its morphological variant.

Table 1 depicts the information about three lex-
ical units namely cook, kochen and cuocere as
provided in the ValPal database. Please note that
Table 1 lists only a few of all the alterations pro-
vided for these verb-forms in ValPal database due
to space constraints. Lexical units cook, kochen
and cuocere are English, German and Italian
words representing base verb-form for verb activ-
ity COOKING.

1http://ValPal.info/
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2.1 Coding of Argument-patterns

In ValPal database each argument-pattern (includ-
ing alteration) is coded with a unique coding-
frame. For example, in Table 1, the argument-
pattern of English base verb-form cook, is coded
as follows

1− nom > V.subj[1] > 2− acc

The code indicates that the base verb-form cook
takes 2 arguments in its most common usage (va-
lency of 2). The first argument is cooker (indi-
cated as 1-nom) and the second one is Cooked-
food (indicated as 2-acc). V.subj[1] indicates the
verb with the first argument as its agent. The or-
der of arguments are cooker–V–cooked food (eg:
She is cooking the fish.).
Verb-form cook also has an alteration called
Causative-Inchoative with the derived argument-
pattern as follows.

2− acc > V.subj[1]

This argument pattern indicates that verb-form can
also have order of arguments as cooked food–V
with Agent argument missing from the sentence
(eg: The fish is cooking).

2.2 Coding-sets

ValPal provides a unique coding-set for each lan-
guage. The codes in these coding sets indicate var-
ious argument-types including modifier argument-
types. For example, codes NP-Nom, NP-acc and
LOC-NP indicate the AGENT (Arg0), PATIENT
(Arg1) and modifier LOCATION (ArgM-LOC) ar-
guments respectively in the coding-sets of all lan-
guages. The codes with+NP and mit+NP-dat indi-
cate INSTRUMENT argument in English and Ger-
man coding-sets. Similarly, codes UTT-NP indi-
cate the argument TEMPORAL in most coding-
sets. In these codes, the NP indicates the index of
valency occupied the respective argument within
the argument pattern (eg: code 2−acc in argument
pattern 2 − acc > V.subj[1] indicates argument-
type PATIENT with the valency-index of 2).

2.3 Alteration Types

As already explained, the ValPal database also
provides a list of alternate argument-patterns
(called alterations) for each verb-form. Some of
these alterations are morpho-independent as they
can be taken by the respective base-verb in any

morphological form, whereas others are morpho-
dependent as they can be taken by the respective
verb only in a specific morphological form.
For example, both the Reflexive-Passive and Im-
personal Passive alterations of the italian base
verb-form cuocere, outlined in Table 1 are
morpho-dependent alterations as these alterations
are observed only when the verb-form possesses
morpheme si.
The ValPal database is originally created by the
linguistic research community, typically to study
the similarities and differences in verb-patterns for
various world languages. However this knowledge
can also be used by NLP research community for
building the models for data-sparse languages.

2.4 FrameNet to aid ValPal

One shortcoming of the Valpal database is that its
vocabulary is limited for many languages. If we
encounter a verb in the training-set that is missing
in ValPal, we utilised the FrameNet database to ex-
tract the desired argument-pattern and alterations
of it from ValPal itself.

To extract this knowledge about the missing
verb, firstly we extracted the frame of the missing
verb from the respective FrameNet database. Sub-
sequently we extracted a replacement-verb that be-
longs to the same frame (as that of the missing
verb) and is available in ValPal database. Finally,
we assigned the argument-pattern and alterations
of this replacement-verb to the missing verb. For
example, the verb barbecue is missing from Val-
Pal database. Yet, the verb barbecue belongs
to frame COOKING-45.1 in English FrameNet
(Barkley). Another verb-form called cook belong
to the same frame (COOKING-45.1) and is avail-
able in ValPal database. Thus we use argument-
patters provided in ValPal for verb-form cook as
the argument-patterns for barbecue.

3 FOL rules from ValPal

To inject the entire ValPal database knowledge
about any low-resource target-language l in a
Cross-lingual Neural Network model, we repre-
sented this knowledge as a set of First-order-logic
(FOL) rules Fl. The process of generating this set
of FOL rules involves two steps namely Translat-
ing ValPal Argument-patterns to Propbank label
orders and Writing Propbank-label order as FOL
rule described in Sections 3.1 and 3.2.
In ValPal database, the argument-pattern for verb-
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Verb-
form

Lang Argument-
pattern

Alterations (Alteration-name:Arg-pattern (ex-
ample) )

cook English 1 − nom >
V.subj[1] > 2−
acc

Understood Omitted Object:1 − nom >
V.subj[1] > 2 − acc (She walked in while I
was cooking.)

Causative-Inchoative : 2 − acc > V.subj[1]
(The soup is still cooking.)

kochen German 1 − nom >
V.subj[1] > 2−
acc

Benefactive Alternation:1 − nom > V ′ >
subj[1] > 3−dat > 2−acc (Ich koche meiner
Mutter eine Suppe.)

be-Alternation:1−nom > beV ′.subj[1] > 4−
acc > mit+2− dat (Die Großmutter bekocht
die Kranke mit Suppe.)

Ambitransitive Alternation:2 − nom >
V ′.subj[2] (Das Wasser kocht.)

cuocere Italian 1 >
V.subj[1] > 2

Reflexive-Passive:2 > siV ′.subj[2] >
daParteDi + 1 (La carne si cuoce con atten-
zione.)

Impersonal Passive:siPassV ′ > da + 1
(Quando si è (stati) cotti dal sole si diventa di
color rosso intenso.)

Table 1: Sample verb-form knowledge in Valpal database

form tie is outlined as equation 1 (as Q). We use
this as an example to demonstrate the process of
converting an argument-pattern to a FOL rule.

Q = 1− nom > V.subj[1] > 2− acc

> LOC − 3(> with+ 4) (1)

3.1 Translate argument-patters to Propbank
Order

In this step, we translate all the Valpal’s argument-
patterns (including alterations) for all lexical verb-
forms in the target-language l, to the Propbank
Orders. The entire process of translating a Val-
Pal argument-pattern P of any language l into a
Propbank Label-order involves two simple text-
processing sub-steps described as sections 3.1.1
and 3.2.

3.1.1 Replace modifier argument-types
As already explained in section 2.2, the Valpal
database provides a unique coding-set for each
language. In this subset, we examined the entire
coding-set for language l to identify the codes that
refer to a modifier argument-type (eg: LOC-NP

and UTT-NP etc. in English coding-set for LOCA-
TION and TEMPORAL modifier-arguments), and
created a mapping table that maps these modifier-
argument codes to the corresponding Propbank
annotations (eg: LOC-NP mapped to ARGM-
LOC; UTT-NP mapped to ARGM-TMP etc.). The
coding-set of any language in the ValPal database
is small thus making it feasible to manually create
such mapping table.
Subsequently, we used this mapping table to re-
place all modifier argument-patterns (if any) in the
argument-pattern P being translated, with corre-
sponding Propbank label.
After replacing the modifier argument-types we
reduce the valency-index of all the arguments fol-
lowing the replaced modifier argument, in the
argument-pattern being translated, by one.

Q = 1− nom > V.subj[1] > 2− acc

> ARGM − LOC(> with+ 3) (2)

For example, the argument-pattern outlined in
equation 1 comprises only one modifier argument-
type namely LOC3. We replaced this with the cor-
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responding Propbank label namely ARGM-LOC
and reduced the valency-index of all argument-
types following this replaced argument-pattern by
1 (thus (with + 4) is re-written as (with + 3)).
Hence the argument-pattern in Equation 1 would
be re-written as equation 2.

3.1.2 Rewrite all non-modifier argument
types

After replacing all modifier argument-types in the
argument-patterns by the process described in sec-
tion 3.1.1, we simply replace all left over argu-
ments in the ValPal argument-pattern P by string
as ‘ARGx’ where x is valencyIndex − 1. Hence
argument 1 − nom, 2 − acc and with + 3 (with
valency Indexes as 1, 2, 3 respectively) in equa-
tion 2 would be replaced by Arg0, Arg1 and Arg2
respectively.
Finally, we replaced V subj[NP ] with V and re-
moved all bracket symbols. Hence argument-
pattern outlined as equation 2 would be translated
as equation 3.

Q = ARG0 > V > ARG1

> ARG− LOC > ARG2 (3)

3.2 Write Propbank Label order as FOL rule
Once having represented all argument-patterns
(including alterations) for all lexical verb-forms of
language l as allowed Propbank Label-orders, we
rewrite each verb-form and Propbank Label-order
pair as a FOL rule. For example the pair of verb-
form tie and its corresponding allowed Propbank
Label-order outlined as equation 4, is represented
by the FOL rule indicated as equation 5.

f = baseForm(V, tie) ∨ pattern(Y,Q) (4)

Here Q is the Propbank label-order outlined in
equation 3, and Y is the sequence of Propbank tag-
sequence predicted by a neural-network model for
any input token-seq. The logic-constraint in equa-
tion 5 would be true if the verb for which the ar-
guments are being predicted is a variant of base
verb-form tie and the predicted SRL tag sequence
Y satisfies the label order Q.
While checking whether a predicted SRL tag se-
quence follows a specific order, we ignore the
‘O’ annotations (‘O’ indicates semantic role label
’NULL’ in the Propbank Annotation scheme). For
example the SRL tag sequences ARG0, ARG0, O,
O, V, ARG1, ARG-LOC, O, ARG2 follows the

argument-pattern.
To check if the verb for which the arguments are
being predicted is a morphological variant of the
specific base verb-form, we perform stemming of
both base verb-form and the token from the sen-
tence which is tagged ‘V’ by the model. If the
stem strings are equal we consider the verb token
to be a variant of base verb-form.
If an argument-pattern (represented as Propbank
label-order) is for a morpho-dependent alteration,
then the morphological constraint is also added to
the FOL rule representing the argument-pattern.
For example, in table 1 the argument-pattern
Reflexive-Passive is a morpho-dependent alter-
ation. This argument-pattern is represented as
FOL defined by equation 6.

f = baseForm(V, cuocere)∨
morphoForm(V, si) ∨ pattern(Y, Q̂) (5)

Here Q̂ represents the corresponding label-
sequence for Argument-pattern. The rule
morphoForm(V, si) constraints the verb V to
have morphene si for the rule to be true.
Hence we obtain a set of FOL rules Fl represent-
ing the entire Valpal database knowledge about
language l (with each verb-form and argument-
patterns pair provided in the Valpal database for
the language l as a single FOL-rule f ∈ Fl).
These FOL rules are used during the fine-tuning
of a cross-lingual neural-network model for SRL
in target-language l. During fine-tuning, the model
is always rewarded if it predicts an SRL tag-seq Y
which satisfies atleast one of the FOL rule f ∈ Fl,
and penalised otherwise. Section 4.3 will explain
the fine-tuning process in more detail.

4 Model

4.1 Base Approach
We utilized the state-of-the-art approach to Cross-
lingual SRL in low-resource languages, proposed
by (Cai and Lapata, 2020b) as our Base Ap-
proach. The approach comprises two key com-
ponents namely Semantic Role Labeler and Se-
mantic Role Compressor. The Semantic Role La-
beler is a simple Bi-LSTM model with Biaffine
Role Scorer (Dozat and Manning, 2016). Given
input sentence X = x1...xT of length T, the
model accepts pre-trained multilingual contextual-
ized word-embedding exi and predicate indicator
embedding pxi for all xi ∈ X as input. For each
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word xi ∈ X , the topmost biaffine layer computes
the scores of all semantic roles to be assigned to
xi as si ∈ R|nr| where nr is the size of semantic
role set. Hence the probability values of all SRL
labels to be assigned to word xi can be computed
by applying the softmax function over si.
Subsequently, the Semantic Role Compressor is
another Bi-LSTM model which compresses the
useful information about arguments, predicates
and their roles from the outputs of the Seman-
tic Role Labeller (e.g., by automatically filtering
unrelated or conflicting information) in a matrix
R ∈ Rnr∗dr where dr denotes the length of hid-
den representation for each semantic role.
The approach assumes the availability of a fully
annotated source language corpus and parallel
corpus of source-target sentences for training.
Each model-training step involves two indepen-
dent sequential sub-steps namely the the super-
vised training and the cross-lingual training.
In the source-language training sub-step, a batch
is randomly selected from the annotated source-
language corpus, to train both Semantic Role La-
beler and Semantic Role Compressor simultane-
ously by minimizing the total loss computed by
equation 3.

Ltotal = LCE + LKL (6)

Here LCE is the Cross-entropy loss between true
labels and labels predicted by the Labeler whereas
LKL is the KL Divergence loss (Kullback and
Leibler, 1951) between distributions predicted by
the Compressor and the Labeler. After the super-
vised training sub-step, a batch from the paral-
lel source-target data to perform the cross-lingual
training sub-step. We refer to the original work
(Cai and Lapata, 2020b) for the details of the
cross-lingual training sub-step and the inference.

4.2 Training with Valpal knowledge

In this work we modified the training process de-
scribed in section 4.1 to include the Valpal knowl-
edge into the model parameters. Each training step
in our proposed training step involves four inde-
pendent sequential sub-steps.

Firstly, in the Labeler pre-training sub-step,
we randomly sample a batch from the annotated
source-language corpus and the Semantic Role
Labeler is trained on it by minimizing the cross-
entropy loss (LCE) between true and predicted
roles. Secondly, in the Labeler fine-tuning, the

Valpal knowledge is injected in the parameters
of the Semantic Role Labeler by the process de-
scribed in section 4.3. Thirdly, in the Compressor
training sub-step the Semantic Role Compressor
is trained on the sampled source-language batch
by minimizing the KL Divergence loss (LKL) be-
tween distributions predicted by the Compressor
and the fine-tuned Labeler (Labeler parameters are
fixed in this sub-step). Finally we perform the
cross-lingual training sub-step which is identical
to as performed by the original authors (section
4.1)

4.3 Labeler fine-tuning with ValPal
This section describes the framework adopted by
us to induce the target-language specific ValPal
database knowledge expressed as a set of FOL
rules Fl, into the pre-trained Semantic Role La-
beler. Our framework is inspired by the Deep
Probabilistic Logic (DPL) framework proposed
by (Wang and Poon, 2018). The framework as-
sumes the availability of only an unlabelled target-
language corpus. Hence, for the Labeler fine-
tuning sub-step, we randomly sample a batch from
the already available parallel source-target data
and utilised only the target language part of it.
Let X = x1.....xT be an input sentence and
Y = y1.....yT be any SRL-tag sequence. Further
let Ψ be the pre-trained Bi-LSTM based Semantic
Role Labeler, such that Ψ(X,Y ) denotes the con-
ditional probability P (Y |X) as outputted by the
final softmax layer of Ψ.
The fine-tuning of this pre-trained Ψ to specific
target-language l requires an unlabelled target-
language training corpus. Given such unlabelled
target-language-corpus Xtarg, for each X ∈
Xtarg we input sentence X into the pre-trained Ψ
to compute the most probable SRL-tag sequence
Y as Y = argmaxŶ (Ψ(x, Ŷ )). Subsequently we
input both the sentence X and it’s predicted most-
probable SRL tag-seq Y in all the FOL rules in Fl

to compute their value (as 0.0 or 1.0). DPL frame-
work defines the conditional probability distribu-
tion P (Fl, Y |X) as equation 2.

P (Fl, Y |X) =
∏

f∈Fl

exp(w.f(X,Y )).Ψ(X,Y )

exp(w)
(7)

The framework assumes the Knowledge-
constraints to be log-linear thus defines each
knowledge-constraint as exp(w.f(X,Y )) where
f ∈ Fl is the FOL rule representing the respective
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knowledge-constraint. Here w is the pre-decided
reward-weight assigned to all constraints. Hence
the predicted output-sequence Y would be re-
warded (as its likelihood would increase by a
factor of exp(w)) if it follows one of the defined
argument-patterns in ValPal database for the
respective verb for which the arguments are
being predicted (f(X,Y ) = 1.0). However no
penalty is awarded for not following the correct
Argument-pattern.

4.3.1 Learning
The ideal way to optimize the weights (fine-
tune) of the model Ψ is by minimizing P (Fl|X)
and updating the parameters through back-
propagation. We can compute P (Fl|X) by sum-
ming over all possible SRL-tag sequences as
P (Fl|X) = ΣY P (Fl, Y |X). However com-
puting P (Fl, Y |X) by equation 4 with all pos-
sible output-sequences, and subsequently back-
propagating through it, for each training example
is computationally very inexpensive. Thus DPL
framework also provides a more efficient EM-
based approach (Moon, 1996) to the parameter
fine-tuning which is adopted by us.
The full process of learning the parameters of Ψ
(initialized with parameters pre-trained on source
language) is outlined as Algorithm 1. For each

Algorithm 1 Fine-tuning of Semantic Role La-
beller
Require: Target Language corpus Xtarg; set of

FOL rules Fl representing the entire Valpal
database knowledge; Pre-trained LSTM based
Semantic Role Labeller Ψ; Number of Epochs
N ;
repeat

for each X ∈ Xtarg do
▷ E-Step

Y ← argmaxŶ (Ψ(X, Ŷ ))
q(Y )← P (Fl, Y |X) ▷ by equation 7

▷ M-Step
Ψ← argminΨ̂(DKL(q(Y )||Ψ̂(X,Y )))

end for
until convergence

training-example X ∈ Xtarg, the Algorithm
1 implements three steps. In the first-step, it
predicts the most probable SRL-tag sequence
Y for the given training-example X as Y =
argmaxŶ (Ψ(x, Ŷ )) with current parameter val-
ues for Ψ.

In the E-step, q(Y ) = P (Fl, Y |X) is computed
by applying equation 4 with current parameters
of Ψ. Finally in the M-step it keeps q(Y ) as
fixed and updates parameters of Ψ by minimizing
the KL-divergence (Kullback and Leibler, 1951)
loss between q(Y ) and the probability of Y from
Ψ(X,Y ) (i.e. P (Y |X)).
In other words, in each epoch step, the model
first computes the joint likelihood of Fl and Y i.e
P (Fl, Y |X) with current model parameters, and
subsequently it updates the parameters to predict
likelihood of Y i.e., to be as close to P (Fl, Y |X)
as possible.

5 Experiments

This section described the experiments performed
by us to evaluate the proposed model.

5.1 Dataset

We experimented with four languages namely En-
glish (en), German (de), Chinese (zh) and Ital-
ian (it) as these languages are covered in both
the ValPal database as well as in the CoNLL
2009 Shared task (Hajic et al., 2009) dataset.
The Semantic Role Labeller requires a fully-
annotated training dataset in the high-resource
source-language. We utilized the Universal Propo-
sition Banks provided at https://github.com/

System-T/UniversalPropositions provided for
CoNLL 2009 Shared task, for training of the Se-
mantic Role Labeller and the evaluation of various
systems. On the other hand, the Semantic Role
Compressor component requires sentence-paired
parallel corpora in source and target languages.
We used the Europarl parallel text-corpus (Koehn
et al., 2005), and the large-scale EN-ZH parallel
corpus (Xu, 2019) to train the Semantic Role Com-
pressor, as used by (Cai and Lapata, 2020b). We
used the target-language part of the same parallel-
corpora independently for the Valpal knowledge
induction, as the Valpal database knowledge in-
duction simply requires unlabelled text-corpus in
the target-language.

5.2 Model-configurations

We computed the language-independent BERT-
Embeddings to be fed into the networks using
pre-trained Multilingual BERT (mBERT) (Wu and
Dredze, 2019) model. Given a sentence S, we to-
kenised the whole sentence using the WordPiece
tokeniser (Wu et al., 2016). Subsequently we fed
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Dropout prob. 0.01
Bach-size 32
Epochs 150
embeddings size 768
predicate indicator embed size 16
Bi-LSTM hidden states size 400
BiLSTM depth 3
hidden biaffine scorer size 300
Bi-LSTM hidden states size 256
BiLSTM depth 2
compressed role rep size 30
hidden biaffine scorer size 30

Table 2: Hyper-parameter settings for input and train-
ing (first block), semantic role labeler (second block)
and semantic role compressor (third block). Semantic
role labeler and Semantic role compressor are same as
(Cai and Lapata, 2020b)

this token-sequence into pre-trained mBERT pro-
vided by (Turc et al., 2019). Embedding of any
word w ∈ S i.e. ew is computed by taking average
of mBERT outputs of all Wordpiece tokens corre-
sponding to word w. Subsequently these word-
embeddings are frozen during the training of the
networks. Table 2 outlines the hyper-parameters
used during training.

5.3 Baselines

We compared the performance of our proposed
model against the base-model (4.1) as well as
numerous other state-of-the-art baselines. These
baselines include two annotation projection based
models namely Bootstrap (Aminian et al., 2017)
and CModel (Aminian et al., 2019b), as well
as two strong mixture-of-experts models namely
MOE (Guo et al., 2018) which focus on combining
language specific features automatically as well
as MAN-MOE (Chen et al., 2018) which learns
language-invariant features with the multinomial
adversarial network as a shared feature extrac-
tor. We also compared with PGN (Fei et al.,
2020) which is the state-of-the-art translation-
based model which translates the source annotated
corpus into the target language, performs annota-
tion projection, and subsequently trains the model
on both source and the translated corpus. We
utilised the source-code provided by the authors
of each of these baselines to train and test them.

Algorithm 2 Full Training process. Here, the
function FineTune represents the process outlined
as algorithm 1 and function CrossTrain represents
the cross-lingual training procedure adopted by
(Cai and Lapata, 2020b). LCE is cross-entropy
loss and LKL is KL divergence loss

Require: Annotated Source language corpus
{XTagged, YTagged}; Parallel Source-target
Corpus {XS

Parallel, X
T
Parallel}; set of FOL

rules representing entire Valpal db knowledge
of target language Fl; batch-size b; Number of
Epochs E
Initialize:

Semantic Role Labeler Ψ; Semantic
Role Compressor Φ

steps← |XTg|/b
for epoch← 1 to E do

for step← 1 to steps do
X,Y ← Sample({XTg, YTg},b)
XS , XT ← Sample({XS

Pr, X
T
Pr},b)

▷ Labeler pre-training
Ψ← argminΨ̂(DCE(Y ||Ψ̂(X)))

▷ Labeler Fine-tuning
Ψ← FineTune(XT , FL,Ψ, b)

▷ Compressor training
Φ← argminΦ̂(DKL(Ψ(X)||Φ̂(X)))

▷ Cross-lingual training
Φ,Ψ← CrossTrain(XS , XT ,Ψ,Ψ)

end for
end for

6 Results

6.1 Monolingual training

In the first set of experiments we trained the mod-
els on a single source language English and tested
these on the target languages zh, it and de. In these
settings, we trained the models on English UPB
train-dataset and tested them on the UPB test-sets
of the target-languages. Table 3 shows the la-
beled F-scores achieved on each of these target-
languages. In table 4, the Base-wo-Compressor
refers to the base model without the SRL com-
pressor, whereas Base-full refers to the full base
model.

Results in Table 3, show that for both Base-
wo-Compressor and Base-full model, adding Val-
pal database knowledge improved its performance
on all three target languages. Furthermore, for
all three target-languages, the improvement in per-
formance of both Base-wo-Compressor and Base-
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Model it de zh avg
Bootstrap 51.7 55.2 58.4 55.1
CModel 55.5 57.0 61.1 57.9
MAN-MOE 57.1 64.0 64.7 61.9
MoE 56.7 63.2 65.2 61.7
PGN 57.9 65.3 65.9 63.0
Base-wo-
Compressor

37.1 49.7 45.3 44.0

Base-wo-
Compressor+
Valpal

37.8 54.2 49.9 47.3

Increase 0.7 4.5 4.6 3.3
Base-full 57.2 65.1 68.8 63.7
Base-full+
Valpal

57.9 69.5 73.4 66.9

Increase 0.7 4.4 4.6 3.2

Table 3: Results for Monoloingual settings (with ex-
tended vocab for de and zh)

full models due to Valpal knowledge injection are
same i.e 0.7 for it, 4.5 for de and 4.6 for zh (aver-
age 3.3). This provides the evidence that the im-
provement is indeed due to the Valpal Knowledge
injection.

Model it de zh en avg
MAN-
MOE

57.7 66.2 65.9 66.0 63.9

MoE 57.1 63.5 66.1 64.1 62.7
PGN 58.0 65.7 66.9 67.8 64.6
Base-wo-
Compressor

37.6 50.2 48.9 49.9 46.6

Base-wo-
Compressor
+ Valpal

38.5 54.7 53.6 54.8 50.4

Increase 0.9 4.5 4.7 4.9 3.8

Table 4: Results in Polygot settings

6.2 Polyglot training

Table 4, outlines the results obtained under the
polyglot training settings. For each experiment
within these settings, the models are trained on a
joint polyglot corpus of the three out of four lan-
guages namely en, it, de and zh, excluding the tar-
get language for which the results are outlined.
For each experiment within these settings, the
training corpus size is always fixed to 600,000 to-
kens to ensure controlled experiment-settings. We
created such polyglot corpus by randomly sam-

pling sentences from UPB train-set for each of
the three source-languages until the token-size be-
comes approximately equal to 100,000, concate-
nated all these sampled datasets and randomly
shuffled the order. Alignment-projection based
approaches and the Base-full are not evaluated
in the polyglot settings as these approaches re-
quire parallel-aligned source and target language
sentence-pairs.

Results show that adding Valpal knowledge im-
proves the performance of Base-wo-Compressor
model, even within the polyglot settings, Fur-
thermore, it is observed that although Base-
wo-Compressor model performs better in poly-
glot training settings as compared to monolin-
gual settings for most of the target languages,
the improvement in performance of Base-wo-
Compressor due to Valpal knowledge injection
is same is both settings. This is because the
fine-tuning of model with Valpal database knowl-
edge is performed only with the unlabelled target-
language corpus.

it de zh
Vocab 125 128 122
Ext-vocab – 975 415
Base-full 57.2 65.1 68.8
Base-full+
ValPal

57.9 65.9 68.7

Increase 0.7 0.8 0.9
Base-full+
ValPal-ext

– 69.5 73.4

Increase 0.7 4.4 4.6

Table 5: Results with and without ext-vocab

6.3 Performance with extended vocabularies

It can be observed in Tables 3 and 4 that the im-
provement on target-language is much lower than
the improvements observed on zh, de and en. The
reason being that we extended the Valpal vocab-
ulary of en, zh and de using English Framenet
(Barkley), Chinese Framenet (Yang et al., 2018)
and German Framenet (of Texas) by the pro-
cess described in section 2.4. However Italian
Framenet is not publicly available.

We indeed performed experiments to analyze
the impact of vocabulary extension on the perfor-
mances. Table 5 outlines the results of these exper-
iments. It can be observed in the table that extend-
ing the vocabulary of Valpal with the Framenet
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does lead to significant improvement in perfor-
mance.

7 Conclusion

Valency Patterns Leipzig (ValPal) is a multilin-
gual lexical database which provides the knowl-
edge about the argument-patterns of various verb-
forms in multiple languages including numerous
low-resource languages. The database is origi-
nally created by the linguistic community to study
the similarities and differences in the verb-patterns
for various world’s languages. In this work we
utilised this database to improve the performance
of the state-of-the-art cross-lingual model for SRL
task.

We evaluated a framework to integrate the entire
Valpal knowledge about any low-resource target-
language into an LSTM based model. Our pro-
posed framework only requires an unannotated
target language corpus for the knowledge integra-
tion.
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Abstract

Postpositions, which are characterized as mul-
tiple form-function associations and thus pol-
ysemous, pose a challenge to automatic iden-
tification of their usage. Several studies have
used contextualized word-embedding models
to reveal the functions of Korean postpositions.
Despite the superior classification performance
of previous studies, the particular reason how
these models resolve the polysemy of Korean
postpositions is not enough clear. To add more
interpretation, for this reason, we devised a clas-
sification model by employing two transformer-
architecture models—BERT and GPT-2—and
introduces a computational simulation that in-
teractively demonstrates how these transformer-
architecture models simulate human interpreta-
tion of word-level polysemy involving Korean
adverbial postpositions -ey, -eyse, and -(u)lo.
Results reveal that (i) the BERT model per-
forms better than the GPT-2 model to classify
the intended function of postpositions, (ii) there
is an inverse relationship between the classifica-
tion performance and the number of functions
that each postposition manifests, (iii) model
performance is affected by the corpus size of
each function, (iv) the models’ performance
gradually improves as the epoch proceeds, and
(vi) the models are affected by the scarcity of
input and/or semantic closeness between the
items.

1 Introduction

Polysemy, one type of ambiguity, occurs when
one form delivers multiple, and yet related, mean-
ings/functions(Glynn and Robinson, 2014). Tra-
ditional word-embedding models have shown an
unsatisfactory level of performance in polysemy
interpretation(e.g., Bae et al., 2014, 2015; Kim
and Ock, 2016; Lee et al., 2015; Mun and Shin,
2020; Shin et al., 2005). This is mainly due to the
technical nature of these models: they are static
in that a single vector is assigned to each word
(Desagulier, 2019; Ethayarajh, 2019; Liu et al.,

2019a). To overcome this issue, recent studies have
proposed a contextualized word-embedding model
which considers neighborhood information about
a polysemous word on the basis of sequences of
words around the target word (Klafka and Ettinger,
2020; Loureiro and Jorge, 2019; Michalopoulos
et al., 2021). These models have achieved a good
level of performance in many natural language pro-
cessing tasks (Devlin et al., 2018; Radford et al.,
2018a; Liu et al., 2019b; Radford et al., 2018b; Lan
et al., 2019). Among these models, transformer-
architecture models such as Bidirectional Encoder
Representations from Transformer (BERT; Devlin
et al., 2018) and Generative Pre-Training 2 (GPT-2;
Radford et al., 2018b) shows the best performance
for this task of polysemy interpretation (Haber and
Poesio, 2021; Soler and Apidianaki, 2021; Yenice-
lik et al., 2020).

Despite a good deal of research on transformer-
architecture models in English, very few studies
have investigated transformer-architecture-based
polysemy interpretation in languages that are ty-
pologically different from English. We therefore
attend to Korean, a Subject-Object-Verb language
with overt case-marking through a postposition—a
bound morpheme which adds grammatical func-
tions to a content word where it is attached (Sohn,
1999). A Korean postposition normally involves
many-to-many associations between form and func-
tion. As such a postposition is polysemous (Choo
and Kwak, 2008). For example, an adverbial post-
position -(u)lo (-ulo after a consonant) is inter-
preted as six major functions: criterion (CRT), di-
rection (DIR), effector (EFF), final state (FNS),
instrument (INS), and location (LOC) (Shin, 2008).
For instance, the following sentence involving the
postposition -(u)lo as a marker of INS (instrument)
as in (1).

(1) 전선이
censen-i
wire-NOM

연줄로
yencwul-lo
connection.wire-INS

11



-ey -eyse -(u)lo
Function Frequency Function Frequency Function Frequency
LOC 1,780 LOC 4,206 FNS 1,681
CRT 1,516 SRC 647 DIR 1,449
THM 448 INS 739
GOL 441 CRT 593
FNS 216 LOC 158
EFF 198 EFF 88
INS 69
AGT 47
Total 4,715 Total 4,853 Total 4,708

Table 1: By-function frequency list of -ey, -eyse, and -(u)lo in cross-validated corpus

Note. Abbreviation: AGT = agent; CRT = criterion; DIR = direction; EFF = effector; FNS = final state;
GOL = goal; INS = instrument; LOC = location; SRC = source; THM = theme

감겼다.
kam-ki-ess-ta.
wind-PSV-PST-DECL
‘The wire wound around with the connec-
tion wire.’

Several studies have used transformer-
architecture models to address the word-level
polysemy of Korean adverbial postpositions (e.g.,
Bae et al., 2020a,b; Hong et al., 2020; Mun,
2021) with the model performance (measured
through a F-score) ranging from 0.776 (Park et al.,
2019) to 0.856 (Bae et al., 2020a). Notably, the
particular reason for the transformer architecture’s
superior performance over the others is some-
what unclear (Puccetti et al., 2021; Yun et al.,
2021). To add more interpretation of the model
performance, we devised a classification model by
employing BERT and GPT-2. In order to further
understand how transformer-architecture models
recognize word-level polysemy, we propose
a transformer-architecture-based visualization
system for polysemy interpretation of three
adverbial postpositions, -ey, -eyse, and -(u)lo,

which are frequently documented in the previous
studies (e.g., Cho and Kim, 1996; Jeong, 2010;
Nam, 1993; Park, 1999; Song, 2014).

2 Methods

2.1 Creating the Input Corpus

The Sejong primary corpus (Sejong corpus is avail-
able at: https://www.korean.go.kr), the representa-
tive corpus in Korean, does not code the informa-
tion about the functions of postpositions directly
in each sentence (which is necessary for model
training). We thus annotated a portion of the origi-
nal corpus data manually. For this purpose, we ex-
tracted sentences involving only one postposition
and predicate. We did this treatment to control for
additional confounding factors which might have
interfered with the performance of our model. We
then extracted 5,000 sentences randomly for each
postposition from the initial dataset.

Three native speakers of Korean annotated each
postposition for its function in this 15,000-sentence
corpus. Fleiss’ kappa scores were 0.948 (-ey), 0.928
(-eyse), and 0.947 (-(u)lo), which are considered

Figure 1: Example sentences used in the training for BERT (left) and GPT-2 (Right)
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‘almost perfect’ according to the Kappa scale. We
further excluded instances which showed disagree-
ment among the human annotators. The final cor-
pus consisted of 4,715 sentences for -ey, 4,853
sentences for -eyse, and 4,708 sentences for -(u)lo.
Table 1 presents the detailed by-function frequency
list of the three postpositions1.

2.2 Creating Training and Test Sets

In order to make the training and test sets, we made
three separate columns: index (the unique number
of each sentence), label (the intended function of
each postposition in each sentence), and sentence.
For the sentence of BERT, we added [CLS] (‘clas-
sification’; indicating the start of a sentence) before
a sentence and [SEP] (‘separation’; indicating the
end of a sentence) after a sentence to indicate where
the sentence starts and ends (Figure 1 left); no such
addition occurred in GPT-2. We then split the cor-
pus into two sub-sets, one with 90 per cent of the
corpus for the training and with the remaining 10
per cent of the corpus for the testing.

2.3 Developing BERT and GPT-2 Models

For the BERT model training, we transformed the
input data into three embedding types—token em-
bedding, position embedding, and segment embed-
ding (c.f., Devlin et al., 2018)—in the following
ways. First, for the token embedding, we used
KoBertTokenizer for the sentence tokenization; the
maximum number of tokens for each sentence was
set to 128. Second, for the position embedding, we
converted each token into numeric values indicat-
ing unique indices of the tokens in the vocabulary
of KoBERT. Third, for the segment embedding, we
converted the number of tokens of each sentence
into 128 numeric values using 0 (i.e., not existed)
or 1 (i.e., existed). The labels of the data indicating
the intended function of each postposition in the
sentence were stored separately.

After the input creation, we set the parameters
related to both of model training such as batch size
(16), epoch (50), seed (42), sequence length (128),
epsilon (0.00000008), and learning rate (0.00002),
as advised by previous studies (e.g., McCormick,
2019; Vázquez et al., 2020; Wu et al., 2019). We
then employed BERT and GPT-2 pre-trained lan-
guage models in order to obtain high performance
of outcomes: KoBERT (Jeon et al., 2019) for BERT

1Our corpus is available at: https://github.com/seongmin-
mun/Corpora/tree/main/APIK

and KoGPT-2-base-v2 (Jeon et al., 2021) for GPT-
2. The BERT model training proceeded as follows.
First, we loaded KoBERT through the function
BertForSequenceClassification from transformers
(Wolf et al., 2019). Second, we fine-tuned the pre-
trained model by using the training set, with a view
to reducing loss values and updating the learning
rate for better classification performance of the
model. Third, we loaded the testing set to eval-
uate whether the fine-tuned model successfully
recognized the intended functions of each post-
position in each sentence. In this part, the rates
of F-score for each function and the total F-score
rate (i.e., F-score) were calculated by comparing
the intended function of each postposition in each
test sentence against the parsed version returned
by the model. Lastly, we employed t-distributed
Stochastic Neighbor Embedding (t-SNE; Maaten
and Hinton, 2008) for dimension reduction of clas-
sification embeddings from the postposition by
each epoch. In addition, to statistically confirm the
changes of sentence-level embedding outcomes by
each epoch, we performed density-based clustering
(Sander et al., 1998). These outcomes were fed into
the visualization system 2.

The input treatment process and the training
process of GPT-2 are almost the same as the
BERT training process. For the input treatment,
first, the BERT model used symbols to mark the
start and the end of each input, but no such addi-
tion occurred in GPT-2 training. Second, BERT
uses wordpiece algorithm for the token embed-
ding (Sennrich et al., 2016), but GPT-2 uses
byte pair encoding algorithm (Gage, 1994). For
the training process, first, BERT operates on the
basis of masked language modeling and next-
sentence prediction for generating a pre-trained
model, whereas GPT-2 uses general language mod-
eling by using a huge size corpus. Second, the
BERT model conducts learning in bi-direction,
while GPT-2 conducts learning in uni-direction.
In addition, GPT-2 loaded KoGPT2 through the
function GPT2ForSequenceClassification and Pre-
TrainedTokenizerFast from transformers (Wolf
et al., 2019).

2.4 Developing the Visualization System

In order to better understand how BERT and GPT-2
recognize the word-level polysemy, we developed

2Code can be found at: https://github.com/seongmin-
mun/Visualization/tree/master/2022/PostTransformers
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Figure 2: The overview interface of the visualization system

a visualization system by using the test set under
the two-dimensional distribution. For the system
interface, we created three areas for the demonstra-
tion of model performance: a distributional map for
sentence-level embeddings, F-score charts relating
to the model, and graphs for the density-based clus-
tering3.

2.4.1 Distributional Map for Sentence-Level
Embeddings

The distributional map as in Figure 2b presents
the relationship between the sentences with the se-
lected postposition (represented as dots) involving
different functions (represented as colors). A slider
at the bottom of the map allows for changing the
epochs; the patterns of clustering change as the
slider moves. Each dot shows the details of the sen-
tence (e.g., an index of the selected sentence, the

3The visualization system available at: https://seongmin-
mun.github.io/Visualization/2022/PostTransformers/index.html

intended function used in the sentence, the orig-
inal sentence) once the mouse pointer is located
on the dot. For the manipulating of visualization
outcomes, Figure 2a provides options to select the
checkboxes to highlight and tracking interesting
sentences according to the function of these post-
positions, the models, and the index number.

2.4.2 F-score Charts
The right side of the system as in Figure 2c provides
users with various information about the model per-
formance: overall F-score and by-function F-score
in the classification task by epoch. This section also
provides F-score rates of each function by hovering
around the mouse pointer onto the specific-colored
lines.

2.4.3 Graphs for the Density-Based Clustering
The bar chart at the bottom right side of the system
presents the number of clusters produced by the

Epoch Classification performance (F-score)
Overall AGT CRT EFF FNS GOL INS LOC THM

1 0.677 0 0.812 0.286 0 0.125 0 0.802 0.472
10 0.739 0.286 0.84 0.37 0.5 0.444 0.222 0.813 0.646
20 0.758 0.25 0.848 0.514 0.474 0.478 0.286 0.827 0.705
30 0.745 0.25 0.823 0.571 0.542 0.448 0.375 0.816 0.688
40 0.73 0.222 0.805 0.537 0.522 0.478 0.3 0.82 0.66
50 0.747 0.25 0.839 0.529 0.5 0.413 0.353 0.817 0.705

Average 0.744 0.217 0.837 0.531 0.499 0.435 0.29 0.823 0.651

Table 2: By-function F-score for the BERT model: -ey
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Epoch Classification performance (F-score)
Overall LOC SRC

1 0.893 0.94 0.509
10 0.88 0.933 0.431
20 0.874 0.93 0.358
30 0.87 0.927 0.376
40 0.878 0.931 0.468
50 0.87 0.928 0.364

Average 0.875 0.93 0.373

Table 3: By-function F-score for the BERT model: -eyse

Epoch Classification performance (F-score)
Overall CRT DIR EFF FNS INS LOC

1 0.681 0.532 0.82 0 0.714 0.396 0
10 0.799 0.644 0.924 0.462 0.805 0.794 0.167
20 0.794 0.595 0.915 0.714 0.807 0.818 0.2
30 0.799 0.598 0.908 0.545 0.808 0.829 0.296
40 0.792 0.612 0.915 0.667 0.797 0.794 0.24
50 0.803 0.627 0.915 0.667 0.812 0.809 0.286

Average 0.795 0.626 0.911 0.604 0.805 0.803 0.233

Table 4: By-function F-score for the BERT model: -(u)lo

Epoch Classification performance (F-score)
Overall AGT CRT EFF FNS GOL INS LOC THM

1 0.514 0 0.579 0 0 0 0 0.617 0
10 0.7 0 0.8 0.5 0.148 0.31 0 0.794 0.591
20 0.675 0 0.793 0.39 0.235 0.222 0 0.768 0.56
30 0.672 0 0.784 0.364 0.421 0.328 0.2 0.771 0.495
40 0.687 0 0.811 0.324 0.41 0.25 0 0.768 0.592
50 0.685 0 0.814 0.333 0.333 0.254 0 0.768 0.582

Average 0.68 0.003 0.796 0.386 0.335 0.24 0.061 0.769 0.546

Table 5: By-function F-score for the GPT-2 model: -ey

Epoch Classification performance (F-score)
Overall LOC SRC

1 0.857 0.923 0
10 0.851 0.918 0.217
20 0.864 0.925 0.214
30 0.849 0.915 0.305
40 0.843 0.912 0.296
50 0.851 0.917 0.28

Average 0.844 0.912 0.272

Table 6: By-function F-score for the GPT-2 model: -eyse

model. This chart also provides a hovering function,
providing the actual number of clusters per epoch.
The particular hovering activity is interlocked with
the density cluster view, located at the bottom left

of the system, by presenting the clustering results
according to the selected epoch.
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Epoch Classification performance (F-score)
Overall CRT DIR EFF FNS INS LOC

1 0.473 0.03 0.549 0 0.575 0.099 0
10 0.675 0.611 0.765 0.471 0.701 0.583 0.207
20 0.664 0.619 0.782 0.429 0.658 0.568 0.273
30 0.696 0.621 0.801 0.5 0.721 0.587 0.222
40 0.683 0.585 0.799 0.462 0.691 0.612 0.24
50 0.694 0.603 0.803 0.5 0.702 0.635 0.222

Average 0.676 0.588 0.782 0.425 0.69 0.591 0.226

Table 7: By-function F-score for the GPT-2 model: -(u)lo

3 Results: Four Case Studies

In order to report the transformer-architecture mod-
els’ performance of classifying the functions of
postpositions and assess how our visualization sys-
tem works, we conducted four case studies.

3.1 Which Model is Better to Resolve the
Polysemy of Korean Postposition?

Tables 2-7 show the classification performance (i.e.,
F-score) of the two models for each postposition.
Results show that the overall F-score was the high-
est in BERT (0.875; for -eyse) and the lowest in
GPT-2 (0.676; for -(u)lo)).

Comparison |F | p

Model 752.97 < .001∗∗∗

Postposition 1240.18 < .001∗∗∗

Model × Postposition 97.14 < .001∗∗∗

Table 8: Results of the two-way ANOVA for the overall
comparison of two models

Note. ∗∗∗ < .001

To construct a global model, we performed a
two-way ANOVA (2 models × 3 postpositions).
As Table 8 shows, there are significant differences
in the F-score across the models and postpositions.
This indicates the classification performance dif-
fered between the BERT model and the GPT-2
model in all postpositions.

Comparison |t| p

BERT vs. GPT-2 (-ey) 14.506 < .001∗∗∗

BERT vs. GPT-2 (-eyse) 9.688 < .001∗∗∗

BERT vs. GPT-2 (-(u)lo)21.337 < .001∗∗∗

Table 9: Statistical comparison between two models by
each postposition: Two-sample t-test

Note. ∗∗∗ < .001

We further conducted post-hoc analyses through
a two-sample t-test. As Table 9 shows, the model
performance of BERT significantly differs from the
GPT-2’ performance. Considering the differences
between two models for model training such as
the different directions or pre-training tasks of two
models (see Section 2.3), this can indicate that the
different training processes of the two models influ-
enced the classification performance by classifying
the functions of the postpositions.

3.2 Does the Number of Functions Involving a
Postposition Affect the Model
Performance?

As shown in Tables 2-7, the BERT model per-
formed better for -eyse, which has only two func-
tions (SRC and LOC), than for the other two post-
positions (-ey and -(u)lo). Similar to the BERT
model, -eyse outperformed the other two postposi-
tions in the GPT-2 model, as Tables 2-7 show. The
overall classification F-score rates for -ey, -eyse
and -(u)lo were around 0.744, 0.875 and 0.795 for
BERT, 0.68, 0.844 and 0.676 for GPT-2.

Comparison |F | p

Postposition 22.941 < .001∗∗∗

Epoch 0.414 0.521
Postposition × Epoch 0.003 0.959

Table 10: Results of the two-way ANOVA for the BERT
model

Note. ∗∗∗ < .001

Table 10 shows the two-way ANOVA for the
comparison of the BERT classification perfor-
mance. The result presents that the overall F-score
levels of the postpositions were significantly dif-
ferent from each other. This indicates there is a
difference in model performance between the three
postposition types which have a different number
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of functions.

Comparison |F | p

Postposition 0.049 0.825
Epoch 1.690 0.196
Postposition × Epoch 0.355 0.552

Table 11: Results of the two-way ANOVA for the GPT-2
model

Unlike the results from the BERT model, the
statistical analysis of two-way ANOVA for GPT-
2 (Table 11) shows that there was no statistical
significance in the performance across the post-
positions/epochs. This indicates that GPT-2 is not
affected by the number of functions of each post-
position.

3.3 Do the Asymmetric Proportions of the
Functions in Each Postposition Affect the
Model Performance?

The answer is they do. For the BERT model, the
overall classification F-score of each function for
-ey was the highest for CRT (0.837) and the lowest
for AGT (0.217); for -eyse, the performance was
the highest in LOC (0.93) and the lowest in SRC
(0.373); for -(u)lo, the classification performance
was the highest in DIR (0.911) and the lowest in
LOC (0.233) (Tables 2-4). Similar to the BERT
model, the overall classification performance of
GPT-2 for -ey was the highest in CRT (0.796) and
the lowest for AGT (0.003); for -eyse, the F-score
was the highest in LOC (0.912) and the lowest

in SRC (0.272); for -(u)lo, the classification per-
formance was the highest in DIR (0.782) and the
lowest in LOC (0.226) (Tables 5-7).

As for the occurrences of individual functions
per postposition, CRT for -ey, LOC for -eyse, and
DIR for -(u)lo account for the larger portion of the
entire corpus than other functions (see Table 1).
This finding thus indicates that the model perfor-
mance was affected by the asymmetric proportions
of the functions comprising the use of each postpo-
sition.

3.4 How do the Transformer-Architecture
Models Classify Sentences for Each
Postposition Based on Function as the
Epoch Proceeds?

Our visualization system showed that the model
was able to recognize the functions of each post-
position as the epoch progressed. Through the out-
comes of the BERT model, for -ey, the number of
clusters was one when the epoch was one, but as the
epoch progressed, the sentences were divided into
four in Epoch 8, five in Epoch 12, and six in Epoch
40. For -eyse, all of the sentences were grouped
into one when the epoch was one, and there were
two clusters since the epoch was two. For -(u)lo,
the number of clusters increased, starting from one
(Epoch 1) to four (Epoch 4), five (Epoch 9), and
six (Epoch 29).

The GPT-2 model also showed a similar ten-
dency with the BERT model. For -ey, all of the
sentences were grouped into one when the epoch

Figure 3: The t-SNE outcome of BERT model for -(u)lo in Epoch 17
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Figure 4: The t-SNE outcome of the GPT-2 model for -(u)lo in Epoch 50 (left: for highlighting the EFF instances;
right: highlighting the LOC instances)

was one, but as the epoch progressed, the sentences
were divided into two in Epoch 8, three in Epoch
23, four in Epoch 42, and five in Epoch 47. For
-eyse, the number of clusters was one when the
epoch was one, and there were two clusters since
the epoch was 20. For -(u)lo, the number of clus-
ters increased, starting from one (Epoch 1) to two
(Epoch 3), three (Epoch 18), and four (Epoch 23).

In particular, by using visualization system, we
found two interesting aspects. First, the BERT
model in Epoch 17 (Figure 3) for -(u)lo, a cluster of
EFF (the function with low-frequency occurrences
in the data) emerged. This finding indicates that the
BERT model can identify functions at a satisfactory
level, even though they are relatively infrequent, as
long as there are sufficient epochs provided. How-
ever, unlike the BERT model, the GPT-2 model did
not recognize EFF as a designated function until
Epoch 50 as shown in Figure 4 (left).

Figure 5: The DIR cluster in the t-SNE outcome of
the BERT model for -(u)lo (Epoch 50) highlighting the
LOC instances

Second, for both models, LOC could not form
a designated cluster in the end. Zooming into the

individual instances of LOC (Figure 4 (right) and
Figure 5), we found that many of the LOC instances
(11 out of 15) belonged to the DIR group. This
may be due to (i) the low frequency of LOC in
the data and (ii) the semantic closeness between
DIR and LOC—they relate to a location and are
often difficult to distinguish one from another. This
finding indicates that there are still some limitations
in regard to the identification of functions given the
above complications.

4 Conclusion

In this study, we made five major findings. First,
BERT performed better than GPT-2 in revealing the
polysemy of Korean postpositions. Second, there
was an inverse relation between the classification
performance and the number of functions of each
postposition. Third, the model was affected by the
corpus size of each function. Fourth, the model was
able to identify the intended functions of a postpo-
sition as the epoch progressed. Fifth, these models
were affected by the rarely occurring input and/or
semantic closeness between the items, limiting the
performance of two models in the given task to
some extent.

The findings of this study should be further veri-
fied by incorporating more postposition types that
have similar degrees of polysemy that three adver-
bial postpositions demonstrate. Future study will
also benefit from considering other contextualized
word-embedding models such as GPT-3 (Brown
et al., 2020) or ELECTRA (Clark et al., 2020)
to better ascertain the advantage of transformer-
architecture models in this kind of task.

We believe our visualization system will con-
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tribute to extending the current understanding of
how transformer-architecture models work for lan-
guage tasks (particularly in non-English settings).
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Abstract

Dense retrieval aims at searching for the most
relevant documents to the given query by en-
coding texts in the embedding space, requiring
a large amount of query-document pairs to train.
Since manually constructing such training data
is challenging, recent work has proposed to gen-
erate synthetic queries from documents and use
them to train a dense retriever. However, com-
pared to the human labeled queries, synthetic
queries do not generally ask for hidden informa-
tion, therefore leading to a degraded retrieval
performance. In this work, we propose Query
Generation with External Knowledge (QGEK),
a novel method for generating queries with ex-
ternal knowledge related to the corresponding
document. Specifically, we convert a query into
a triplet-based template to accommodate exter-
nal knowledge and transmit it to a pre-trained
language model (PLM). We validate QGEK
in both in-domain and out-domain dense re-
trieval settings. The dense retriever with the
queries requiring external knowledge is found
to make good performance improvement. Also,
such queries are similar to the human labeled
queries, confirmed by both human evaluation
and unique & non-unique words distribution.

1 Introduction

Information retrieval (IR) is the task of collect-
ing relevant documents from a large corpus when
given a query. IR not only plays an important
role in the search system by itself, but is also
crucially applied to various NLP tasks such as
Open-Domain QA (Kwiatkowski et al., 2019) and
Citation-Prediction (Cohan et al., 2020) with its
ability to find grounding documents. As the
simplest retrieval method, traditional term-based
sparse models such as TF-IDF and BM25 (Robert-
son and Zaragoza, 2009) are widely used. How-
ever, these sparse retrieval models are unable to
capture the semantic similarities without explicit
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… that zebra mussels have also 

had an effect on fish 

populations … They were first 

detected in Canada in the 

Great Lakes in 1988, …

when did zebra mussels

come to north america

where are mussels

located

Document

Human Labeled Query

Synthetic Query

Figure 1: The analysis of human labeled query and
synthetic query. (Left) Examples of the human labeled
query and synthetic query. (Right) Average of unique
words in human labeled query and synthetic query.

lexical overlaps between the query and its relevant
documents. As a solution, dense retrieval mod-
els are recently proposed where query and doc-
ument representations are embedded into the la-
tent space (Gillick et al., 2018; Karpukhin et al.,
2020), though they require a large amount of paired
query-document training samples for notable per-
formance, which is very challenging and expensive.
In response, a zero-shot setting is often adopted,
but dense retrievers are known to show poor per-
formance on a new target domain (Ma et al., 2021;
Wang et al., 2021; Xin et al., 2021).

One possible solution is to generate synthetic
queries by fine-tuning a pre-trained language model
(PLM) on a large IR benchmark dataset, and to
use such queries for training dense retrievers (Ma
et al., 2021; Thakur et al., 2021; Wang et al., 2021).
However, this method does not yet provide syn-
thetic queries whose quality is comparable to that
of human labeled ones, thus hindering retrieval
performance.

In particular, we argue that, for the effective
training of dense retrievers, query samples should
be allowed to contain external knowledge that is
not explicitly shown in documents. As Figure 1
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Call of Duty: World at War is a first-

person shooter video game … released 

for Microsoft Windows, the 

PlayStation3, Xbox 360, and Wii …

Call of Duty: World at War

[subject][name]Call of Duty: World at War[type]…[description]…

[relation][name]…[type]…

[object][name]PlayStation3[type]…[description]…Game Console…

PlayStation3

… home video game console…

What console is call of duty: world at war available on?

Triple-Based Template

Query Template Construction

Figure 2: Overall methods of query generation with external knowledge and dense retrieval training with synthetic
queries.

shows, the human labeled query contains the exter-
nal knowledge that Canada and North America are
related, which is easily grasped by humans but not
by the machine. Also, unique words in the query,
often considered as external knowledge, are more
frequently included in the human labeled queries
than in the synthetic queries. The dense retrievers
would better capture semantic relations if they are
trained with such queries that show more character-
istics of human labeled ones.

In this paper, we focus on generating queries
with external knowledge by employing a simple
method of explicitly transmitting document-related
information to a PLM. Even though PLMs can
handle hidden information to some extent by learn-
ing from a large amount of data, we argue that
transmitting additional pieces of external knowl-
edge to a PLM contributes positively to generat-
ing queries requiring external knowledge. Specifi-
cally, we first interpret the given query into a triplet-
based template to consider the given document and
related external knowledge together. A PLM is
then fine-tuned to generate queries from triplet-
based templates, together with a processed KB-QA
dataset. The dense retriever is trained with the syn-
thetic queries from the template extracted from the
given document and corresponding external knowl-
edge. The proposed method, henceforth referred
to as Query Generation with External Knowledge
(QGEK), is schematically illustrated in Figure 2.

We validate QGEK in both in-domain and out-

domain (zero-shot) dense retrieval settings with
diverse evaluation metrics. The experimental re-
sults show that queries that require external knowl-
edge to answer are helpful for improving retrieval
performance. Furthermore, we provide detailed
qualitative analyses of synthetic queries and dis-
cuss which aspects of queries should be considered
when training dense retrieval models.

Our contributions in this work are threefold:

• We propose a generation method of queries
that require hidden information, not present
in the document, from external sources.

• We experimentally show that the generated
queries are similar to the gold queries that are
labeled by human annotators.

• We evaluate the quality of generated queries
with respect to dense retrieval performance
and distribution of unique words so as to find
optimal queries in training a dense retriever.

2 Related Work

2.1 Dense Retriever

The sparse retriever, a traditional IR system, re-
trieves the target documents based on the lexical
values such as frequency of terms and documents.
BM25 (Robertson and Zaragoza, 2009) has been
arguably the most frequently used method for such
IR. However, as the retriever mainly handles the
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match of the lexical entries, ‘semantically similar’
but not the same lexical entries are not considered
in the search for documents, affecting the user ex-
perience (Berger et al., 2000).

The dense retriever (Karpukhin et al., 2020) has
received much attention as a solution to handle the
problem, triggered by the Transformer (Vaswani
et al., 2017) network and PLM. A dense retriever
fetches the documents located closest to the query
vector in the dense vector space with the results
recorded in advance for retrieval performance. The
model maps queries and documents to the dense
vector space using a bi-encoder structure initialized
from a PLM such as BERT (Devlin et al., 2019a).

The dense retriever requires a large-scale dataset
for model training, and curating such datasets is
a much arduous endeavor. Thakur et al. (2021)
proposed a zero-shot setting where dense retrievers
are trained on a single large IR corpus, rather than
on every dataset. Nonetheless, retrieval in such
setting is still quite challenging.

2.2 Query Generation
Query generation is a simple method that ad-
dresses the shortage of training data for a dense re-
triever (Ma et al., 2021; Thakur et al., 2021; Wang
et al., 2021). The most commonly used method
has been to fine-tune the T5-base model (Raffel
et al., 2020) to the MS MARCO dataset (Nguyen
et al., 2016) and create a synthetic query in the
target domain. Exploiting the size and domain
of MS MARCO, we can obtain an effective re-
trieval performance by fine-tuning the T5 model.
Info-HCVAE (Lee et al., 2020) achieved good per-
formance by designing the relationship between
document, query, and answer as a probability dis-
tribution and learning the latent vectors based on
an auto-encoder. Answers and documents are used
as inputs when creating queries. In these two meth-
ods, however, the processing of hidden information
in the document still depends only on PLMs.

The existing methods focus only on the given
document when generating queries, without much
consideration of hidden information. In contrast,
QGEK includes not only the document but also the
hidden information that can be inferred from the
given document with external knowledge.

2.3 Exploiting External Knowledge
External knowledge has been widely used along
with PLMs for several NLP tasks. (Wang et al.,
2020) augmented PLMs using ConceptNet (Speer

et al., 2017) for a commonsense question answering
(QA) task and showed that KB, such as Concept-
Net, contributes to the explicit grounding of the
output, resulting in better reasoning abilities.

Furthermore, Zhou et al. (2018) proposed to
generate knowledge-based dialogues for an Open-
Domain Dialogue system. Dinan et al. (2019)
confirmed that the additional external knowledge
positively affects dialogue generation. In addition,
Shuster et al. (2021) showed that the related exter-
nal knowledge can be exploited to address critical
issues, such as factual incorrectness and hallucina-
tion, in dialogue systems.

While external knowledge from KB has proved
helpful in Commonsense QA and Open-Domain
Dialogue domains, it is relatively underexplored
for generating synthetic queries for dense retrieval.
In this work, we adopt KB into a PLM for query
generation and show the effectiveness of training
dense retrievers with the synthetic queries on IR
benchmark datasets.

3 Methods

QGEK is designed to generate a new synthetic
query that requires an implicit inference process for
the answer by exploiting both the given document
and external knowledge hidden in the document.
First, we interpret the query as the triplet <S,R,O>
that can easily utilize both of them, where the triplet
is converted into a single-text template to simplify
the transmission to a PLM. Then, we construct
triplet-based template & query pairs as training
datasets for fine-tuning a PLM. For generating a
query from target documents, the triplet-based tem-
plate is extracted from a general document.

3.1 Preliminaries
The dense retriever maps query q and document
d into an n-dimensional vector space with query
encoder EQ(·, θq) and document encoder ED(·, θd)
where θ is the encoder’s parameter. The similarity
score f(q, d) between query q and document d is
computed as a dot product:

f(q, p) = EQ(q, θq)
T · ED(d, θd)

Training the dense retriever targets the vector
space of which the relevant query and document
pairs have a high similarity score compared to ir-
relevant pairs. Given query q, let (D+

q , D
−
q ) be the

pairs of the sets of relevant documents and irrele-
vant documents. The objective function of dense
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Triple

Template

Figure 3: Overview of the Methods for Query Generation based on Triplet-based Template.

retriever is as follows:

min
θ

∑

q

∑

d+∈D+
q

∑

d−∈D−
q

L(f(q, d+), f(q, d−))

The loss L is the negative log likelihood of the
positive passage.

3.2 Query Interpretation as Triplet Form
Queries can be simply mapped to the <S,R,O>
triplet. The query <S,R,O> asks for the answer
O, which has relationship R with subject S. For
example, the query "big little lies season 2 how
many episodes" and the answer "7 episodes" can
be mapped to <"big little lies season 2", "number
of episodes", "7 episodes">.

Information of each item in a triplet can be
largely divided into sentences or words units. We
use two types of information to express each item
of a triplet in more detail. Let Wx = {w1

x, . . . , w
n
x}

and lx be the set of word unit information and the
single sentence unit information of the item x, re-
spectively. Then, query Q can be interpreted as the
triplet items with their own information:

Q = {(WS , lS), (WR, lR), (WO, lO)}

For generating a query that requires an implicit
inference, a form of query that can utilize both
the document and external knowledge is required.
The proposed triplet simply handles both document
and external knowledge by arranging information
into the appropriate positions in the triplet. When

transmitting such triplets to a PLM, we use the
simple form of a single text template. The triplet-
based template consists of triplet items delimited
by special tokens as shown in Figure 3.

3.3 Dataset Construction for Query
Generator

We construct a dataset consisting of triplet-query
pairs for fine-tuning PLM. The KB based query can
be converted into the proposed triplet. A canonical
logical form of a KB based query is a representation
that expresses the same meaning as the relationship
between entities in KB. A simple interpretation
of the proposed triplet can be seen as a canonical
form consisting of two entities and a relationship
between them.

For example, suppose that the entity, ‘Michael
Dotson’, is first selected as subject S and has word
unit information, ‘Actor’, and sentence unit infor-
mation, ‘Michael Dotson is an actor’. Suppose also
that there is an entity, ‘Frenso’, linked by ‘place-
of-birth’ relationship with ‘Michael Dotson’. The
other entity and relationship may have their own
information from KB. The triplet-based template
is created by combining all of them.

3.4 Applying Template for General Document

The fine-tuned PLM with the dataset constructed
in Section 3.3 needs the triplet-based template to
generate a query from a general document. We
extract triplet items from the given document, and
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collect external knowledge to fill the template from
the open web.

For example, suppose that there is a document
about zebra mussels (cf. Figure 3). The subject S,
relation R and object O are selected as ‘zebra mus-
sels’, ‘location’ and ‘Canada’, respectively. The
document alone is not enough to fill the informa-
tion of object O, ‘Canada’. The external knowl-
edge, ‘Canada is a country in North America’, is
extracted from the open web. Both given docu-
ment and external knowledge are arranged into the
appropriate positions in the template.

4 Experimental setups

We evaluate the performances of the dense retriever
when trained with the synthetic queries compared
to the human labeled queries. The dense retriever
used in our experiments is the DPR (Karpukhin
et al., 2020). The train dataset of the dense retriever
is the pairs of the documents of Natural Question
(NQ) (Kwiatkowski et al., 2019), also exploited as
the source of the query generator, and the synthetic
queries of the proposed method.

4.1 Datasets

We evaluate the effectiveness of the generated
queries when using external knowledge on IR
benchmark datasets. We conduct experiments in
two settings: in-domain and out-domain (zero-
shot). We measure the in-domain performance on
the NQ and the out-domain performance on 13
representative IR datasets (Thakur et al., 2021).

In-Domain Dataset NQ (Kwiatkowski et al.,
2019) is a benchmark dataset for the open-domain
question answering task, fetched by Google
search engine and from Wikipedia. We use
the preprocessed version of the NQ following
DPR (Karpukhin et al., 2020), which includes
58,880 training pairs and 7,405 test queries. The
documents in NQ is used as input of query genera-
tor.

Out-Domain Dataset To validate the quality of
generated queries for training the dense retriever, it
is necessary to show the retrieval performance of di-
verse tasks. Each dataset used in out-domain exper-
iments has diverse tasks and domains and requires
retrieval models for finding grounding documents.
They are shown in Table 1.

Task Domain Dataset

Argument Retrieval
Misc. ArguAna (Wachsmuth et al., 2018)
Misc. Touche-2020 (Bondarenko et al., 2020)

Entity-Retrieval Wikipedia DBPedia (Hasibi et al., 2017)

Question Anwering
Wikipedia HotpotQA (Yang et al., 2018)
Finance FiQA-2018 (Maia et al., 2018)

Duplicate-Question Retrieval Quora Quora (Thakur et al., 2021)

Fact Checking
Wikipedia FEVER (Thorne et al., 2018)
Wikipedia Climate-Fever (Leippold and Diggelmann, 2020)
Scientific SciFact (Wadden et al., 2020)

Passage-Retrieval Misc. MS MARCO (Nguyen et al., 2016)

Citation-Prediction Scientific SCIDOCS (Cohan et al., 2020)

Bio-Medical IR
Bio-Medical TREC-COVID (Voorhees et al., 2021)
Bio-Medical NFCorpus (Boteva et al., 2016)

Table 1: Datasets for Out-Domain Experiments

4.2 Metrics

We explain the metrics for evaluating the perfor-
mance of a dense retriever. In the basic setting,
the retriever searches for top k relevant documents
on a given query. We employ 4 metrics for top
k documents: ACC@k, MRR@k, MAP@k, and
nDCG@k. The in-domain experiment is evaluated
with these 4 metrics, and the out-domain perfor-
mance is evaluated with only nDCG@10.

ACC@k is the percentage of whether the correct
documents are included in the top-k hits. It ignores
the rank of retrieved documents.

MRR@k (Mean Reciprocal Rank) computes
the average of the ranks of the first correct docu-
ment from top-k documents. The rest of the correct
documents are not included in computing MRR.

MAP@k (Mean Average Precision) first com-
putes the average precision score of the correct
documents’ ranks in top-k hits for a given query.
The mean of the average precision scores is the
value of the MAP@K.

nDCG@k (Normalised Cumulative Discount
Gain) is similar to MAP@k, but reflects the fact
that the more relevant document is the more highly
ranked in top-k documents.

4.3 Implementation Details

Query Generator We used BART (Lewis et al.,
2020), one of the widely used PLMs, to generate
the synthetic query from the proposed template.
BART based on the transformer seq2seq architec-
ture is trained by reconstructing text from noised
input. The de-noising ability of BART is suitable
for generating queries from text with noise from
the external source.

SimpleQuestions (Bordes et al., 2015) (SQ),
a question answering dataset based on KB, is se-
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In-Domain

Train Query (↓) ACC@10 ACC@100 MRR@10 MRR@100 MAP@10 MAP@100 NDCG@10 NDCG@100

Gold .6374 .8974 .3372 .3493 .3146 .3296 .3892 .4543

QGEK .4901 .7488 .2375 .2484 .2220 .2354 .2841 .3449
(-) Ext. Knowledge .4860 .7285 .2348 .2457 .2162 .2295 .2745 .3357

Out-Domain
Train Query (↓) Arguana DBpedia fiqa HotpotQA NFC Quora SciFact Touche-2020 C-Fever Fever MS MARCO SciDocs TREC-COVID Avg.

Gold .2203 .2585 .1763 .3205 .2226 .5778 .4476 .2334 .1609 .5160 .1858 .1022 .5152 .3029

QGEK .0948 .2733 .1182 .4226 .1791 .4982 .3436 .2093 .1754 .7731 .1738 .0945 .4411 .2921
(-) Ext. Knowledge .0568 .2555 .1138 .4105 .1876 .2366 .3001 .1890 .1831 .7883 .1757 .0800 .4427 .2630

Table 2: In-domain and Out-domain performance of DPR. The scores for out-domain denote nDCG@10. The
scores over the gold query are marked in bold, and the better scores between queries from QGEK are underlined.

lected to convert the query’s logical form into the
proposed template. A query in SQ is generated
from a one-to-one correspondence of KB entities,
which is very similar to the form of our proposed
triplet. The conversion process proceeds in the
same way as mentioned in Section 3.3.

The BART-large (d = 1024) is fine-tuned for
5 epochs with 47,180 template-query pairs. For
training the model, Adam optimizer (Kingma and
Ba, 2015) is used with the batch size of 8, and the
learning rate starts from 10−5.

Query Generation We used the documents in
the NQ train split (Kwiatkowski et al., 2019), ex-
ploited as a training dataset in DPR (Karpukhin
et al., 2020), as the target dataset for query genera-
tion. The documents are converted into a template
through the process described in Section 3.4. To
obtain external knowledge of the subject and ob-
ject, the first paragraph and category information of
the Wikipedia documents are collected and inserted
into the template. The generated queries and the
corresponding NQ documents, input of the queries,
are used in the training step of DPR.

Retriever model The dense retriever used in
the training has the same structure proposed by
DPR (Karpukhin et al., 2020), which has a bi-
encoder structure that calculates the dot product
between query and document embedding as the
ranking score. The train dataset consists of the
generated queries and the corresponding NQ doc-
uments for comparison with the human labeled
queries of NQ. The encoder is initialized from
BERT (base, uncased) (Devlin et al., 2019b). The
retriever is trained with Adam optimizer (Kingma
and Ba, 2015) for 25 epochs. The negative sam-
ples for contrastive learning are sampled from a
single batch. The size of the train batch is 8 and

the learning rate is initialized with 2 · 10−5.

5 Result & Discussion

5.1 Overall Result

Our main results are shown in Table 2. We evalu-
ate the retrieval performance of the dense retriever
trained with the synthetic queries from QGEK
against the gold query in the NQ train split. In
the in-domain experiments, the dense retriever with
the gold query of NQ showed superior performance
over the retriever with QGEK. QGEK shows better
performance in all metrics than the ablation case
not including external knowledge in the proposed
triplet. The average of NDCG@10 in out-domain
experiments shows a small difference (-0.0108) be-
tween the gold queries and QGEK. In detail, the
retriever trained with QGEK shows better perfor-
mance on 4 datasets: DBpedia, HotpotQA, Fever,
and Climate-Fever. The rest of the 9 datasets show
that the retriever with the gold queries is more ap-
propriate.

Using external knowledge gives rise to generat-
ing more appropriate queries for most datasets than
not using one, though human labeled queries are
more appropriate for training the dense retriever
in the in-domain experiments. On the other hand,
we see that QGEK gives comparable performance
to the one with human labeled queries in the out-
domain experiments and even outperforms on some
datasets.

5.2 Analysis of Synthetic Queries

Experiments are conducted to compare against
query generator baselines. We selected GenQ
(Thakur et al., 2021) and Info-HCVAE (Lee et al.,
2020) models as the baselines. The models receive
the documents in NQ train split as input. The size
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Figure 4: NDCG@10 average of the dense retrieval
trained with various queries for NQ and 13 out-domain
datasets.

and documents of the dataset are the same as those
of the NQ train split except for synthetic queries.

Baseline Comparison A comparison with other
query creation methods is made, as shown in Fig-
ure 4. The average of the NDCG@10 performance
in in-domain and out-domain experiments is cal-
culated by training the dense retriever through the
generated queries. The models trained with syn-
thetic queries are sorted as GenQ, QGEK, and Info-
HCVAE in descending order. QGEK shows some-
what lower performance than the one with gold
queries, but GenQ shows the best performance,
indicating that many queries suitable for the IR
tasks are generated by training on the MS MARCO
dataset.

The MS MARCO dataset is most widely used
for dense retriever training, and training a dense re-
triever with MS MARCO is known to give a higher
performance than training it on other datasets such
as NQ. Also, it has a huge amount of data, more
than 500,000 pairs. This has the advantage of
generating queries suitable for IR tasks based on
abundant and task-appropriate data. However, the
proposed method is trained on a relatively small
amount of 47,180 data from SimpleQuestions, a
KB-QA dataset. There is a possibility that the gen-
erated queries are largely incompatible with the IR
task. However, the proposed method focuses on
utilizing external knowledge, and it can be applied
orthogonally to the MS MARCO dataset, which
we leave for future work.

Unique & Non-Unique Words in Query We an-
alyze whether the words in a query are from the
corresponding documents. The implicitly inferring

0 1 2 3 4 5+

0

10

20

30

40

%

Gold

0 1 2 3 4 5+

0

10

20

30

40

QGEK

0 1 2 3 4 5+

0

10

20

30

40

GenQ

0 1 2 3 4 5+

0

10

20

30

40

Info

Unique Non-Unique

Figure 5: Distribution of unique & non-unique words in
the queries.

query has a higher probability of including unique
words not present in the document. So, the distribu-
tion of unique & non-unique words can indirectly
tell the existence of such queries. The stop words,
such as the interrogative word and articles, in a
query are excluded from the analysis.

The distribution of unique words in a query is
shown in Figure 5. The 27% of gold labels of
NQ contain 3 unique words, and 80% of the cases
contain 4 or fewer unique words. QGEK shows a
similar pattern of non-unique words compared with
the gold, and over 40% of queries contain more
than 5 unique words. The distribution of GenQ
shows a similar pattern to that of the gold queries
in both unique and non-unique words. Unlike other
models, the Info most frequently includes 2 non-
unique words.

Note that QGEK generates queries with more
unique words than other queries, together with a
similar distribution of non-unique words to that of
gold queries. This implies that QGEK can generate
queries requesting hidden information not present
in the document. Given the performance of the
dense retriever (Figure 4) and the distribution of
unique & non-unique words (Figure 5), generating
queries both close to the human labeled ones and
appropriate to the IR tasks is an important factor
for an optimal training of the dense retriever. Our
future work includes generating queries not only
close to human labeled ones but also optimized
for IR tasks, such as exploiting the MS MARCO
dataset.

Manual Evaluation We use human evaluation
to check whether the synthetic queries are similar
to human labeled ones. The randomly sampled 30
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Document 1 Document 2 Document 3

(...) reporting having problems with their water
treatment plants with the mussels attaching them-
selves to pipeworks. (...) They were first detected
in Canada in the Great Lakes in 1988, in Lake St.
Clair, located east/northeast of Detroit and Wind-
sor. (...)

Call of Duty: World at War is a first-person shooter
video game developed by Treyarch and published
by Activision. It was released for Microsoft Win-
dows, the PlayStation 3, Xbox 360, and Wii in
November 2008. (...) "World at War" received
ports featuring different storyline versions, while
remaining in the World War II setting, for the and .
(...)

(...) Call the Midwife is a BBC period drama series
about a group of nurse midwives working in the
East End of London in the late 1950s and early
1960s. It stars Jessica Raine, Miranda Hart, He-
len George, Bryony Hannah, Laura Main, Jenny
Agutter, Pam Ferris, (...) and Leonie Elliott. The
series is produced by Neal Street Productions, a
production company founded (...)

Gold Label Gold Label Gold Label
when did zebra mussels come to north america who made call of duty world at war where in london is call the midwife set

QGEK QGEK QGEK
What is the date zebra mussel was first detected in
Canada?

What console is call of duty: world at war avail-
able on

who is the actress for call the midwife

(-) Ext. Knowledge (-) Ext. Knowledge (-) Ext. Knowledge
what country is zebra mussel found what is the setting of call of duty: world at war who produced call the midwife

Info-HCVAE Info-HCVAE Info-HCVAE
where did the lake st. clairs originate? what setting was the setting for the game of the

" world at war :"?
in what time period did the bbc’s the midcene series
take place?

GenQ GenQ GenQ
where are mussels located what year did call of duty world at war come out cast of call the midwife

Table 3: Examples of documents and the corresponding queries. The non-unique words are underlined, and the
unique words are marked in bold.

documents and corresponding queries are given to
three annotators fluent in English. After reading
the given documents, annotators evaluated each
query on a scale of 0-5 against three points: 1) how
relevant a given query is to the document (Rele-
vancy), 2) how grammatically natural it is (Gram-
maticality), and 3) how much reasoning is needed
to answer (Difficulty).

Query Relevancy Grammaticality Difficulty

Gold 3.95 (±1.38) 3.80 (±1.12) 2.10 (±1.43)

QGEK 3.66 (±1.50) 4.07 (±1.04) 2.39 (±1.50)
Info-HCVAE 3.66 (±1.45) 4.01 (±1.13) 2.31 (±1.52)

GenQ 4.12 (±1.20) 4.02 (±1.26) 1.90 (±1.21)

Table 4: The result of human evaluation. Statistically
significant difference compared to gold via t-test (p <
0.05) is marked in bold.

As shown in Table 4, QGEK shows statistically
higher degrees of grammaticality and difficulty
than the gold labels. These results indicate that
queries from QGEK need more hidden information
not present in the documents compared to other
queries.

Case Study Examples of the documents and cor-
responding queries are shown in Table 3.

Document 1 is about the water treatment prob-
lem caused by mussels. In answering the gold label,
external knowledge that Canada is in North Amer-
ica is needed for the inference from the document.
However, other generated queries do not require
much external information. In the case of Docu-

ment 2, the introduction of the game "Call of Duty",
the gold label does not require hidden information
in the document. However, in the case of GenQ,
the additional information that PlayStation 3, Xbox
360, and Wii are gaming consoles is required for
a suitable answer. This gives evidence that there
are cases in which queries requiring inference from
external knowledge are generated through the pro-
posed method. In the case of Document 3, intro-
duction of Call the Midwife, the query from QGEK
needs external information about the gender of ac-
tors to answer.

Although QGEK generates the queries that need
external knowledge to answer, they have a simi-
lar pattern that begins with an interrogative word.
In the case of GenQ and Info-HCVAE, different
patterns exist through the queries of Document 3.
It can be inferred that the triplet-based template
makes the logical structure simple, and that the
syntactic diversity of the generated query tends to
decrease. For future work, we plan to propose a
template that can include more logical structures,
developed from the current triplet-based template.

6 Conclusion

We presented a novel query generation method,
QGEK, that generates synthetic queries in a form
more similar to human labeled queries by using ex-
ternal knowledge. In order to use unprocessed ex-
ternal knowledge, we convert a query into a triplet-
based template, which can include information of
subjects and answers. Remarkably, when dense
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retrieval models are trained with the queries gener-
ated from QGEK, the performance has improved
much compared to using the queries without exter-
nal knowledge. Also, we have shown that including
external knowledge give rises to the distribution of
the unique words similar to that of the human la-
beled queries. We believe that QGEK can also be
applied to the other generation methods by orthog-
onally adding some external knowledge processing
modules. For future work, we plan to generate
queries both close to human labeled ones and op-
timized for IR tasks and to allow the template to
accept more general logical forms for diverse high-
quality queries. The code and data will be made
available for public access.
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Abstract

Moral values as commonsense norms shape our
everyday individual and community behavior.
The possibility to extract moral attitude rapidly
from natural language is an appealing perspec-
tive that would enable a deeper understanding
of social interaction dynamics and the individ-
ual cognitive and behavioral dimension. In this
work we focus on detecting moral content from
natural language and we test our methods on
a corpus of tweets previously labeled as con-
taining moral values or violations, according
to Moral Foundation Theory. We develop and
compare two different approaches: (i) a frame-
based symbolic value detector based on knowl-
edge graphs and (ii) a zero-shot machine learn-
ing model fine-tuned on a task of Natural Lan-
guage Inference (NLI) and a task of emotion
detection. Our approaches achieve consider-
able performances without the need for prior
training.

1 Introduction

Morality as a set of social and acceptable behav-
ioral norms (Haidt, 2012) is part of the common-
sense knowledge that determines dynamics of ac-
tion among social agents in areas like societal in-
teraction (Haidt, 2001), individual conception of
rightness and wrongness (Young and Saxe, 2011),
moral taste and emotions (Graham et al., 2009),
political commitment (Clifford and Jerit, 2013),
public figure credibility (Graham et al., 2012) and
narratives for explainable causal dependence of
events or processes (Forbes et al., 2020).

Understanding this pervasive moral layer in both
in person and onlife (Floridi, 2015) interaction oc-
currences constitutes a pillar for a good integration

∗The authors are listed in alphabetical order.

of AI systems in human societal communication
and cultural environment. However, the difficulties
in identifying data with a latent moral content, as
well as cultural dependence, political orientation
and the inherent subjectivity of the annotation work,
make this an especially tough undertaking. In our
work we aim at addressing these critical issues in
the most versatile and transparent way and, to the
best of our knowledge, the two approaches we pro-
pose are unprecedented in moral values detection.

The first approach employs a zero-shot learn-
ing technique. This concerns a problem setup in
which a model performs classification on labels it
has never seen before. By correctly interpreting
the meaning of the labels and text, the classifier
decides the truth value of any incoming label. This
opens to the fulfillment of tasks with controversial
or scarce data. We enhance the model by adding
to the original text some meaningful information
concerning the emotional component.

The second approach is based on an unsuper-
vised and domain-independent system which lever-
ages semantic web technologies and existing lin-
guistic resources. The implementation of this
method meets the suggested explainability criteria
by providing a semantic knowledge graph capable
of clearly describing both lexical and conceptual
triggers behind the prediction. Finally we test both
methods on a relevant Twitter dataset previously la-
beled with Graham and Haidt’s Moral Foundation
Theory (MFT) (Graham et al., 2013).

Our key contributions are as follows:

• We evaluate a Zero-shot learning technique
based on Natural Language Inference to detect
latent moral values in unstructured linguistic
data.
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• We enhance the zero-shot technique by the
addition of the emotional component detected
in the input text. We further improve the re-
sults by combining the two methods (with and
without emotions).

• As an alternative method, we propose a frame-
based approach based on an unsupervised and
domain-independent system that guarantee ex-
plainability in reading the results achieved.

• We evaluate the above approaches on a bench-
mark dataset for moral values based on Twitter
data and discuss the results.

The paper is organized as follows. Section 2
summarizes the results achieved in this field at the
current state-of-the-art. In Section 3 we describe
some baseline models, tools and resources used
in our methods. Section 4.1 briefly describes the
Moral Foundation Theory theoretical background,
while Section 4.2 and 4.3 focus on the Zero-shot
and the frame based methods, respectively. In Sec-
tion 6 results of the evaluation on a manually an-
notated Twitter dataset are provided and discussed,
while in Section 7 we delineate some possible fu-
ture improvements.

2 Related Works

Previous work on identifying moral values of MFT
in texts was based on word count (Fulgoni et al.,
2016) or used features based on embodiments of
words and sequences (Garten et al., 2016; Kennedy
et al., 2021). More generally, we have observed
that the most common methodological approaches
in this field are divided into unsupervised and super-
vised methods. Unsupervised methods rely on sys-
tems not supported by external framing annotations.
This approach includes architectures based on the
Frame Axis technique (Kwak et al., 2021), such as
those of Mokhberian and colleagues (Mokhberian
et al., 2020) and Priniski and colleagues (Priniski
et al., 2021). This type of approach projects words
onto microframe dimensions characterized by two
opposing sets of words. A framing score Moral
Foundations captures the ideological and moral in-
clination of the texts examined. Part of the studies
take as a point of reference the extended version
of the Moral Foundation Dictionary (MFD) (Hopp
et al., 2021), which consists of words concerning
the virtues and vices of the five dyads of MFT
and a sixth dimension relating to the terms of

general morality. The contribution of Kobbe and
colleagues (Kobbe et al., 2020), which aims to
link MFD entries to WordNet in order to extend
and disambiguate the lexicon, is also placed in a
dictionary-based approach framework. Another un-
supervised approach is explained by the work of
Hulpus and colleagues (Hulpus, et al., 2020), who
provide a way to explore how moral values are
captured by Knowledge Graphs. The study inves-
tigates and evaluates the relevance of the entities
contained in WordNet 3.1, ConceptNet and DBpe-
dia with respect to the MFT.

Supervised methods aim to create and opti-
mize frameworks based on external knowledge
databases. The main datasets in this field are: (i)
the textual corpus (Johnson and Goldwasser, 2018),
which contains 93,000 tweets from US politicians
in the years 2016 and 2017, and (ii) the Moral
Foundation Twitter Corpus (MFTC) (Hoover et al.,
2020), which consists of 35,000 Tweets from 7 dis-
tinct domains. In this context, the work of Roy
and colleagues (Roy and Goldwasser, 2021) ex-
tends the dataset created by Johnson and Gold-
wasser (Johnson and Goldwasser, 2018) and ap-
plies a methodology for identifying moral values
based on DRaiL, a declarative framework for deep
structured prediction proposed by Pacheco and
Goldwasser (Pacheco and Goldwasser, 2021). The
approach adopted is mainly based on the text and
information available with the unlabeled corpus
such as topics, political affiliations of the authors
and time of the tweets.

Our research focuses on the use of unsupervised
methods. In particular, our frame-based approach is
close to the work of Hulpus and colleagues (Hulpus,
et al., 2020) for the use of knowledge graphs to
explore latent moral (and semantic) content. How-
ever, our work enables a greater degree of knowl-
edge integration due to disambiguation of lexical
units, frame evocation, factual knowledge integra-
tion and foundational alignments, part of the text
exploration process through the creation of a knowl-
edge graph. Finally, our work provides an alterna-
tive to Frame Axis’s technique (Kwak et al., 2021).
Nevertheless, unlike this methodology, which im-
plements a method based on a predefined set of
terms suited for the task, we use a technology that
has no a priori affinity with the suggested work.
This allows us to overcome the drawbacks of uti-
lizing a well-defined dictionary as the foundation
for the entire approach and investigate the more
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advanced possibilities offered by an unsupervised
method.

3 Reference Models

We employ a Zero-shot model based on the method
developed by (Yin et al., 2019), which involves
the use of pre-trained NLI models as ready-made
zero-shot sequence classifiers. The approach works
by using the input text as an NLI premise to clas-
sify the sequence and by developing a hypothesis
starting from every possible label. In particular, the
authors discuss three different aspects of classifi-
cation: topic, emotion and situation detection. For
each task, the model is subjected to two distinct
principles: (i) Label-partially-unseen, where labels
concerned are partially exposed to the model during
a further training step, and (ii) Label-fully-unseen,
in which the model is completely unaware of the
categories. Given the lack of a specific training
phase, the second approach is particularly useful in
the absence of large amounts of good quality data
that can be used during model implementation.

Our frame-based value detector model is based
on knowledge graph generation from natural lan-
guage using the FRED tool (Gangemi et al.,
2017) enriched with knowledge from Framester
(Gangemi et al., 2016) as a strongly connected
RDF/OWL (Motik et al., 2009) knowledge graph
that can be queried via its online SPARQL end-
point1. FRED (Gangemi et al., 2017) is a system
for hybrid knowledge extraction from natural lan-
guage, based on both statistical and rule-based com-
ponents, which generates RDF/OWL knowledge
graphs, embedding entity linking, word-sense dis-
ambiguation, and frame/semantic role detection.

Framester is a linked data hub that provides
a formal semantics for frames (Gangemi, 2020),
based on Fillmore’s frame semantics (Fillmore,
1982). It creates/reengineers linked data versions
of linguistic resources, such as WordNet (Miller,
1995), OntoWordNet (Gangemi et al., 2003b),
VerbNet (Schuler, 2005), BabelNet (Navigli and
Ponzetto, 2010), etc, jointly with factual knowledge
bases (e.g. DBpedia (Auer et al., 2007), YAGO
(Suchanek et al., 2007)). Framester also includes
ImageSchemaNet (De Giorgis et al., 2022), a cog-
nitive layer connecting image schematic sensori-
motor patterns to the above-mentioned linguistic
resources.

1http://etna.istc.cnr.it/framester2/
sparql

Recently, a novel layer, ValueNet2, has been
added on top of Framester. It includes moral
and cultural values, and formalizes Haidt’s (Gra-
ham et al., 2013) and Curry’s theories (Curry
et al., 2021), aligning values to Framester frames,
along with a foundational ontology backbone, i.e.
DOLCE-Zero (Gangemi et al., 2003a).

4 Methods

4.1 Theoretical Grounding
Through the reuse of ValueNet, our work solely fo-
cuses on Haidt’s Moral Foundation Theory (MFT).
MFT is grounded on the idea that, while morality
could vary widely in its extension (for example,
what is considered a harmful or caring behavior
depends on geographical, temporal, cultural and
many others dimensions), its intension presents
some recurring patterns that allow to delineate a
psychological system of “intuitive ethics” (Gra-
ham et al., 2013). MFT is “a nativist, cultural-
developmentalist, intuitionist, and pluralist ap-
proach to the study of morality” (Graham et al.,
2013): “nativist” in its neurophysiological ground-
ing; “cultural-developmentalist” in including envi-
ronmental variables in the morality-building pro-
cess; “intuitionist” in declaring that there is no
unique moral or non-moral trigger, but rather many
patterns combining in a rationalized judgment;
“pluralist” in considering that more than one nar-
rative could fit the moral explanation process. At
the core of MFT there are six dyads of values and
violations:

• Care / Harm: a caring versus harming behav-
ior, it grounds virtues of gentleness, kindness
and nurturance.

• Fairness / Cheating: this foundation is based
on social cooperation and typical nonzero-
sum game theoretical situations based on re-
ciprocal altruism. It underlies ideas of justice,
rights and autonomy.

• Loyalty / Betrayal: this dyad is based on the
positive outcome coming from cohesive coali-
tion, and the ostracism towards traitors.

• Authority / Subversion: social interactions in
terms of societal hierarchies, it underlies ideas

2Available via querying Framester SPARQL end-
point: http://etna.istc.cnr.it/framester2/
sparql or here: https://github.com/
StenDoipanni/ValueNet
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of leadership and deference to authority, as
well as respect for tradition.

• Purity / Degradation: derived from psychol-
ogy of disgust, it implies the idea of a more
elevated spiritual life, it is expressed via
metaphors like "the body as a temple", in-
cluding the more spiritual side of religious
beliefs.

• Liberty / Oppression: it expresses the desire
of freedom and the feeling of oppression when
it is negated.

4.2 Zero-shot Models
Starting from the method developed by Yin et al.
(2019), we adapt a checkpoint for BART-large3

trained on the MultiNLI (MNLI) dataset (Kim et al.,
2018). Since this model has been shown to perform
well for topic labeling (Khan and Chua, Decem-
ber (2021) and for claim verification (Reddy et al.,
2021), it is a reasonable candidate for our task.

In the first step, we examine the input text for
any concept similarities between its content and the
moral values denoted by the labels. To the premise
represented by the original textual data, we place
side by side the categories suggested by Haidt’s tax-
onomy as plausible hypotheses. In other words, we
verify how much every value in the MFT’s set is se-
mantically related to every tweet in the test set (e.g.
we evaluate if the concept "care" is expressed in
the text "Commitment to peace, healing and loving
neighbors. Give us strength and patience."). The
same tweet is flanked by all the remaining moral
values in the same way. The structure is based on
the technique of using pre-trained NLI models as
ready-made zero-shot sequence classifiers to de-
velop a hypothesis from every possible label. As
the output of the classification, results are acquired
according to the predicted degree of entailment.
The result of the categorization is represented by
labels with a compliance score of 90% or above.

In the second step, we improve the model’s pre-
diction performances by adding more information
on the latent emotional component in the origi-
nal text. The input premise was subjected to an
emotional detection by a model trained for this
purpose4 and then augmented by the identification

3https://huggingface.co/facebook/
bart-large-mnli

4https://huggingface.
co/bhadresh-savani/
distilbert-base-uncased-emotion

of the valence of the attitude represented. For ex-
ample, given the tweet “Peace, Love And Unity
<3” represented as a premise, we add to this text
both (i) an emotion perception component such as
“This sentence is about joy sentiment.” and (ii) an
information about its polarity “This is positive.”.

In the third step, we combine the first and sec-
ond methods by unifying the prediction results to
increase the likelihood of success in the classifi-
cation task. In this case the results achieved by
the first step and the second step were compared,
assuming as the final output of the classification
the moral values envisaged by either approaches
(i.e. the tweet "Prayers to our brave DPD officers!
We support you!" was labeled "care" and "loyalty"
during the first step and only "care" during the sec-
ond. In this case, the third method takes as output
both labels provided, hence "care, loyalty").

All these strategies assume that artificial intel-
ligence models can capture the interactions and
connections of social groups, as well as informa-
tion about individuals. Consequently, it is argued
that a model might be able to draw a line of simi-
larity between morally connoted words and ideas
depending on the lexical information provided in
the training phase not directly attributable to a clas-
sification method.

4.3 Frame-based Value Reasoner

The frame-based value reasoner is a tool based
on a frame semantics approach (Fillmore, 1982).
Its pipeline consists of the following three main
steps. The first one is knowledge graph genera-
tion from natural language: the input sentence is
passed to FRED, which returns a knowledge graph
that includes detected FrameNet frames and frame
elements, VerbNet roles, and linking to DBpedia
entities and WordNet synsets.

The second step consists in the actual moral
value detection: relevant entities from FRED’s
knowledge graph are used to query Framester
SPARQL endpoint in order to link the entities ex-
tracted by FRED to MFT moral values. The full
graph and an extended description of the Moral
Value ontological module in Framester are avail-
able on the ValueNet github repository.5 The re-
sulting knowledge graph is an enrichment of the
original FRED graph with MFT moral values. If

5ValueNet is available via Framester SPARQL end-
point: http://etna.istc.cnr.it/framester2/
sparql and here: https://github.com/
StenDoipanni/ValueNet
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no value or violation is detected, the sentence is
labeled as “non-moral”.

This value detection process is heuristically
transparent, since it keeps track of triggering el-
ements (e.g. synset, linked entity, frame evocation,
lexical unit, etc.), so providing a fully explainable
moral value detector.

5 Experiments and Results

To examine the effectiveness of our approaches in
the moral value detection task, we focus on the chal-
lenge of recognizing them in the Moral Foundation
Twitter Corpus (MFTC) (Hoover et al., 2020).

The dataset, consisting of 35k tweets, is orga-
nized into seven distinct thematic topics covering
a wide range of moral concerns. Each tweet is
labeled from three to eight different annotators
trained to detect and categorize texts following
the guidelines outlined by Moral Foundation The-
ory. The MFTC includes ten different moral value
categories, as well as a label for textual material
that does not evoke a morally meaningful response.
To account for their semantic independence, each
tweet in the corpus was annotated with both val-
ues and violations. To set performance baselines,
we treat the annotations of the tweets by calculat-
ing the majority vote for each moral value, where
the majority is considered 50% (i.e. tweet "I have
no respect for the home run king" is labeled by
four different annotators. Two of them regard the
text as "non-moral" while the others as "subver-
sion". Hence, we consider the tweet labeled as
"non-moral, subversion" because each of these la-
bels corresponds to 50% of the annotation).

Table 1 shows the results obtained by our tools
on a subset of 6,075 items representing the MFTC
test set. We did not include the rest of the corpus in
the evaluation since the process is time consuming,
considering that the code is not optimized for effi-
ciency. Each tool is evaluated in terms of precision,
recall and F1 score in predicting each label. The
overall results (All in the bottom) are calculated by
averaging over all labels weighted by the support
(i.e. the number of elements in the ground truth
with each specific label). The choice to perform the
tests on a small sample of the total dataset depends
on the high data processing times of the FRED-
based method and the ongoing goal of a compari-
son with a supervised approach. This methodology
would require the use of a large part of the data
contained in the MFTC during the model training

phase.
The presented tests are carried out by evaluating

different combinations suggested by the models
mentioned in Sect. 4). In particular, the Emotion-
Zero-shot model displays the results obtained by
exposing the Zero-shot model to an input text
that has had its emotional component explained.
The Emotion-Zero-shot+ architecture refers to the
combination of the two methods mentioned above
and corresponds to the third approach discussed
in Sect. 4.2. The frame-based system recalls the
results obtained from the application of the tool
described in Sect. 4.3.

Given the lack of a reasonable state-of-the-art
baseline of non-trained systems, we report a Ran-
dom lower-bound, obtained by predicting each la-
bel with a probability corresponding to the fraction
of entries in the ground truth represented by the
test set with that label. Finally, in Table 1 there is
no reference to the Liberty / Oppression dyad. This
happens coherently to the lack of this label in the
MFTC, due to the late introduction of this value /
violation opposition in an updated version of the
MFT. Triggers of this dyad are still detected by the
frame-based model, and could be explored in the
extended file 6, since the Liberty and Oppression
knowledge graphs are part of ValueNet, but they
are not considered in the evaluation metrics.

Furthermore, since the original dataset is anno-
tated considering a 50% percentage of agreement
among annotators, some of the sentences shows
a combination composed by “non-moral” + some
other value or violation. While for the Zero-shot
models the “non-moral” label is used as a feature it-
self, the combination of non-morality and any kind
of morality was in conflict with the conceptual
structure of the frame-based detector. We therefore
modified the original dataset eliminating the “non-
moral” label while co-occurring with some value or
violation, and repeated the experiment. The results
of all the applied methods can be explored in their
extended files7.

Although performances differ, the two methods
perform similarly in terms of F1, with an overall
score of 45%. Specifically, Emotion-Zero-shot+
and Frame-based outperform the other models for
four out of eleven labels, with F1 scores ranging
from 0.12 to 0.53 for the first and from 0.11 to 0.50

6https://github.com/StenDoipanni/
MoralDilemmas

7https://github.com/StenDoipanni/
MoralDilemmas
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Moral Value Metric Random Zero-shot Emotion-Zero-shot Emotion-Zero-shot+ Frame-based

Care
Precision
Recall
F1-score

.09

.18

.11

.29

.63

.40

.51

.36

.42

.29

.69

.41

.29

.57

.39

Harm
Precision
Recall
F1-score

.13

.24

.17

.30

.80

.44

.31

.59

.41

.29

.82

.43

.39

.70

.50

Purity
Precision
Recall
F1-score

.04

.08

.05

.07

.28

.11

.10

.30

.15

.07

.32

.12

.18

.20

.19

Degradation
Precision
Recall
F1-score

.04

.09

.06

.12

.63

.20

.15

.30

.20

.12

.66

.20

.45

.11

.18

Loyalty
Precision
Recall
F1-score

.07

.15

.10

.40

.45

.42

.73

.14

.24

.40

.46

.43

.40

.30

.34

Betrayal
Precision
Recall
F1-score

.05

.10

.07

.17

.44

.25

.37

.29

.32

.17

.44

.25

.57

.17

.27

Fairness
Precision
Recall
F1-score

.07

.15

.09

.60

.47

.53

.85

.26

.40

.58

.48

.53

.16

.11

.13

Cheating
Precision
Recall
F1-score

.11

.22

.15

.54

.29

.38

.64

.19

.30

.54

.29

.38

.75

.28

.41

Authority
Precision
Recall
F1-score

.04

.08

.05

.17

.28

.21

.40

.04

.07

.18

.29

.22

.15

.08

.11

Subversion
Precision
Recall
F1-score

.08

.16

.11

.20

.36

.25

.15

.39

.21

.17

.40

.24

.28

.17

.21

Non-moral
Precision
Recall
F1-score

.44

.66

.53

.40

.28

.33

.46

.86

.60

.47

.91

.62

.59

.72

.65

All
Precision
Recall
F1-score

.22

.36

.27

.35

.41

.35

.46

.52

.42

.38

.67

.45

.47

.48

.44

Table 1. Precision, Recall and F1 score for each model on the MFTC dataset.

38



for the second. These two architectures result in
an improvement of 10 % compared to the Emotion-
zero-shot model and 20 % compared to the Zero-
shot model, and they performs vastly better than
Random.

6 Discussion

As expected, the results for the single labels vary ac-
cording to the difficulties encountered by classifiers
in the interpretation of their meaning. For exam-
ple, moral values such as “Harm” or “Care” convey
more generic content and are therefore easier to
identify. Conversely, concepts like “Degradation”
or “Subversion” contain shades of meaning that are
more difficult to grasp.

The results drawn from the Zero-shot models
make this problem evident and difficult to solve
as the intrinsic nature of machine learning mod-
els does not encompass a direct understanding of
their decision-making phases. One possible solu-
tion would be to subject the models to few-shot
learning, which is a fine-tuning with a little amount
of data relevant for the moral values detection task.
However, this would not be part of our main need,
which is to develop flexible approaches that do
not require training. Despite the task’s complexity,
the results imply that not only can moral values
be detected in natural language texts, but also that
models developed for NLI may be adapted to other
tasks through the unintentional acquisition of ab-
stract conceptions and concepts connected to the
field of social value.

Results obtained from the frame-based value de-
tector are provided as additional material8. Value
triggers are listed in the “trigger” column, while
value detection is shown in the “prediction” col-
umn. The full knowledge graph can be retrieved by
passing the tweet content in column “tweet_text”
as input to the FRED online demo9, ticking the
“align to Framester” option.

A necessary caveat is that, being the value la-
beling a subjective task, a certain amount of dis-
agreement should always be taken into account. In
this regard, the detection shows better results on
those values whose extension seems more generic,
e.g. a more broad concept like “harm”, than a
more opaque one like “purity”, as described in
Sect. 4.1. Additionally, the performance results

8https://github.com/StenDoipanni/
MoralDilemmas

9http://wit.istc.cnr.it/stlab-tools/
fred/demo/

could depend on two factors. The first factor is the
success of the FRED tool in producing a knowl-
edge graph from a fragmented syntax like the one
used in tweets. In fact, even when a well formed
graph is produced, if the value trigger is not in the
main sentence e.g. it is an adjective of a pronoun
in a subordinate sentence, it is possible that its dis-
ambiguation / frame evocation is not shown in the
graph, due to internal FRED saliency heuristics.
The second factor is that human value labeling is
a task carried out with a certain subjective thresh-
old. If we consider the example: “Horrible amount
of anti-Islam bigotry are Paris attacks. ISIS mur-
der more MUSLIMS than anyone else.”, value la-
bels for this sentence are “cheating” and “harm”,
while the detector predicts “cheating”, “harm” and
“purity”. This happens because, along with trig-
gers like the fs:Offenses and fs:Killing
Framester frames, wn:murder-noun-1 Word-
Net synset and the dbr:Bigotry DBpedia en-
tity, the DBpedia entry dbr:Muslim is also re-
trieved, which according to “purity” definition (see
Sect. 4.1) covers the semantics of a more spiritual
aspect of life, and it is therefore a “purity” trigger.

7 Conclusions and Future Work

In our work we detect latent moral content from
natural language in a versatile and transparent way,
proposing two approaches (zero-shot and heuris-
tic) that do not require training. The approaches
assume Haidt’s Moral Foundation Theory as a ref-
erence for moral values, and have been tested on
the Moral Foundation Twitter Corpus.

Results are unprecedented in using domain in-
dependent methods. Future work will include im-
proving the performance of the Zero-shot models
through the creation of a technique capable of com-
prehending the intricacies of the most contentious
moral values. Furthermore, we plan to build an im-
plementation that gives greater weight to the most
significant aspects of the sentence, in order to more
simply detect the prevailing moral value.

For the frame-based value detector more precise
results could be achieved via different refinements
such as a set of heuristics based on the syntax,
and consequently on the frame structure of the sen-
tence, which would allow new and more complex
inferences. The commitment to some value could,
for example, be expressed by the negation of the
value violation, or via a negative polarity of a verb
which takes as argument some value trigger. Some
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other possibility to improve the results could be in a
quantitative or qualitative way, namely introducing
a scoring system based on the amount of trigger
occurrences per value, or weighting differently the
type of trigger (WordNet synset, FrameNet frame,
etc.).

Finally, an interesting possibility is to conjugate
the approaches and this could drive to various pos-
sibilities, for example the introduction of a layer
in the aforementioned value trigger scoring sys-
tem, able to guide the prediction of the final output,
as well as using the knowledge base, in particu-
lar the extended lexical coverage from ValueNet
graphs to improve Zero-shot models performance.
A possible way could be to analyze the frame re-
sponsible for the value triggering by measuring its
relevance inside the sentence via machine learning
techniques. To conclude, further experiments can
be done on different types of datasets as well as
extending the employed dataset, and to compare
with different methodological approaches, includ-
ing supervised methods.
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Abstract

Information extraction systems analyze text to
produce entities and beliefs, but their output
often has errors. In this paper we analyze the
reading consistency of the extracted facts with
respect to the text from which they were de-
rived and show how to detect and correct er-
rors. We consider both the scenario when the
provenance text is automatically found by an
IE system and when it is curated by humans.
We contrast consistency with credibility; define
and explore consistency and repair tasks; and
demonstrate a simple, yet effective and general-
izable, model. We analyze these tasks and eval-
uate this approach on three datasets. Against
a strong baseline model, we consistently im-
prove both consistency and repair across three
datasets using a simple MLP model with atten-
tion and lexical features.

1 Introduction

Information Extraction (IE) systems read text to
extract entities, and relations and create beliefs rep-
resented in a knowledge graph. Current systems
though are far from perfect: e.g., in the 2017 Text
Analysis Conference (TAC) Knowledge Base Pop-
ulation task, participants created knowledge graphs
with relations like cause of death and city of head-
quarters from news corpora (Dang, 2017). When
manually evaluated, no system had achieved an F1
score above 0.3 (Rajput, 2017).

One reason for such low scores is inconsistency
between the text and the extracted beliefs. We con-
sider a belief to be consistent if the text from which
it was extracted linguistically supports it (regard-
less of any logical or real-world factual truth). We
show the difference between consistent and incon-
sistent readings, along with a potential correction,
in Fig. 1. In Fig. 1a, the system considered Harry

Reid was charged with an assault, which is not
∗*This work was done while the first author was doing his

Ph.D. at the University of Maryland, Baltimore County and
before joining Philips Research North America.

consistent with the provenance sentence. In Fig. 1b
the system is consistent in constructing its belief.

Belief learned by IE system:
per:charges(Harry Reid, assault)

Provenance identified by IE system:
Nevada’s Harry Reid switches longtime stance to
support assault weapon ban

Analysis output:
Is reading consistent: Inconsistent
Suggested relation: no repair

(a) An inconsistent reading with no correction.

Belief learned by IE system:
per:cause_of_death(Edward Hardman,
Typhoid fever)

Provenance identified by IE system:
The Western Australian government agreed to offer
the Government Geologist post to Hardman shortly
before news of his death reached them . Early in April
, he contracted typhoid fever , and died a few days
later in a Dublin hospital on 6 April

Analysis output:
Is reading consistent: Consistent
Suggested relation: per:cause_of_death

(b) A consistent reading not requiring a correction. Notice the
relation is unchanged.

Figure 1: Examples of beliefs extracted from real IE
systems on the TAC 2015 English news corpus, demon-
strating the consistency and repair tasks. Multiple sen-
tences can contribute to a belief (1b).

We study two problems: (i) whether an extracted
belief is consistent with its text (called consistency),
and (ii) correcting it if not (called repair). We be-
lieve we are the first to study these problems jointly.
We model these problems jointly, arguing that ad-
dressing both of these is important and can benefit
one another. Our use of consistency here refers to
a language-based sense that text supports the belief
even if its contradicts world knowledge.

We are concerned with methods that can be
standalone—that is, reliant on neither a precise
schema (Ojha and Talukdar, 2017) nor an ensemble
of IE systems, e.g., Yu et al. (2014); Viswanathan
et al. (2015). Previous work on determining the
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consistency of an IE extraction was not standalone.
We want a standalone approach because the results
from non-standalone approaches cannot be applied
when only the beliefs and associated provenance
text is available without the IE ensemble systems
and schema. (For this study we consider English
beliefs and provenance sentences.) Parallel to the
broad IE domain, schema-free and standalone sys-
tems have been developed to verify the credibility
of news claims (Popat et al., 2018; Riedel et al.,
2017a; Rashkin et al., 2017), but we are not aware
of a study of their performance on IE system tasks.
We incorporate these credibility systems into our
study in order to determine their applicability for
our tasks. We make the following contributions.

A study of real IE inconsistencies. We catalog
and examine the understudied aspect of language-
based consistency (§3).

A novel framework. To our knowledge we are
the first to study and propose a framework for
joint consistency and repair (§4).

Analysis of techniques. We show the effective-
ness of straightforward techniques compared to
more complicated approaches (§5).

Study of different provenance settings. We con-
sider and contrast cases where provenance sen-
tences are retrieved by an IE system (as in TAC)
vs. where they are curated by humans (as in Zhang
et al. (2017, TACRED)).

2 Task Setup

2.1 Consistency and Repair
We say the belief was consistently read if the
text lexically supports the belief. While this can
be viewed as a lexical entailment, it is not a
logical, causal, or broader inferential/knowledge
entailment. For example the belief <Barack

Obama,per:president_of,Kenya> is consistent
with a provenance sentence “Barack Obama,

president of Kenya, visited the U.S. for

talks" even though the sentence falsely claims
that Obama is president of Kenya. .

The belief is considered repaired if the relation
extracted by the IE system was not supported by
the text, but when replaced by another relation that
is supported by the text.

2.2 Datasets
We use three datasets: TAC 2015, TAC 2017, and
a novel dataset we call TACRED-KG. All datasets

use actual output from real IE systems. Each
dataset is split into train/dev/test splits: in Table 2
(in the appendix) we show the size of each split, in
terms of the number of provenance-backed beliefs.

TAC 2015 and 2017. These include the output
of 70+ IE systems, from the TAC 2015 and TAC
2017 shared tasks, with belief triples supported
by up to four provenance sentences. Each belief
was evaluated by an LDC expert (Ellis, 2015a).
We used these LDC judgments as the consistency
labels for our experiments. For TAC 2015, 27%
of the 34k beliefs are judged consistent; for TAC
2017, 36% of the 57k beliefs are judged consistent.

These TAC datasets do not, however, contain in-
formation on possible corrections when the belief
is inconsistent. To overcome this limitation, we
used negative sampling on the consistent beliefs
with their provenance to create an inconsistent pair.
We first selected an entity and then identified a set
of relations that apply to the entity. We randomly
chose one of the relations with uniform probability
and shuffled it with another relation, keeping the
provenance the same. For example, given two con-
sistent beliefs Barack_Obama,president_of,US,
and Barack_Obama,school_attended,Harvard,
we swap president_of with school_attended,
keeping the provenance unchanged. This yields
inconsistent beliefs associated with corresponding
provenance and the correct labels.

TACRED-KG. The TACRED-KG dataset is
a novel adaptation from the existing TACRED
(Zhang et al., 2017) relation extraction dataset. TA-
CRED is focused on providing data for typical
relation extraction systems. As such, it contains
4-tuples (subject, object, provenance sentence, cor-
rect relation), where relation extraction systems
are expected to predict that relation for the given
subject-object pair and the sentence. We turn
this relation extraction dataset into a KG-focused
dataset. We then used a relation extraction position-
aware attention RNN model (Zhang et al., 2017)
system on the TACRED data to produce 5-tuples
(subject, object, provenance sentence, correct rela-
tion, predicted relation). From these we created a
provenance-backed KG dataset, TACRED-KG, as
(subject, predicted relation, object, provenance sen-
tence). In TACRED-KG, we treat the gold standard
relation as the repair label. We consider beliefs
consistent when the predicted and gold standard
relations are the same.
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Category Definition Extracted Belief followed by IE extracted provenance text
Incorrect subject & object present but Harry Reid per:charges assault
relation relation not triggered/entailed Nevada’s Harry Reid switches longtime stance to support assault weapon ban
Subject entity is not mentioned in Eleanor Catton gpe:subsidiaries Bain
missing provenance Buying into Canada Goose is the latest Canadian investment for Bain .
Misc fact does not adhere to Reginald Wayne Miller per:charges felony

schema-specific guidelines
and requirements

Various news outlets have reported that federal agents have probable cause to charge
Reginald Wayne Miller with forced labor, a felony that can carry up to a twenty-
year prison sentence per charge.

Object entity is not mentioned in Kermit Gosnell per:cities_of_residence America
missing provenance Historic crowdfunding for movie about abortionist Kermit Gosnell - YouTube

Table 1: Examples for each of the four identified error categories from the TAC 2015 dataset.

Observational Comparison. We note some qual-
itative observations about these datasets, though
traceable back to how each dataset was constructed.
First, TAC 2015 and TAC 2017 contain more prove-
nance examples per relation than TACRED-KG.
Second, because the provenance was provided by
varied IE systems in TAC 2015/2017, the prove-
nance may be the result of noisy extractions and
matching: the provenance for TAC 2015/2017 is
often noisier than TACRED-KG (e.g., portions of
sentences vs. full sentences).

3 What Errors Do IE Systems Make?

We begin with an analysis of errors in the beliefs
from actual IE systems. This analysis is enlighten-
ing, as each system used different approaches and
types of resources to extract potential facts.

We sampled 600 beliefs and their provenance
text each from the training portions of three dif-
ferent knowledge graph datasets: TAC 2015, TAC
2017, and TACRED-KG. As described in §2.2, they
all contain provenance-backed beliefs that were ex-
tracted from actual IE systems (but ones which are
generally not available for subsequent downstream
examination). All of the beliefs are represented
as a relation between two arguments. The authors
manually assessed these according to available and
published guidelines (Ellis, 2015a,b; Dang, 2017)
to understand the kinds of errors made by the IE
systems. We identified four types of errors: the sub-
ject (first argument) not present in the provenance
text; the object (second argument) not present in the
provenance; an insufficiently supported relation be-
tween two present arguments; and relations that run
afoul of formatting requirements, e.g., misformed
dates. We show examples of these in Table 1.

Our analysis, summarized in Fig. 2, found that
the most frequent error type is an incorrect relation,
followed by missing subject, missing object and (at
a trace level) formatting errors. Though it varied

Figure 2: Error categorization of 600 beliefs extracted
by IE systems on three datasets. Multiple categories
can apply as beliefs can have incorrect relations and
incomplete provenance.

based on dataset, approximately two-thirds of the
sampled belief-provenance pairs had errors. The
prevalence of incorrect relations motivates the im-
portance of the relation repair task. It should be
noted that while TAC 2015 and 2017 have a number
of instances of missing subjects and objects, this
is not the case for TACRED-KG. This illustrates a
fundamental difference in selecting provenance in-
formation manually vs. automatically, and one that
we observe to be experimentally important (§5.3),
between TAC 2015/2017 and TACRED-KG.

4 Approach

Our approach computes both the consistency of a
belief bi and a “repaired” belief with respect to a
given set of provenance sentences. We represent bi
as a triple ⟨subjecti, predicatei, objecti⟩ and the set
of provenance sentences as Si,1, Si,2, ...Si,n. The
system outputs two discrete predictions: (1) a bi-
nary one indicating whether the belief is consistent
with the sentences, and (2) a categorical one sug-
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Figure 3: Given a belief and a set of n provenance sentences, our framework determines its consistency and suggests
a repair when if is deemed inconsistent. Our approach has three main modules: representation (4.1), combination
(4.2), and feature learning and classification (4.3).

gesting a repair. Fig. 3 illustrates our approach for
representing and combining the beliefs and prove-
nance sentences to jointly learn the two tasks.

Our approach has three main steps: embedding
a belief and its provenance sentences in a vector
space (§4.1), combining/aggregating these repre-
sentations (§4.2), and using the result for additional
feature learning and classification (§4.3). We de-
scribe our loss objective in §4.4. As we show, our
framework can be thought of as generalizing high
performing credibility models, such as DeClarE
(Popat et al., 2018) or LSTM-text (Rashkin et al.,
2017).

4.1 Belief & Provenance Representation

We process and tokenize a belief’s arguments and
relation. For example, the belief ⟨Barack_Obama,
per : president_of, United_States⟩ yields a
subject span (“Barack Obama”), a relation span
(“president of”), and an object span (“United
States”). We input processed text through an em-
bedding function fbelief to get a single embedding b
for the belief. Here, fbelief could be average of pre-
trained word embeddings, or final hidden state ob-
tained from a sequence model (LSTM or Bi-LSTM)
or the embedding from a transformer model (e.g.,
BERT (Devlin et al., 2019)). As we discuss in §5.2,
we experiment with all of these.

We represent the provenance sentences at two
granularities. The first is by representing each sen-
tence separately. We get a representation si for
each provenance sentence via an embedding func-
tion fevidence that embeds and combines them into a

single vector. We define fevidence similarly to fbelief.
The second level considers all sentences at the

same time. We refer to this as blob-level processing
(rather than paragraph- or document-level) since
the provenance sentences may come from different
documents and we cannot assume any syntactic
continuity between sentences. We obtain a repre-
sentation of the blob from fblob. In principle any
method of distilling potentially disjoint text could
be used here: we found TF-IDF to be effective, es-
pecially as multiple sentences of provenance selec-
tively extracted from different sources could result
in lengthy, but non-narratively coherent text (which
can be problematic for transformer models).

4.2 Belief and Provenance Combination

Given the belief and provenance representations,
we compute their similarity αi as the cosine of
the angle between their embedded representations:
αi =

bTi si
||bi||·||si|| . The intuition is that sentences that

are more consistent with the belief will score higher
than those which are less. Scoring is important, as
each IE system may give multiple provenance sen-
tences (e.g., TAC allowed four). The sentences can
be correct and support the belief, or be poorly se-
lected and unsupportive. Higher scores suggest the
provenance is related to the belief and helps differ-
entiate supportive from unsupportive provenance.
We use the computed similarity scores to combine
the provenance representations and take a weighted
average as our final input, capturing the semantics
of the belief and provenance, as x = 1

n

∑
i αi · si.

We pass the created representation x as the input
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to the feature learning module.
Though our computation of αi and x operate at

the sentence-level, our approach can also be ap-
plied to individual word representations. For this
word-level attention, we replace each sentence rep-
resentation si with a word representation wij in our
computation of αi and x. While we experimented
with this word-level attention we found the model
had trouble learning, frequently classifying beliefs
nearly all as consistent, or inconsistent with “no re-
pair.” We note that a similarly effective word-level
attention was provided in DeClarE.

We selected a similarity-based, rather than
position-based, attention. Applying position-based
attention, as Zhang et al. (2017) did on the TA-
CRED dataset, assumes that provenance sentences
contain an explicit mention of the subject and ob-
ject. In our setting that explicitly is not the case
(recall the prevalence of missing arguments in our
datasets, c.f. Fig. 2). There is also an assumption
that there is exactly one provenance sentence as
opposed to TAC, where an IE system can select
up to four provenance sentences without explicitly
mentioning either the subject or object.

4.3 Feature Learning and Classification

Prior to classification we may learn a more targeted
representation z by, e.g., passing the combined rep-
resentation x into a multi-layer perception. If we
do not, then the consistency and repair classifiers
operate directly on z = x.

We noticed through development set experi-
ments that while adding additional layers initially
helped, using more than three layers marginally
decreased performance. For a k-layer MLP we
obtained the projections h(j), for 1 ≤ j ≤ k, as:
h(j) = g

(
W (j)h(j−1) + b(j)

)
. h(0) = x indi-

cates the input, W (j) and b(j) are each layer’s
learned weights and biases (respectively), and g
is the activation function. Through dev set experi-
mentation we set g to be ReLU (Glorot et al., 2011).
We found the MLP gave better performance (§5)
and that it was parametrically and computationally
efficient. We note that the effectiveness of an MLP
was also noted by the two top systems from the
Fake News Challenge (Hanselowski et al., 2018;
Riedel et al., 2017b) for the verification task. On
dev, we evaluated from one to five hidden layers
and found the performance to be consistent after
three layers, with the mean close the scores in Ta-
bles 3 and 4 and a maximum standard deviation

across all the dataset and evaluation metrics to be
less then one F1 point.

In addition to the learned features learned h(k),
we experiment with a lexically-based skip connec-
tion, where the input from the previous layer skips
a few layers and is connected to a deeper one.
We found this to be effective when making use
of “blob” level features, computed via fblob. We
further found computing fblob as the TF-IDF vec-
tor of all provenance text to be especially effective
(§5.5). When using this connection, we compute
z =

[
h(k), fblob(blob)

]
. If this connection is not

used, z = h(k).

Classification. We use the final repre-
sentation z as input to the consistency
(ŷc = sigmoid (W cz + bc)) and repair classifiers
(ŷr = softmax (W rz + br)). The parameters
W c and W r have sizes 1 × (dtf-idf + dhidden) and
drelations × (dtf-idf + dhidden), respectively. Here
dtf-idf, dhidden, and drelations are the dimension of
the TF-IDF vector, hidden vector and number of
relations considered by the IE systems.

4.4 Joint Optimization
We train the parameters using back propagation of
both losses, Lconsistency and Lrepair, jointly:

L = Lconsistency (yc, ŷc) + Lrepair (yr, ŷr) (1)

Each subloss is a cross-entropy loss between
the true (yc,yr) and predicted (ŷc, ŷr) responses,
weighted inversely proportional to the prevalence
of the correct label. The tasks are not independent.
In our formulation they share the same provenance
and belief representations so learning both tasks
jointly helps in learning these shared parameters.1

While in this paper we present a joint loss ob-
jective, we note that we separately experimented
with alternative, non-joint approaches to Eq. (1).
However, in development we found they performed
worse than the joint approach. First we evaluated
pipelined approaches, e.g., where the repair clas-
sifier also considered the output of the credibility
model, but found its performance to be inferior to
the joint approach. Second, we also tried using
the repair output as input to the credibility classi-
fier, and found that it resulted in high recall with
poor precision, with inconsistent instances being
classified as consistent. The shared abstract rep-
resentation of belief and provenance used in our

1See §5 for discussion of alternative losses.
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TAC 2015 TAC 2017 TACRED-KG
Train 20575 45841 68124
Dev 6859 5734 22631
Test 6856 5729 15509

Table 2: Dataset statistics, in the number of provenance-
backed beliefs, for the train/dev/test splits per dataset.

formulation presented above allows fine tuning for
both subtasks. We also experimented on dev with
other types of weighting, such as a uniform weight-
ing. However, the inversely proportional weighting
scheme we describe in the main paper is what per-
formed best on dev experiments.

A Generalizing Framework. We note that we
can represent DeClarE by defining the belief en-
coder fbelief as averaging word embeddings, a
provenance encoder fevidence to be a Bi-LSTM,
combining these representations with word level
attention, and passing them to a two layer MLP
without lexical skip connections. To achieve this
specialization, we can optimize either Lconsistency
or Lrepair. Representing LSTM-text is similar. This
shows that our framework encompasses prior work.

5 Experiments

We centered our study around four questions, an-
swered throughout §5.3. (1) As our approach
subsumes credibility models, can those credibility
models also be used for the consistency and/or re-
pair tasks (§5.3.1)? (2) What features and represen-
tations are important for the consistency and repair
tasks (§5.3.2)? (3) How important is it to model
the realized (sequential) order of words within the
provenance sentences for our tasks (§5.3.3)? (4)
What are the differences between relation repair
and extraction (§5.3.4)?

5.1 Datasets and Hyperparameter Tuning

Table 2 provides statistics on the train/dev/test
splits. On dev, we tuned hyper-parameters over all
the models and datasets, using learning rates from
{10−1,...,10−5} by powers of 10, dropout (Srivas-
tava et al., 2014) from {0.0, 0.2}, and L2 regu-
larizing penalty values from {0.0, 0.1..., 0.0001}
(powers of 10). We ran each model until conver-
gence or for 20 epochs (whichever came first) with
a batch size of 64.

5.2 Components

We evaluated the effect of each of the four ma-
jor components mentioned below. We used Glove

(Pennington et al., 2014) as pre-trained word em-
beddings, except for BERT models, where we used
the uncased base model (Devlin et al., 2019).

Representations (Rep.): We evaluated three
ways to represent beliefs and provenance text (com-
pute fbelief and fevidence): Bag-of-Words (BoW) em-
bedding which is the average of Glove embeddings,
the final output from the LSTM and Bi-LSTM mod-
els, and the BERT representation output. While an
average of embeddings may seem simple, this ap-
proach has empirically performed well on other
tasks compared to more complicated models (Iyyer
et al., 2015).

Combining belief & provenance (Comb.):
When beliefs and provenance are used, we con-
sidered similarity as sentence-level attention (“Yes
(S)”) as well as word-level attention (“Yes (W)”).

Feature Learning (Feat.): In our primary ex-
periments to do further feature learning we used
a three layer multi-layer perceptron (“MLP”) to
do further feature learning. We indicate no further
feature learning with a value of “None.”

“Blob” Sparse Connection (“Sparse”): If used,
we set fblob to compute either a TF-IDF or binary-
lexical vector based on the blob (concatenation of
all sentences for a belief). This computed represen-
tation skips the feature learning component and is
provided directly to the classifier.

5.3 Results

The overall test results across our three datasets
are shown in Table 3 for the consistency task and
Table 4 for the repair task. Each of the selected
models was, prior to evaluation on the test set, cho-
sen due to its performance on development data.
The results are averaged across three runs.

5.3.1 Can Credibility Models be Used?
We first examine and compare our proposed frame-
work against two different strong performing cred-
ibility models. These external methods are our
baselines and we indicate them in Tables 3 and 4
by “♣” (Popat et al., 2018) and “♠” (Rashkin et al.,
2017). We find they both perform poorly compared
to other models, indicating that while both tasks
learn similar functions the credibility models can-
not be used “as-is” for consistency. This highlights
the fact that the consistency task is sufficiently dif-
ferent from the existing credibility task.

Moreover, in examining whether credibility mod-
els transfer to the repair task, word level attention
with a Bi-LSTM sentence encoder, as in DeClarE
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fbelief fevidence Comb. Feat. Sparse TACRED-KG TAC-17 TAC-15
P R F1 P R F1 P R F1

None None No None Binary 63.96 83.46 72.42 19.65 5.29 8.34 28.08 0.81 1.58
None None No None TF-IDF 63.95 83.24 72.33 57.58 30.66 14.05 22.68 15.08 18.12

None ♠ LSTM No MLP No 42.59 66.66 51.98 52.05 30.76 27.78 17.01 9.21 11.95
BoW ♣ Bi-LSTM Yes (W) MLP No 42.59 66.66 51.98 37.31 52.44 43.54 31.17 36.55 33.65
BERT BERT Yes (S) MLP TF-IDF 66.42 76.26 69.99 48.10 88.56 62.34 51.70 59.69 55.40
BoW BoW Yes (S) MLP TF-IDF 65.99 64.14 65.05 48.09 98.03 63.17 50.83 65.22 57.13

Table 3: Consistency performance (average of 3 runs) from our models (see §5.2 for a detailed explanation of the
columns). We indicate existing credibility models with ♣ (Popat et al., 2018) and ♠ (Rashkin et al., 2017). BoW
refers to bag of GLoVE embeddings.

fbelief fevidence Comb. Feat. Sparse TACRED-KG TAC-2017 TAC-2015
Macro Micro MRR Macro Micro MRR Macro Micro MRR

None None No None Binary 2.16 41.65 0.83 44.86 53.10 0.83 22.78 16.50 0.19
None None No None TF-IDF 14.50 43.48 0.83 75.49 76.80 0.76 76.35 77.57 0.76
None ♠ LSTM No MLP No 1.87 78.56 0.82 3.05 33.04 0.53 1.46 61.30 0.68
BoW ♣ Bi-LSTM Yes (W) MLP No 1.24 52.39 0.8 1.04 32.02 0.43 1.46 61.30 0.66
BERT BERT Yes (S) MLP TF-IDF 4.10 7.72 0.28 72.17 81.85 0.89 54.91 58.61 0.69
BoW BoW Yes (S) MLP TF-IDF 7.22 64.43 0.74 76.39 85.33 0.91 65.76 78.02 0.86

Table 4: Repair Performance (averaged over 3 runs) of models with abbreviations as in Table 3.

fbelief and Comb. Sparse Consistency Repair
fevidence P R F1 Macro Micro MRR

BoW No No 12.01 33.33 17.65 0.92 22.08 0.38
BoW Yes (S) No 12.01 33.33 17.65 0.89 21.16 0.34
BoW No TF-IDF 47.98 90.75 62.77 75.71 85.24 0.90
BoW Yes (S) TF-IDF 48.09 92.03 63.17 76.39 85.33 0.91

Bi-LSTM Yes (S) TF-IDF 59 87.71 70.53 75.76 83.86 0.89
BERT Yes (S) TF-IDF 48.11 91.47 63.06 76.30 85.25 0.91

Table 5: Consistency and repair performance ablation
study, averaged over three runs. "Comb." is belief and
provenance combination, and "Skip" is the use of skip
connection. All use an MLP for feature learning. For
space, we only consider TAC 2017 in these experiments.

(Popat et al., 2018, ♣), performs poorly in the re-
pair task too (with one exception on TACRED-KG).
These results highlight differences in the credibil-
ity vs. consistency tasks, and the applicability of
existing credibility models to both consistency and
repair, suggesting that a dedicated framework and
study such as ours is needed.

5.3.2 What Representations are Effective?
Consistency: Both sentence attention and a TF-IDF
sparse connection improve the overall F1 of our
framework’s embedding-based models. We noticed
that precision and recall vary across the datasets
due to their different characteristics. This can be
seen with the two methods that rely only on the
lexically-based sparse connections (the first two
rows of Table 3): while performance was strong
on TACRED-KG consistency, it was quite poor on
TAC 2015 and 2017. These latter two datasets have
more provenance sentences per belief, and make

fewer assumptions about what must be contained in
the provenance. Together, this results in greater lex-
ical variety, which suggests that while non-neural
lexical-based consistency approaches can be effec-
tive in settings with limited provenance, stronger
approaches are needed for greater and more diverse
provenance. Learning refined embeddings (rows 5
and 6) suggests that these pre-trained models are
helpful in the task. BERT benefits from the less
noisy provenance in TACRED-KG. However, simi-
lar or slightly better performance is achieved when
simple word embeddings are used, especially for
TAC 2015/2017, highlighting the difficulty of the
consistency task with noisier provenance.

Repair: Perhaps surprisingly, an embedding
model with a TF-IDF sparse connection yielded
good performance. The sparse-based lexical fea-
tures are most influential, as evident from when just
TF-IDF or binary lexical features are used. Look-
ing across the three datasets, we notice that a TF-
IDF only model provides a surprisingly strong base-
line, outperforming the existing credibility models
in almost all cases. Using BoW embedding with
sentence attention, MLP feature learning, and a
TF-IDF sparse connection, we can surpass a sparse-
only TF-IDF approach. The BERT-based represen-
tation, fine-tuned or not, performed nearly equally
to a BoW embedding on the repair task, indicating
both the effectiveness of its pre-trained model and
highlighting the difficulty of this repair task.
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Belief: Marty Walsh; org:city_of_headquarters; Neighborhood House Charter School
Summary: (✓, fixed)
Human(C): No; Predicted(C): No; Human(R): org:founded_by; Predicted(R): org:founded_by
Provenance: Walsh was a founding board member of Dorchester’s Neighborhood House Charter School,
and makes clear that he would support lifting the cap on charters in the city, something that hardly wins
him the favor of the Boston Teachers Union.
Belief: Alan M. Dershowitz; per:title; professor
Summary: (✗, incorrect_fixed)
Human(C): Yes; Predicted(C): No; Human(R): per:title; Predicted(R): per:religion
Provenance: Harvard Law professor Alan Dershowitz said Sunday that the Obama administration was
naive and had possibly made a "cataclysmic error of gigantic proportions" in its deal to ease sanctions on
Iran in exchange for an opening up of the Islamic Republic s nuclear program.

Figure 4: Examples of our model’s predictions on the TAC 2015 datasets. Human: gold standard label, Predicted:
our model’s label, C: Consistency, R: Repair, Human(C): Human Consistency label, and Predicted(C): Predicted
consistency label. Similarly for repair. Summary indicates overall prediction analysis of example. (✓, fixed) means
consistency correctly predicted and incorrect belief was fixed.

5.3.3 How Helpful Is Sequential Modeling?
As indicated by Zhang et al. (2017), the sentences
in TACRED and TAC are long. Consistency and
repair models must be able to handle that. Note
that BoW representation methods do not consider
word order, while LSTM, Bi-LSTM and BERT em-
beddings do. From Tables 3 and 4, we see that
TF-IDF sparse features and a sentence level com-
bination of the belief and provenance give the best
performance on both tasks when using a BoW rep-
resentation, as compared to an LSTM, Bi-LSTM
with word attention, and BERT. This indicates that
for consistency and repair, unordered lexical fea-
tures can be sufficient to get better performance.

We further examine this in Table 5, where due
to space we focus on TAC 2017. Notice that while
sequence-based encodings can improve some as-
pects (e.g., precision and F1 for consistency), there
are not across-the-board improvements. We ex-
perimented with replacing the BoW embedding
with a sentence-level Bi-LSTM representation. A
Bi-LSTM representation with just attention and
TF-IDF sparse features gives better consistency
precision and F1 compared to BoW embedding ap-
proaches. However, the Bi-LSTM results in overall
lower performance for repair. While the differences
are not very large, they indicate that simple meth-
ods can outperform, or perform competitively
with, sequential and autoencoding methods.

5.3.4 Relation Repair vs. Re-Extraction
While the repair task can be viewed as relation
re-extraction, we examine the implications of this.
Tables. 3 and 4 show a large performance drop

for TACRED-KG vs. TAC 2015/2017. First, TA-
CRED was created from a TAC dataset and mod-
ified and augmented by crowd-sourced workers.
When the belief was found with abstract or gen-
eralized provenance, workers were shown a set of
sentences containing the subject-object pairs and
asked to pick the representative sentence which was
most specific. Second, each sentence is guaranteed
to include the subject and object mentions, which
is not always true for TAC 2015 and 2017, where a
significant number of TAC provenance sentences
were missing one or both the subject and object
mentions. This highlights some of the differences
in the core assumptions made in the construction
of a relation extraction dataset.

5.4 Prediction Error Analysis

Fig. 4 demonstrates our framework’s performance
on some examples from TAC 2015. The first ex-
ample describes the case where the belief was con-
sistent with the provenance information and there
was no recommendation of an alternate relation.
Depending on the provenance the fix may not be
appropriate, as in the second example of per:title vs.
per:religion where we believe an indicative word
like “Islamic” influenced the repair prediction.

5.5 Ablation Study

Our results show the strength of attention with lex-
ical features. We further examine the impact of
lexical features, using the first four rows of Table 5.

Lexical Impact on Consistency. From the first
row of Table 5, we see BoW embedding for both
the belief and provenance results in low precision
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and recall. While adding attention does not help,
using TF-IDF sparse features drastically improves
performance. Meanwhile, removing sentence-
based attention only has a small impact on perfor-
mance. All together this indicates the provenance
found by the IE system is more lexically systematic.

Lexical Impact on Repair. A similar trend is
seen for the repair task: our combined represen-
tation with TF-IDF is better than relying only on
embeddings. Combining belief and provenance
sentences gets slightly better micro overall com-
pared to macro. This affects the MRR score too.
However, the best performance is achieved when
all components are combined.

6 Related Studies

There has been research on determining the consis-
tency of beliefs using either schemas or ensembles,
but none that are language-based, do not require
access to IE system details, or attempt to repair
inconsistent facts. Our work addresses all these.

Schema and Ensemble Based approaches: Pre-
vious work by Ojha and Talukdar (2017) and Pu-
jara et al. (2013) determined the consistency of
the extracted belief using a schema as the side in-
formation and coupling constraints to satisfy the
schema’s axioms. Rather than applying schemas,
Yu et al. (2014) proposed an unsupervised method
applying linguistic features to filter credible vs.
non-credible belief. However, it required access
to multiple IE systems with different configuration
settings that extracted information from the same
text corpus. Viswanathan et al. (2015) used a su-
pervised approach to build a classifier from the
confidence scores produced by multiple IE systems
for the same belief. These are not standalone sys-
tems, as they assume the availability of multiple IE
systems.

Language based approaches: The FEVER
(Thorne et al., 2018) fact-checking study proposes
a framework for credibility task and performs
provenance-based classification without attempting
to repair errors. This task has inspired a number
of efforts (Yin and Roth, 2018, i.a.,), including Ma
et al. (2019) who tackle a problem similar to our
consistency. Guo et al. (2022) outlines additional
language-based approaches for consistency predic-
tion (they term it “verdict prediction”). However, a
crucial difference is that we aim to operate on KG
tuple outputs as the belief (not sentences).

Overall, our study differs from previous ones in

two important ways. (1) We address the problem of
determining consistency and potential corrections
without access to an underlying semantic schema.
(2) Our standalone approach treats the underlying
IE systems as blackboxes and requires no access to
the original IE systems or detailed system output
containing confidence scores.

7 Conclusions

We propose a task of refining the beliefs produced
by a blackbox IE system that provides no access
to or knowledge of its internal workings. First we
analyze the types of errors made. Then we propose
two subtasks: determining the consistency of an ex-
tracted belief and its provenance text, and suggest-
ing a repair to fix the belief. We present a modular
framework that can use a variety of representation,
and learning techniques, and subsumes prior work.
This framework provides effective techniques for
the consistency and repair tasks.
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Abstract

While entity retrieval models continue to ad-
vance their capabilities, our understanding of
their wide-ranging applications is limited, espe-
cially in domain-specific settings. We high-
lighted this issue by using recent general-
domain entity-linking models, LUKE and
GENRE, to inject external knowledge into a
question-answering (QA) model for a financial
QA task with a hybrid tabular-textual dataset.
We found that both models improved the base-
line model by 1.57% overall and 8.86% on
textual data. Nonetheless, the challenge re-
mains as they still struggle to handle tabular in-
puts. We subsequently conducted a comprehen-
sive attention-weight analysis, revealing how
LUKE utilizes external knowledge supplied by
GENRE. The analysis also elaborates how the
injection of symbolic knowledge can be helpful
and what needs further improvement, paving
the way for future research on this challenging
QA task and advancing our understanding of
how a language model incorporates external
knowledge.

1 Introduction

Decades of development in question-answering re-
search have seen numerous methods focusing on
unstructured text, structured knowledge bases, or
semi-structured tables. Recent work (Zhu et al.,
2021) has discovered a new challenge in apply-
ing these techniques to the financial domain. The
study proposed a QA task on financial reports com-
piled as a Tabular And Textual dataset for Question
Answering (TAT-QA). Each question has an asso-
ciated table and multiple paragraphs, making a hy-
brid data structure. TAT-QA requires a certain level
of financial knowledge to extract evidence from ta-
bles and texts, making it an appropriate choice for
our study. Our motivation is to examine whether in-
jecting symbolic knowledge help the model better
understand financial concepts.

As shown in Figure 1, we can inject the entity in-
formation of companies (dbpedia:BCE_Inc), finan-
cial terms (dbpedia:Share_repurchase), and com-
mon knowledge (dbpedia:Europe), among others.
The coverage and accuracy of the information de-
pend on the entity linking method. Nevertheless,
we expect certain common entities to appear in a
text-question or table-question pair. We hypothe-
sized that this commonality helps the QA model to
focus on the target answer spans, and our analysis
provided evidence to confirm the hypothesis.

In summary, we introduced the knowledge-
infused question answering (KIQA) model for
tabular-textual data. We designed our experiment to
evaluate the end-to-end results and investigate the
strengths and weaknesses of the injection method
to provide insights for future research. Our main
contributions are as follows:

• We proposed, evaluated, and compared KIQA
in different settings, improving the perfor-
mance of the baseline method.

• We conducted an exhaustive attention-weight
analysis of the entity-linking model we ap-
plied to our study.

Our analysis aims at understanding how lan-
guage models utilize symbolic knowledge. We
intend for this work to stimulate more studies into
the mechanism of these models as we advance their
capabilities and applications.

2 Related Works

2.1 Question Answering
Numerous QA datasets focus on textual data, such
as SQuAD (Rajpurkar et al., 2016), tabular data,
such as SQA (Iyyer et al., 2017) and a mixture of
tables and texts (Chen et al., 2020). TAT-QA com-
bines both tabular and textual input and requires
numerical reasoning. We are interested in TAT-QA
due to its practical applications since it consists of
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Figure 1: KIQA injects entity information commonly
found in TAT-QA’s tables, texts, and questions into the
QA model. Some questions may require external knowl-
edge to reason. For example, to answer Q2, the model
needs to understand which cells in the table refer to a
region.

real-world financial reports annotated and verified
by experts. It also requires the model to under-
stand financial concepts, making it suitable for our
purposes.

TAT-QA proposed a baseline model called
TagOp, which performs sequence tagging and sym-
bolic reasoning using operators. Their experiment
includes baseline textual QA models, a tabular
model, and a hybrid model. TagOp significantly
outperformed all baseline models; thus, we decided
to base our model on it.

2.2 Entity Linking

There are several entity-retrieval models currently
available, e.g., BLINK (Li et al., 2020), EntQA
(Zhang et al., 2022). However, we decided to use
LUKE (Yamada et al., 2020), a pre-trained lan-
guage model with entity-aware self-attention, since
it outputs contextualized representations of words
and entities, which we can adapt to TagOp’s archi-

tecture. LUKE, adapting RoBERTa’s architecture
(Liu et al., 2019), consists of a modified multi-layer
bidirectional transformer that takes words and en-
tities as input tokens. The modified transformer
adds query matrices that allow the entity-aware
attention mechanism to attend to both words and
entities as it computes the attention scores. This ad-
ditional calculation allows LUKE to directly model
the relationships among words and entities.

While masked entities are part of LUKE’s pre-
training data, its experiment showed that explic-
itly adding entity information to the model’s in-
put yielded the best result. Thus, we used the
GENRE (Generative ENtity REtrieval) (Cao et al.,
2021) model to retrieve entities in TAT-QA and
input the additional information to LUKE. Based
on a pre-trained language model BART (Lewis
et al., 2020), GENRE retrieves entities by generat-
ing their unique names autoregressively using con-
strained beam search. Given an input text sequence,
the model outputs the same sequence with special
tokens indicating mentions, followed by the entity’s
unique Wikipedia page title after each mention. For
example, an output for "In 2018, BCE repurchased
3,085,697 ...," is "In 2018, [BCE](BCE_Inc) [re-
purchased](Share_repurchase) 3,085,697 ..."

3 KIQA Model

KIQA is a QA model built from TagOp, a baseline
model for the TAT-QA dataset, to evaluate sym-
bolic knowledge injection into a QA model for a
domain-specific dataset with tabular and textual
structure. With the stated objective, we strictly
applied the architecture of TagOp but replaced
the underlying LM, RoBERTa, with LUKE to ob-
tain knowledge-infused representations. Following
TagOp, KIQA consists of three main components:
1) Evidence Extraction, 2) Reasoning and 3)Knowl-
edge Injection.

3.1 Evidence Extraction

The evidence extraction module predicts answer
spans using sequential Inside-Outside (IO) tagging
Ramshaw and Marcus, 1999. TagOp takes in an
input sequence of the question, flattened table, and
relevant paragraphs. The preprocessing step con-
catenates all table cell tokens into a continuous
string without separating tokens. We split KIQA
into two modules, shown in Figure 2; the first mod-
ule (KIQATagOP) is identical to TagOp, while the
second module (KIQAText) only processes the ques-
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Figure 2: KIQA adopts TagOp’s architecture with additional modules to handle knowledge injection. We used
GENRE to retrieve entities (bottom block) and then extracted answer spans using LUKE (middle blocks). The
model performs reasoning (upper-right block) on the hybrid answer spans (middle-right block). These two blocks
on the right side without entity injection are comparable to TagOp. We replaced the reasoner’s text span predictions
with outputs from the text-only extractor (middle-left block) in certain experimental conditions.

tion and paragraphs. Our decision to introduce
(KIQAText) stemmed from our preliminary inves-
tigation, which indicated that LUKE and GENRE
did not perform as well on the tabular data as on the
textual data. The idea was to replace KIQA TagOp’s
prediction on textual input with KIQAText’s output
and measure the difference. Although the inputs
are different, we applied the same two-layer feed-
forward network (FFN) with GELU Hendrycks and
Gimpel, 2016 activation for tag prediction:

ptag
t = softmax(FFN(ht)) (1)

where ht is the representation of sub-token t.

3.2 Reasoning
Reasoning in TAT-QA’s context involves identi-
fying and applying an operation, such as arith-
metic calculation, to the tagged sequence. Three
TAGOP’s components perform symbolic reason-
ing: operator, number order, and scale classifiers.
All three classifiers are two-layer feed-forward net-
works with GELU activation. TagOp defines ten
operators: span-in-text, cell-in-table, spans, sum,
count, average, multiplication, division, difference,
and change ratio. Following our early investiga-
tion, we decided to merge span-based prediction,

i.e., KIQA outputs all predicted answer spans when
it predicts the operator as span-in-text, cell-in-table,
or spans. The number order classifier determines
the positions of two tokens with the highest prob-
ability for division, difference, and change-ratio
operations (e.g., the numerator and denominator in
the case of division). Lastly, the scale classifier can
output none, thousand, million, billion, or percent.
Since KIQAText only performs sequence tagging,
it does not require the reasoning classifiers. To
clarify, following TagOp’s definitions,

pop = softmax(FFN([CLS])) (2)

porder = softmax(FFN(avg(ht1, ht2))) (3)

pscale = softmax(FFN([[CLS];htab;hp])) (4)

where [CLS] is a sentence-level classification to-
ken, "avg" is averaging, ht1, ht2, htab, and hp are
the output representations of the top two tokens
and the averaged representations of the table and
paragraphs respectively.

3.3 Knowledge Injection

We injected symbolic knowledge to TagOp by intro-
ducing entity information obtained from GENRE to
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LUKE. LUKE’s transformer-based architecture al-
lows us to fine-tune the model on downstream tasks
such as QA. However, while the model learned to
utilize symbolic knowledge from pre-training, it
still needs additional entity information to maxi-
mize its performance (more detail in the discus-
sion section). We obtained this information from
GENRE (Cao et al., 2021). The entity retrieval
model outputs unique entities’ Wikipedia page ti-
tles, which we mapped to LUKE’s entity vocabu-
lary. We could map 76.92% of entities in the ques-
tions identified by GENRE to LUKE’s vocabulary,
averaging 1.78 entities per question. The coverage
is 78.42% (0.62 entities per cell) and 64.03% (2.91
entities per paragraph) for tables and paragraphs.

3.4 Training

We trained KIQATagOp and KIQAText separately to
measure the effect of the flattened tables, where the
input contains minimal syntactic structure, and ob-
serve how LUKE and GENRE learn and generalize.
Following TagOp, KIQA uses the sum of sequence
tagging, operator, scale, and order classification
losses (negative log-likelihood) in its optimization.
We used the development set of TAT-QA for evalu-
ating our fine-tuning to ensure consistency.

4 Experiments and Results

Our experimental settings aim to measure the effect
of injecting symbolic knowledge into a domain-
specific tabular/textual QA model. We chose the
financial domain for evaluation since research in-
volving knowledge-infused language models in this
domain is still limited. As for the dataset, TAT-QA
provides extensive and high-quality samples with
complex and realistic tabular and textual data.

4.1 Dataset

TAT-QA (Tabular And Textual dataset for Question
Answering) presents the challenges of performing
QA on tabular/textual financial reports. The dataset
consists of 16,552 questions with 2,757 hybrid con-
texts from 182 financial documents. Each sample
contains a question, a table with 3 ∼ 30 rows and
3 ∼ 6 columns, and a minimum of two relevant
paragraphs. Also included in the sample are the an-
swer and derivation, which explain the calculation
steps required to derive the answer. TAT-QA splits
into three parts, i.e., training (80%), development
(10%), and testing (10%). The labels in the test set
are not publicly available.

Group TagOp-based Text Span
Models Replacement

I RB, L, L&G -

II RB RB→ RB
L L→ L

L&G L&G→ L&G

III RB RB→ L
RB→ L&G

Table 1: The TagOp-based models make prediction
on both tabular and textual data. In group II and III,
we replace the hybrid models’ text span predictions
with text-only models’ outputs (indicated by→). RB =
RoBERTa, L = LUKE, L&G = LUKE & GENRE.

4.2 Pipelines

We defined three groups of pipelines, each contain-
ing an ensemble of the three models we investi-
gated. The first group includes three pipelines eval-
uating RoBERTa, LUKE, and LUKE with the extra
entity information from GENRE (L&G). The sec-
ond group replaces KIQATagOp’s answer span pre-
dictions from the first group with their correspond-
ing KIQAText’s predictions for the span-in-text op-
erator. Specifically, we replaced KIQATagOp

RoBERTa with
KIQAText

RoBERTa and the same for LUKE and L&G.
The third group is a follow-up experiment based on
our analysis of the results from the first and second
groups. In this last group, we paired KIQATagOp

RoBERTa
with KIQAText

LUKE and KIQAText
L&G individually. We

summarized our pipelines in Table 1.

4.3 Data Preprocessing

TagOp uses an automated approach to create labels
for sequence tagging. We found that their algorithm
does not always produce correct labeling. There-
fore, we performed a simple check by extracting
answer spans indicated in the labels, then executed
the operations and compared the predicted answers
with gold answers. Once we had identified the dis-
crepancies, we manually examined and corrected
them. However, due to the design of TagOp, we
could not fix all the errors. For example, TagOp
considers a table cell as a word, but some answers
do not cover the entire cell. Nevertheless, since
most labels are already valid, we have decided not
to pursue further correction for this study. The
strategy we employed was to train our models with
correct samples, then validate and test the models
with the entire development and test sets.
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4.4 Evaluation
Table 2 shows the test set’s results. The first row,
TagOp, is the scores reported in the TAT-QA pa-
per. The first pipeline of group I, RB or RoBERTa,
is our reimplementation of TagOp. We attribute
the boost from the original implementation to our
data preprocessing algorithm, including labeling
correction and elimination of invalid samples. The
change we made to the prediction, i.e., outputting
all answer spans for span-in-text, cell-in-table, and
spans, also contributed to the improvement.

Although the changes we made helped increase
the model’s performance, it appeared that injecting
external knowledge did not lead to further over-
all improvement. More importantly, RoBERTa
seemed to outperform LUKE and GENRE on tab-
ular data (table and hybrid). However, we no-
ticed that LUKE & GENRE consistently exceeds
RoBERTa in arithmetic operations and single-span
prediction. While the arithmetic score results from
multi-step prediction involving reasoning, single-
span answers are more straightforward to isolate
and measure the effect of knowledge infusion.

Based on group I and II results, we created the
third group of pipelines consisting of KIQATagOp

RoBERTa
paring with the text-based models KIQAText

RoBERTa,
KIQATagOp

Luke, and KIQAText
L&G. The results indicate that

injecting external knowledge into the textual part
of the data improves the QA model. Nonetheless,
due to the hybrid nature of the dataset, the overall
improvement is less dramatic. According to our
analysis of the training data, it is likely that the
high variance in the counting columns is due to the
small number of samples in this category.

5 Analysis

We have learned from our experimental results that
injecting entity information helped improve the
model’s performance on textual data. This conclu-
sion seems reasonable given that we did not provide
the model with the same information for the tab-
ular input. However, in some cases, the infused
text-only entity information negatively affects the
model’s ability to handle tabular input. Our analy-
sis attempts to answer the following questions:

• Q1: How does the injected external knowl-
edge contribute to the improvement?

• Q2: Why do the knowledge-infused models
underperform the baseline model on tabular
data?

5.1 Attention Weights

Figure 3: Top: Average and standard deviation of at-
tention scores by layer (0 ~23). Bottom: Average and
standard deviation of layer 22’s attention scores by at-
tention head (0 ~15).

We investigated Transformers’ (Vaswani et al.,
2017) attention weights α in different levels of ag-
gregation to determine how LUKE utilizes entity
information. Each Transformers layer consists of
multiple attention heads. LUKE employs entity-
aware self-attention, meaning that the model com-
putes the weights from both word and entity tokens:

Attention(Q,K,V) = αV (5)

α = softmax(
QKT

√
L

) (6)

where the query matrix Q ∈ RL×D can be one
of Qw2w, Qw2e, Qe2w, or Qe2e, depending on the
types of tokens (word or entity). K ∈ RL×D and
V ∈ RL×D denote key and value matrices. L is
the dimension of input embedding, and D is the
dimension of output embedding.

LUKE and RoBERTa (large model) consist of
24 layers of Transformers with 16 attention heads
on each level. RoBERTa has an input length of 512
tokens, while LUKE extends it to 549 to handle the
entity input, resulting in up to 549 × 549 attention
matrix. Taken together with the 1,668 samples
in TAT-QA’s development set, the analysis would
involve 12-billion data points.

The most straightforward approach is to average
the weights by layer, head, and sample. However,
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Table Hybrid Text
Model EM F1 A C M S A C M S A M S

TagOp 50.1 58.0 41.1 63.6 66.3 56.5 46.5 62.1 63.2 68.2 27.3 19.0 45.2

Group I: TagOp-based Models
RB 57.2 67.2 51.6 36.4 72.3 60.7 63.3 79.3 60.4 68.8 18.2 19.1 51.1

LUKE 54.3 64.8 47.4 72.7 65.1 57.8 48.9 62.1 62.3 75.5 27.3 14.3 51.1
L&G 56.4 66.4 53.7 27.3 65.1 59.0 55.4 51.7 58.5 72.9 27.3 19.1 52.3

Group II: TagOp-based & Text Models
RB 57.3 67.2 51.6 63.7 68.7 58.3 62.3 65.5 62.3 73.4 27.3 19.1 50.8

LUKE 56.4 66.1 52.8 45.5 68.7 55.4 58.6 34.5 61.3 75.0 27.3 19.1 51.1
L&G 57.2 66.6 53.7 27.3 65.1 59.5 55.4 51.7 58.5 75.0 27.3 19.1 54.8

Group III: TagOp-based (RB) & Text Models (LUKE & L&G)
RB 57.3 67.2 51.6 63.7 68.7 58.3 62.3 65.5 62.3 73.4 27.3 19.1 50.8

LUKE* 57.6 67.1 • • • 59.0 • • • 74.5 • • 51.7
L&G* 58.2 67.4 • • • 59.0 • • • 73.0 • • 55.3

Table 2: Evaluation of the first and second groups on the test set. The abbreviations are: RB = RoBERTa, A =
Arithmetic, C = Counting, M = Multi-span extraction, S = Single-span extraction. The detailed scores are exact
match (EM) scores. The underlined scores are the top scores in the group, and the top scores across all groups are in
bold. The test set does not include samples with the counting operation, so we removed them from the table. * For
group III, since we only replaced RoBERTa’s text span outputs with the text-only LUKE and L&G’s outputs, the
scores for A, C, and M are the same as those of RoBERTa (indicated by •).

since most tokens are unrelated to the entities, av-
eraging the entire input sequence would dampen
any indication of high attention paid to the entities.
We instead narrowed our focus to tokens within the
correct answer spans. In other words, where does
the model pay attention when it computes output
representations of the answer tokens?

Given an input sequence x = (x1, ..., xn) and
a target output y = (y1, ..., yn) ∈ {0, 1}, where
yi = 1 if yi belongs to an answer span s ∈ S,
let A ∈ Rn×n be an attention-weight matrix. We
selected ai ∈ A where yi = 1 to form a reduced
matrix Ã ∈ Rk×n, then averaged Ã along the first
dimension to produce vector b, representing aver-
aged attention weights of the answer tokens. Since
we are interested in all m samples individually, we
based our analysis on matrix B = [b1, ...,bm],
where:

b =

∑k
j=1 ãj

k
, Ã = [ã1, ..., ãn] (7)

First, we looked for the layers where the model
pays heightened attention to the entities. We ob-
tained this information by averaging B over each
layer’s attention heads, as shown in Figure 3 (a).
Interestingly, the standard deviations indicate that
the model pays special attention to the entities on

its top layers. In Figure 3 (b), we took a closer
look at layer 22 and found that attention head 9
seemed to specialize in the infused knowledge. We
observed a similar trend on layer 23 but chose to
analyze layer 22 as its standard deviation was the
highest among all layers.

5.2 Visualizing Attention

Figure 4 shows averaged attention weights by sam-
ple. We sorted the samples by their maximum
attention score among the entities since the model
tends to pay attention to specific entities rather than
all of them when computing the representations
of the target tokens. We refer to these maximum
scores as relevance scores. Since RoBERTa does
not have entity inputs, we sorted the samples based
on LUKE’s scores. While the sequence lengths
are varied, they all start with the sentence-level
classification token, followed by the question, flat-
tened table, and paragraphs. LUKE has additional
attention weights starting from b513 to b549. We
included Figure 6 as a reference for tabular and
textual input boundaries.

Since we only injected entity information to the
textual part of the data, it is reasonable that the
model would pay more attention to the entities for
samples where the answer spans are in paragraphs.
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Figure 4: Attention weights of samples sorted by the
relevance scores, the maximum attention scores among
entities. The left side (a) is a heat map in log scale for
KIQATagOp

RoBERTa and the right side (b) is for KIQATagOp
L&G.

Figure 5: From top to bottom: (a) The average of
accumulated F1 scores sorted by the relevance score, (b)
the accumulated ratio of answer span locations in the
input sequences, (c) the relevance score (in log scale)
computed from the maximum attention weight among
entities.

This pattern is most visible in Figure 6 (a), where
the entity’s attention weights decrease as the model
attends more to the tabular part.

In Figure 4, we observed a pattern of difference
in attention weights among samples where LUKE
pays more attention to the entities. While the an-
swer spans in these samples are in the paragraphs,
RoBERTa seems to pay considerable attention to
the tabular inputs. On the other hand, LUKE seems
more focused on the textual part. This pattern
clearly shows that the infused knowledge helps
guide the model to narrow its focus to the more rele-
vant section. While we did not observe the opposite
effect since we did not inject entity information into
the tabular part, with an entity retrieval model capa-

Figure 6: Table and paragraph boundaries in terms of
attention weights. The left side (a) includes the scores
of the sentence-level classification tokens, questions,
and flattened tables. The right side (b) is the paragraph
tokens’ scores.

ble of linking tabular data, there is a possibility that
the model may behave as expected. Nevertheless,
this observation warrants further study on integrat-
ing entity retrieval models specializing in tabular
data.

5.3 Interpretation
We learned from the previous section that the entity
information helps guide the model to pay atten-
tion to the more relevant part of the input. The
next and crucial question is whether or not this
change of focus translates into improved accuracy.
We used the F1 score that exclusively measures
sequence-tagging prediction and omitted the rea-
soning operations to isolate the effect of knowledge
infusion. Our objective is to find patterns in the
model’s performance (Figure 5) in relation to how
the model utilizes the entity information (Figure 4)
that could explain the two questions we posed at
the beginning of the analysis.

We created the accumulated F1-score chart in
Figure 5 (a) based on the sorted attention weight
vectors as in the heat map in Figure 2. To clarify,
the score at the ith position on the x-axis is the
average of F1 scores from the first sample to the ith

sample. The corresponding ratio chart (b) is also an
accumulated ratio of the same sequence of samples,
i.e., the ratio of text and tabular-based questions in
the top-ith samples. However, the relevance score
is of the individual sample at the ith position.

The F1-score chart exhibits different patterns
at different sample ranges; therefore, we divided
our interpretation into four parts. The first part
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starts from the first sample to roughly the 50th

sample. While the F1 scores within this range are
high, their margin is minuscule, indicating that
the questions are relatively easy enough that the
baseline language model can predict the correct
answers without help from the infused knowledge.

The second part (approximately 50th∼200th) is
where LUKE & GENRE has the most advantage.
The rapid drop in the F1 scores across all models
means that the text-based questions are much more
difficult. The exact section in Figure 4 shows that
the infused knowledge is still highly relevant in
directing the model’s attention until this point. We
sampled question-answer pairs with the entity and
attention information from this part and will discuss
them in the following section.

The majority of the samples in the third part
(200th∼1000th) are table-based questions, as indi-
cated by the steady increase in their ratio. Accord-
ing to Figure 2, the model pays less attention to the
entities than the first two parts, although still notice-
ably higher than the fourth part. Since the answers
are in the tables but the entities link to mentions in
the paragraphs, they are not particularly useful. On
the contrary, the potentially unrelated information
weakens LUKE’s performance considerably.

The last part (1000th∼1668th), also primarily
table-based, is easier to answer than the previous
one. As the model mostly ignores entity informa-
tion, LUKE & GENRE’s performance recovers
steadily due to less interference.

5.4 Examples

Our examples, shown in Table 3, are from the third
part of our interpretation, where the injection of ex-
ternal knowledge contributes most to the model’s
performance. We only include the entity with the
highest attention score and its corresponding men-
tion in the text for each example. These examples
represent some aspects of the differences the in-
fusion made. In the first example, according to
the correct answer, the margin increased because
the total margin decreased slightly due to expenses
growth. RoBERTa was able to correctly predict
the first half of the answer span ("Excluding the
effects of currency rate fluctuations, our cloud and
license segment’s total"), which does not include
the primary point. The entity "Expense" seems to
highlight the relevance of the latter half, resulting
in LUKE’s complete prediction.

The second example is a precise instance of the

Q-113: Why did the cloud license segments
total margin increase ...?
Mention: ... due to expenses growth.
Entity: Expense
F1 scores: L&G = 1.00, RB = 0.54

Q-139: When is the impairment of goodwill
and tangible assets tested?
Mention: intangible assets is tested annually
Entity: Intangible asset
F1 scores: L&G = 0.38, RB = 0.00

Q-156: What was the reason for the increase
in the Adjusted EBITDA?
Mention: Adjusted EBITA was on the ...
Entity: Earnings before interest, taxes, depre-
ciation, and amortization
F1 scores: L&G = 1.00, RB = 0.68

Q-178: When does the company record an
accrued receivable?
Mention: ... prior to invoicing ...
Entity: Contractual term
F1 scores: L&G = 1.00, RB = 0.39

Table 3: Example KIQATagOp
L&G’s, including the entity with

maximum α and its corresponding mention.

more concentrated attention weights pattern we ob-
served in Figure 4. Although this seems to be a
complex case since no model could achieve a high
score, LUKE could partially predict the correct an-
swer. On the other hand, we examined RoBERTa’s
attention scores and found that the model was pay-
ing attention to the tabular part of the input.

In our opinion, while GENRE provided the pre-
cise information for EBITA, it does not seem to con-
tribute significantly to the improvement. RoBERTa
already partially captured the main reason for the
increase, while the mention "EBITA" only com-
pletes the beginning of the sentence (LUKE’s an-
swer: "Adjusted EBITA was on the prior-year level
as ... [main reason]"). Nonetheless, LUKE also
included the entire reason while RoBERTa missed
part of it, thus achieving a much better score on
this sample.

In the last example, while RoBERTa correctly
located the correct answer span, it also included
irrelevant adjacent text, negatively affecting the F1
score considerably.
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6 Discussion

The QA model used the infused knowledge to focus
on the more relevant information (Q1). However,
only 25.20 % of the answers are in the paragraphs,
explaining the limited improvement. We did not an-
ticipate the margin to be substantial since LUKE’s
EM score on the development set of the SQuAD
1.1 dataset (Rajpurkar et al., 2016) was only 1.01
% (88.9→ 89.8). Injecting entity information to
LUKE resulted in 0.21 % improvement (94.8 →
95.0). However, since our baseline score is much
lower, it was reasonable to expect a higher increase
(RoBERTa→ LUKE & GENRE: 8.86 % for single
text spans). Our analysis revealed that the irrelevant
entity information interfered with the model’s deci-
sion, which is why the knowledge-infused models
underperformed the baseline model (Q2).

There is still a gap in TAT-QA’s tabular data
where GENRE did not perform well, requiring
further study involving entity-linking models spe-
cialized in tabular data. Solving the problem of
unrelated entity information interfering with the
model’s prediction is also another challenge.

7 Conclusion

We investigated the effect of external knowledge
infusion on a hybrid tabular/textual QA model in
the financial domain. The results indicated an im-
provement, especially to the textual part of the data.
Our attention-weight analysis shows the model’s
ability to utilize the injected knowledge and reveals
the challenges involving the hybrid structure of the
data. As a result, this study has paved the way for
future research to incorporate entity-linking models
specialized in tabular data and find a solution that
enables the model to integrate tabular and textual
symbolic knowledge more efficiently.
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Abstract

Natural language inference on tabular data is
a challenging task. Existing approaches lack
the world and common sense knowledge re-
quired to perform at a human level. While
massive amounts of KG data exist, approaches
to integrate them with deep learning models to
enhance tabular reasoning are uncommon. In
this paper, we investigate a new approach using
BiLSTMs to incorporate knowledge effectively
into language models. Through extensive anal-
ysis, we show that our proposed architecture,
Trans-KBLSTM improves the benchmark per-
formance on INFOTABS , a tabular NLI dataset.

1 Introduction

Understanding tabular or semi-structured knowl-
edge presents a reasoning challenge for modern
natural language processing algorithms. Recently,
Chen et al. (2020) through TabFact and Gupta et al.
(2020) via INFOTABS presented this problem as a
natural language inference problem (NLI, Dagan
et al., 2013; Bowman et al., 2015, many others),
where a model is asked to determine whether a
hypothesis is entailed or refuted by a premise, or
is unrelated to it (c.f. Table 1). One technique for
modeling such tabular reasoning problems is to rely
on the success of contextualized representations for
the sentential variant of the problem (e.g., Devlin
et al., 2019; Liu et al., 2019, etc.). To convert tab-
ular data into a format suitable for these models,
they are flattened using heuristics into phrases.

Recently, Neeraja et al. (2021) highlight the sig-
nificance of adding world knowledge for the tab-
ular inference task (c.f. Table 1). Their approach
develops a knowledge addition strategy, namely
KG Explicit, which expands the keys of a tabular
premise with its definitions obtained from Wordnet
and Wikipedia articles. These definitions are ap-
pended as a suffix to the original input as additional

∗Equal Contribution †Corresponding Author

James Hetfield

Birth Name James Alan Hetfield
Born Aug. 3, 1963(age 58), California, U.S.
Genres Heavy metal, thrash metal, hard rock
Occupation(s) Musician, Singer
Instruments Vocals, Guitar
Years active 1978-present
Labels Warner Bros, Elektra, MegaForce

Hypothesis James Hetfield was born on the west
coast of the USA.

Focused Relation coast AtLocation←−−−−−−− california

Human Entailment
RoBERTa Neutral
Trans-KBLSTM Entailment

Table 1: An INFOTABS example demonstrating the need of
knowledge augmentation. Predicting the Gold label requires
broad understanding of California is located on the Coast. In
the table, for each row the first column represents the keys
(unique identifiers) and the second column represents their
corresponding values (attributes).

context. With this added additional knowledge, the
model outperforms the original baseline. Despite
improved effectiveness, knowledge addition has the
following drawbacks: (a) Knowledge Extraction.
KG Explicit disambiguates multiple key definitions
using the table context, ignoring the hypothesis
content entirely. Additionally, the extended defini-
tion contains hypothesis-unrelated and unnecessary
additional functional terms. All of these factors
contribute to erroneous key-sense disambiguation
and additional noise. (b) Knowledge Addition.
KG Explicit adds knowledge by appending a suffix
definition to existing inputs instead of using more
effective semantic representations such as Knowl-
edge Embedding (Graph Embedding or Learned
representations). (c) Knowledge Integration. Fi-
nally, utilizing tokenized input BERT (Devlin et al.,
2019) to fuse word-pair relations yields consider-
ably weaker semantic linkages between premise,
hypothesis, and the external knowledge.

In this work, we propose a solution to these is-
sues. We drew inspiration from Chen et al. (2018)
and utilize relational connections between premise
and hypothesis to extract important knowledge re-
lations from ConceptNet (Speer et al., 2017) and
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Wordnet (Miller (1992)). This enhancement re-
duces noise in knowledge addition, resulting in
improved Knowledge Extraction. We embed re-
lational terms in sentences using sentence trans-
formers (Reimers and Gurevych, 2019) to encode
semantic representations of the relation, compara-
ble to Gajbhiye et al. (2021), culminating in suc-
cessful Knowledge Addition. Finally, for effec-
tive Knowledge Integration, we combine these
relational embeddings into a word-level language
model, using BiLSTM (Hochreiter and Schmidhu-
ber, 1997), and backpropagate using our proposed
BiLSTM and transformer architecture together to
enhance model inferencing capabilities.

Our proposed model, Trans-KBLSTM, outper-
forms the earlier baseline, i.e., KG Explicit in full as
well as limited supervision setting, substantially for
some specific categories. Furthermore, knowledge
addition via Trans-KBLSTM improve model lexi-
cal, multi-row and Numerical reasoning. We also
performed a detailed ablation study to understand
the importance of each component. Our contribu-
tions are as follows:
1. We address the challenges inherent in existing

techniques, e.g., KG Explicit, for explicit knowl-
edge addition in tabular reasoning.

2. We investigate a more efficient knowledge ex-
traction method that involves using knowledge
embeddings rather than directly appending them
to the input.

3. We propose a novel architecture, namely Trans-
KBLSTM, for integrating word-level knowl-
edge effectively with BiLSTM’s encoders with
state-of-the-art transformers such as BERT.

4. Through extensive experiments, analysis
and ablation studies, we demonstrate that
Trans-KBLSTM improves reasoning for
INFOTABS dataset.
The dataset, and associated scripts, are available

at https://trans-kblstm.github.io/.

2 Proposed Trans-KBLSTM Model

We highlight the main model components and their
implementation details in this section. We begin
with a description of the knowledge relations re-
trieval technique, followed by a discussion of the
model architecture’s core components.

2.1 External Knowledge Relations Retrieval

It is challenging to retrieve contextually relevant
knowledge relations from the knowledge graphs.

Premise Hypothesis

Pooling

2 layer 
Bi-LSTM

Pooling

Fully Connected

ComposeCompose

Fully Connected

Premise 
Attention

Hypothesis 
Attention

maxmax

Transformer

Final Classifier

Relations

Inference Class

Fully 
Connected

Dropout

Context Aware
Knowledge 

Context Aware
Knowledge 

2 layer 
Bi-LSTM

Embedding 
Mix-skip 

Connection

mean mean

Figure 1: High level flowchart of Trans-KBLSTM.

The challenge is to retrieve task-relevant knowl-
edge relations from massive volumes of noisy
Knowledge Graph data. Our method is inspired by
Chen et al. (2018), which considers a connection
to be significant if the knowledge graph contains
the term pair relations.

Relational Connections We define relational con-
nections between two sentences through external
relational knowledge between each pair of words
in the sentences. The token level relation connec-
tions are based on word triples derived from the
knowledge graphs.

Relational Connections Retrieval Stop words and
punctuation are first removed from the premise and
hypothesis. Then, we analyze the knowledge re-
lational connections between the premise and hy-
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pothesis token pairs and compute the relationship
attention matrix, Ar

ij , as follows:

Ar
ij =

{
1 ith and jth words are related
0 ith and jth words are not related

Each knowledge relational triple, consisting of two
token terms (one from each premise and hypothe-
sis) and their respective relationship is transformed
into a complete grammatical sentence. For instance,
the triple {Day, Antonym, Night} is transformed
into “Day is the opposite of Night”. For a com-
plete list of knowledge templates refer to table 5
in Appendix §B. We utilize sentence transformers,
as presented in Reimers and Gurevych (2019), to
convert the relationship phrase e.g. “is opposite of”
in the preceding example into high-level seman-
tic representations. The contextual representations
denote the relational pair’s across relational pairs.

Relational Connection Embedding The contex-
tual knowledge connections between premise and
hypothesis token pairs are used to generate a re-
lational vector, Rijk. Each marginal vector Rij

is the k dimension BERT representation for the
“Relation Connection Sentence” in the previously
described sentential form constructed using the re-
lationship between the ith premise word and the
jth hypothesis word. For words whose relations
are absent from knowlege source, we initialize the
Rij vector with ‘zero’ values.1

2.2 Model Architecture Details

Next, we described several components of our pro-
posed model. Figure 1 describe the high level ar-
chitecture of the Trans-KBLSTM model.

Transformer We encode the premise and hypoth-
esis using RoBERTa(Liu et al., 2019) to gener-
ate contextual word embeddings. Consider P =
{pi}mi=1 as table premise of length m and H =
{hj}nj=1 as hypothesis of length n. We input these
premise-hypothesis pairs to RoBERTa as :

S = [<s> P </s> H </s> ] ; Tr = RoBERTa(S)

Here, Tr denotes the context-aware representations
of the premise and hypothesis sentence.

Encoding Premise and Hypothesis The encoder
approach is inspired from Chen et al. (2018). We
encode the Premise, P = {pi}mi=1 and Hypothesis,

1 Experiment with non-zero random initialization ref §3.3.

H = {hj}nj=1 using bidirectional LSTMs (BiL-
STMs). We embed pi and hi into de dimensional
vectors

[
E(p1), ...E(pm)

]
and

[
E(h1), ...E(hn)

]

using embedding matrix E ∈ Rde×|V |, where |V |
is the Vocabulary size and E can be initialized
with pretrained embeddings. We feed the premise-
hypothesis pairs into BiLSTM encoders (Hochre-
iter and Schmidhuber (1997)) to generate context-
aware hidden states ps and hs.

ps = BiLSTM(E(p), i) ; hs = BiLSTM(E(h), i)

ps ∈ Rm×lk and hs ∈ Rn×lk

Here, lk is the LSTM hidden state size. Follow-
ing that we apply embedding dropout (Gal and
Ghahramani (2016)) to enhance variation and pre-
vent overfitting (Zaremba et al. (2014)).

Premise and Hypothesis Attention Module To
assess the contribution of external knowledge to
the premise (and hypothesis), we utilize the Multi-
Head dot-product attention (Vaswani et al., 2017)
across knowledge representations and premise-
hypothesis encoding. We calculate premise hypoth-
esis relation values by normalizing relational con-
nection embedding (Rijk) with respect to column-
axis (1), to obtain Rprem

jk ∈ Rn×k which is the av-
erage premise relation for every hypothesis word.

Rprem
jk =

m∑

i=1

Rijk

m

To apply dot product attention, we then reduce the
dimension of the relation matrix to BiLSTM hidden
state dimension, i.e., lk.

Rr
jk = F r

P (R
prem
jk ) ∈ Rn×lk

where, F r
P is a single layer neural network.

To highlight the importance of premise and its rela-
tions to hypothesis we utilise the premise attention
head. The context-aware hypothesis hidden state
hs is used as queries, premise hidden state is used
as keys and reduced premise hypothesis relation
values are used as values. The attention function
can be defined as follows:

Attention(hs, ps, Rr
jk) = softmax(

hspsT√
l

)Rr
jk

where, the multi-head attention is defined:

hattp = MH(hs, ps, Rr
jk)

= Concat(head1, . . . , headh)W o
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Here, headi = Attention(hsW q
i , p

sW k
i , R

r
jkW

v
i )

and W q
i ,W

k
i , and W v

i are projection matrices and
i is the number of attention heads. The output
hattp ∈ Rn×lk is a context matrix that is attention-
weighted according to the strength of the premise
and its relationships to each of the hypothesis
words. We also extract P att, the premise multi-
head attention attention weights. In hypothesis
attention module, we use hypothesis attention head
to highlight the importance of hypothesis and its re-
lations to premise. Similar to the premise attention
module, we calculate2 patth ∈ Rm×lk , attention-
weighted context matrix measuring the importance
of premise and relations to each of the hypothesis.
We also extract Hatt, the hypothesis multi-head
attention attention weights.

Context Aware External Knowledge ExBERT
(Gajbhiye et al., 2021) uses a mixture model
to weigh the balance of external relations and
premise-hypothesis during inference. We construct
attention-weighted external knowledge relations us-
ing Multi-head attention weights obtained in the
attention modules.

PCE =

h∑

k=1

P att
ij Rijk ; HCE =

h∑

k=1

Hatt
ij Rijk

Composition Layer ps encodes the individual
word representations of the premise while patth is
the context representation of the premise aligned
to the hypothesis. We can obtain word-level infer-
ence information for each word in the premise by
composing them together with attention weights
and context-aware external knowledge. We can do
the same calculation for hypothesis, hs and hattp :

pm = GP (
[
ps; patth ; ps−patth ; ps∗patth ;

n∑

j=1

PCE
ij

]
)

hm = GH(
[
hs;hattp ;hs−hattp ;hs∗hattp ;

n∑

j=1

HCE
ij

]
)

Here, GP and GH are 2-layer neural networks
with Dropout and ReLU activation (Agarap (2018))
that compose the knowledge relations and premise-
hypothesis contextual vectors into a unified knowl-
edge aware context vector.

Pooling Layer The pooling layer creates fixed-
length representations from the knowledge-aware
premise and hypothesis context vectors.

pmean = MeanPool(pm) ; pmax = MaxPool(pm)

hmean = MeanPool(hm) ; hmax = MaxPool(hm)
2 More details can be found in section A in §Appendix

Embedding mix-skip connection To effectively
integrate transformer embeddings with representa-
tions from premise and hypothesis, we introduce an
Embedding mix-skip connection, where the embed-
dings are concatenated and passed through a fully
connected layer with a skip connection to trans-
former embeddings. Skip connections, introduced
by He et al. (2016), provides a shortcut to gradient
flow and preserve the context between layers.

f =
[
pmean, pmax, hmean, hmax

]

f ′ = Tr + Fc([Tr, f ])

Here, Fc is a two-layer neural network with dropout
and ReLU activation. Finally, f ′ is passed through
a classification layer to obtain the inference class.

3 Experiment and Analysis

Our experiments study the following questions.

RQ1: Is our proposed model competent in using
external knowledge sources effectively to enhance
performance across INFOTABS evaluations sets?

RQ2: How effective is our approach in settings
with little supervision? How much supervision is
necessary to outperform benchmark models?

RQ3: (a) Which reasoning types is our proposed
model most effective at boosting? (b) Is our ap-
proach equally effective across all domains, that is,
across all table categories? (c.f.§C)

RQ4: How does the model component choices
impact performance? (a) To what extent are skip
connections, (b) knowledge embeddings, (c) addi-
tional MNLI (Williams et al., 2018) pre-finetuning,
and (d) a bigger pre-trained model beneficial?

3.1 Experimental setup

Here, we discuss the datasets, external knowledge
sources, and the models used in the experiments.

Datasets. We use INFOTABS , a tabular Lan-
guage inference dataset introduced by Gupta et al.
(2020) for all our experiments. The dataset is di-
verse in categories and keys and requires back-
ground knowledge and semantic understanding of
the text. Examples in INFOTABS are labeled with
three types of inference: entailment, neutrality, and
contradiction, based on their relation with premise
tables. Along with the standard development set
and test set (dubbed α1 ), the dataset includes two
adversarial test sets: a contrast set dubbed α2 that
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is lexically similar to α1 but contains fewer hy-
potheses, and a zero-shot set dubbed α3 that con-
tains long tables from various domains with little
key overlap with the training set.

Table Representation. To represent tables, we
utilize Neeraja et al. (2021) Better Paragraph Rep-
resentation (BPR) technique in conjunction with
Distracting Row Removal (DRR). The BPR tech-
nique turns its rows into sentences using a universal
template, enabling it to be used as the input for a
BERT-style model. We utilize the DRR approach
to reduce the premise table by identifying the most
relevant premise sentence. For finding the most rel-
evant rows, we use cosine similarity over fastText
embeddings (Bojanowski et al. (2017)) and word
alignment with the specified hypothesis. We select
the top four aligned table rows from each premise
table with hypotheses.

Knowledge Sources. We utilize ConceptNet, as
introduced by Speer et al. (2017) to extract external
commonsense knowledge to create relational occur-
rences. We notice that 85% of premise-hypothesis
pairings contain at least one relationship in the
ConceptNet database. To supplement the cover-
age, we also use Wordnet (Miller, 1992), to ex-
tract additional lexical word relations, namely Syn-
onyms, Antonyms, Hypernyms, Hyponyms and Co-
Hyponyms. After combining the two knowledge
databases and removing duplicates, the number of
non-zero relational connection pairings increases to
90%. We create an English directional single word
relations dataset by merging ConceptNet and Word-
net. The combined KG source contains 11.2 mil-
lion relation triples. For example in the table 1, the
relational occurrence { “coast” ← “California”}
extracted from Conceptnet, provide the necessary
world knowledge required for correct inference.

Word Embeddings. We utilize pre-learned word
embeddings to initialize the BiLSTM encoders.
The premise and hypothesis words are embedded in
300-dimensional vectors using Glove embeddings
3, introduced by Pennington et al. (2014). Glove is
a collection of 400,000-word embeddings learned
using the Wikipedia, Common crawl, and Twit-
ter datasets. We realize that the GloVe vocabulary
covers 85.6% of the terms in INFOTABS dataset.4

3 We also investigate fastText embeddings for representation,
but it has only 77.4 % coverage of all tokens. 4 Due to
limited supervision, we found that freezing word embedding
during the BiLSTM training is beneficial. For the remaining
unseen tokens, we initialized with zero vectors.

Models. To evaluate we compare our model with
INFOTABS (Gupta et al., 2020) and Knowledge-
INFOTABS (Neeraja et al., 2021) baselines, specif-
ically we employ the following methods:
• RoBERTa. The original RoBERTa baseline of

INFOTABS . We append and encode premise-
hypothesis pairs with BPR with DRR represen-
tation and generate an inference label with the
RoBERTa classification head.

• KG Explicit. Knowledge-INFOTABS intro-
duced this baseline. The baseline uses the same
RoBERTa classifier as the INFOTABS , except
that the premise end is augmented with extracted
premise row key definitions from Wordnet and
Wikipedia sources before encoding and classi-
fying using RoBERTa. Additionally, prior to
appending, the method employs key sense disam-
biguation to assure that only relevant hypothesis
context-related definitions are added. For ex-
ample, for a table with category “Person” and
key “Spouse”, the definition of “Spouse” from
Wikipedia, i.e., “Spouse is defined as a spouse is
a significant other in a marriage, civil union, or
common-law marriage.” is appended as a suffix.

• Tok-KTrans. We utilize Wordnet to expand
premise hypothesis pairs with word relations
in Tokens added transformers before encoding
and classifying using RoBERTa. We extend the
tokenizer by including relational tokens and
appending the relationships with the follow-
ing format - {<KNW> [premise_word1
: hypothesis_word1 ; <relation1> ]
[premise_word2 : hypothesis_word2 ;
<relation2>] . . . }. For example, The table
Jallikattu contains a key Mixed Gender with
a value NO. The hypothesis, Jallikattu is a
single sex sport contradicts the premise table.
We append the relation {<KNW> [ gender :
sex ; <SYN> ]} as suffix to input prior to the
RoBERTa classification.

• Trans-KBLSTM. This is our proposed model as
described in the §2. For details on model training
and hyper-parameters, refer to Appendix §G.

3.2 Results and Analysis

This section summarizes our findings concerning
the research questions.

Full Supervision Setting. To assess the effective-
ness of our method Trans-KBLSTM (i.e. RQ1), we
train baseline and our model Trans-KBLSTM with
100% of training data. Table 2 shows the perfor-
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mance (accuracy) for all models. We observe that
Trans-KBLSTM outperform5 all other baselines.
On development, α1 , and α3 Trans-KBLSTM
outperform 0.75 - 0.95 % with 100% training data.

Model Dev α1 α2 α3

w/o Knowledge 77.30 76.44 70.49 69.05
Tok-KTrans 78.17 76.19 70.75 69.77
KG Explicit 78.97 77.84 71.13 69.58
Trans-KBLSTM 79.92 79.62 72.10 70.21

Table 2: Performance in terms of accuracy with full supervi-
sion. w/o Knoweldge represent RoBERTa INFOTABS (Gupta
et al., 2020) baseline, KG Explicit represent Knowledge-
INFOTABS (Neeraja et al., 2021) baseline, Tok-KTrans is
the token appended transformers and Trans-KBLSTM rep-
resent our proposed model. Reported number are average
over three random seeds with standard deviation of 0.27 (w/o
KG), 0.69 (Tok-KTrans), 0.23 (KG Explicit) and 0.36 (Trans-
KBLSTM). All improvements are statistically significant with
Student’s t-test p < 0.05 except α2 with KG Explicit.

Limited Supervision Setting. To ensure that our
model works effectively in low-resource scenarios
(i.e., RQ2), we analyze models trained under lim-
ited supervision. We randomly sampled {1, 2, 3, 5,
10, 15, 20, 25, 30, 50, and 100} data in an incremen-
tal method 6. We experimented three times using
random seeds for sampling/training to account for
sample variability.

Figure 2 shows the accuracy for all models. We
observe a huge performance improvement with
Tran-KBLSTM over other baseline models for low
data regimes. All improvements are statistically
significant with Student’s t-test p < 0.05 except
dev results with 3% and 5%. For precise numbers
and standard deviation plots, see Table refer Table
8 in the Appendix §D. Additionally, as the train-
ing supervision increases, the performance margin
across models narrows. This improvement can be
attributed to the fact that the model’s reasoning
ability increases when more training data is added,
resulting in more accurate predictions without ex-
plicitly necessitating external knowledge addition.
As a result, adding external knowledge may not be
as beneficial if there is adequate supervision.

Reasoning Analysis To investigate the reason-
ing behind a model’s prediction (i.e., RQ3(a)), IN-
FOTABS adapted the set of reasoning categories
from GLUE (Wang et al. (2018a)) for tabular
premises. Thus, we also analyze performance
across several reasoning types on the development
5 reaches maximum in 6-7 epochs while Neeraja et al. (2021)
takes 14-15 epochs 6 Higher % include all instances from
lower %, i.e. a 20% includes all instances from a 10%
samples.

set of INFOTABS . We utilized the reasoning an-
notated instances from INFOTABS for our analy-
sis. Figure 3 show the performance across various
reasoning types on the development set for 1%
and 3% of INFOTABS development set. Trans-
KBLSTM model shows improvements in several
reasoning types including “Lexical”, “Multi-Row”,
and “KCS”.

• Lexical Reasoning involves inferencing through
words independent of context, where the
word falls. Since we add relational connec-
tions between words which include synonyms,
antonyms, etc. lexical reasoning ability of the
model enhances. For example, in the table

“Chibuku Shake”, the key “Ingredients” contains
“Sorghum” and “Maize” while the hypothesis
requires us to infer about Corn as an ingredi-
ent in the Chibuku shake. The relation {“corn”
Synonym←−−−−−− “Maize”} helps the model in making

the correct prediction. For details refer to table
13 in Appendix §E.

• Multi-Row Reasoning involves making an infer-
ence using multiple rows of the table. When
the reasoning involves multiple rows, the model
needs to extract the relevant rows and rightly fo-
cus on selected related connected phrases. The
relational connections that we propose between
premise and hypothesis tokens establish these
extractions and connections and thus enhanc-
ing the multi-row reasoning ability of the Trans-
KBLSTM model. For example in a “Person” ta-
ble relations such as { “born” RelatedTo←−−−−−→ “young”

; “born” RelatedTo←−−−−−→ “child” ; “child” RelatedTo←−−−−−→
“age” ; “year active”

Co−Hyponym←−−−−−−−−→ “child” }
help in connected both the born, child and year
active keys with the concern hypothesis. For de-
tails refer to table 12 in Appendix §E.

• Knowledge and Common Sense Reasoning. This
reasoning is related to the World Knowledge
and Common Sense category from GLUE-
Benchmark (Wang et al., 2018b), which is quoted
as “. . . the entailment rests not only on correct
disambiguation of the sentences, but also, ap-
plication of extra knowledge, whether factual
knowledge about world affairs or more common-
sense knowledge about word meanings or social
or physical dynamics.” Knowledge databases
like ConceptNet contain many knowledge rela-
tions capable of enhancing these reasoning type.
For example, in a “Country” table relations such
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Figure 2: Performance in terms of accuracy in limited supervision setting. w/o KG represent RoBERTa INFOTABS (Gupta
et al., 2020) baseline, KG Explicit represent Knowledge-INFOTABS (Neeraja et al., 2021) baseline, Tok-KTrans is the token
appended transformers and Trans-KBLSTM represent our proposed model. Reported results are average over 3 random seed
runs with average standard deviation of 0.233 (w/o KG), 0.49 (KG Explicit), 0.50 (Tok-KTrans) and 0.30 (Trans-KBLSTM). All
the improvements are statistically significant with Student’s t-test p < 0.05 of one-tailed Student t-test.

Figure 3: Number of correct model predictions across various reasoning types. w/o represents without knowledge (KG) i.e.
original RoBERTa models and w represents Trans-KBLSTM model with explicitly added relational connection knowledge (KG).

as { “kingdom” IsA←−→ “monarchy” ; “democracy”
RelatedTo←−−−−−→ “Government” } add additional infor-

mation necessary for inference. For details refer
to table 14 in Appendix §E.

Improvement across Inference Labels. In our
analysis, we observe a performance improvement
across the Entailment and Neutral labels, but only
a negligible increase, for example, in instances la-
beled with the Contradiction label. Contradictory
label prediction requires noise-free, contextually
relevant knowledge to ascertain the negation. Ex-
ternal knowledge addition with minimal noise can
lead to the predicted Neutral or Entailment label.
Additional ways for relational connection trimming
may be explored in future studies.

3.3 Ablation Study
We perform ablation studies (i.e., RQ4) to under-
stand the importance of individual model compo-

nents further. The ablation study was conducted to
ascertain the significance of (a) Trans-KBLSTM
Skip Connection, (b) Knowledge Relations, (c) Im-
plicit KG addition via. MNLI pre-training (Em-
beddings), and (d) Transformer Model Param Size.
(e) Independent Component training.

Effect of Skip Connections. We study the sig-
nificance of embedding skip connection and the
knowledge relations (i.e., RQ4(a,b)). The knowl-
edge relations are initialized with random vectors
to examine model performance variations.

Table 3 shows the Trans-KBLSTM performance
with several ablations. We observe that adding
knowledge and the introduction of skip connec-
tion improve the model performance. The addition
of knowledge to the model improves the perfor-
mance on Dev, α1, and α2 sets. The inclusion of
knowledge improves performance the most for De-
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velopment, α2 , and α3 sets, whereas the addition
of skip connection improves performance substan-
tially in α1 set. The performance improvement in
α3 set demonstrates that using external informa-
tion benefits zero-shot settings (i.e., cross-domain
transfer learning). The improved performance by
the addition of skip connection demonstrates that
effective knowledge integration significantly im-
pacts model performance.

Ablations Dev α1 α2 α3

Trans-KBLSTM 67.55 65.16 64.00 63.38
- Skip Connect 65.72 62.83 60.00 61.55

- KB 60.44 61.88 56.94 55.55
- (KB + Skip Connect) 60.11 61.50 55.94 57.38

Table 3: Ablation study performance on stratified 1% split
of dataset. We systematically eliminate model components in
order to evaluate the performance improvement.

Implicit Knowledge Addition. We examine the
effect of implicit knowledge addition (i.e., RQ4(b))
in Trans-KGLSTM model. Thus, similar to the KG
Implicit baseline of Knowledge-INFOTABS (Neer-
aja et al., 2021), we supplement implicit knowledge
using the MNLI via data augmentation. To en-
sure a fair comparison, we compare the two Trans-
KBLSTM RoBERTa-based classifiers, one with
and the other without MNLI data pre-training.

Figure 4: Performance improvement with MNLI pre-training
across various models.

We observe an improvement in performance for
all percentages of train data after pre-training us-
ing MNLI data. Pre-training enables the model
to acquire domain-specific information, hence en-
hancing its performance. There is a more signifi-
cant gain in performance for non-pre-trained than
for MNLI pre-trained models, suggesting that ex-
ternal information addition is more beneficial for
models without any implicit knowledge. In com-
parison, our approach uses relational connections
to augment the model’s knowledge in the phase,
final training avoiding the computational, time, and
economic cost of large MNLI pre-training.

Figure 5: Improvement in model performance across varying
models sizes.

Effect of Transformer Size. We substitute
RoBERTaLARGE with RoBERTaBASE to study the
effect of transformer size on performance (i.e. RQ4
(d)) of INFOTABS test sets. We pre-train both the
transformers model using the MultiNLI dataset for
all percentages. The performance is depicted in
Figure 5. We see an increase in performance as
the model’s size increases, especially for external
knowledge addition, i.e., Trans-KBLSTM model.

Independent Training. We examine the effect
of training transformer and KBLSTM components
independently. For independent training, we first
train RoBERTaLARGE transformer model on IN-
FOTABS . Then we utilize these weights to initial-
ize the transformer component of Trans-KBLSTM.
Finally, we trained the KBLSTM component of
Trans-KBLSTM on INFOTABS while keeping
these pre-trained transformer weights frozen (con-
stant). Table 4 shows the results of training Trans-
KBLSTM with different regimes. We observe that
training the components together shows a more
significant improvement in performance than train-
ing the KBLSTM component independently. Joint
training of transformer and KBLSTM generates
representations in the same embedding space, en-
hancing external knowledge integration.

Ablations Dev α1 α2 α3

RoBERTaLARGE 77.30 76.44 70.49 69.05
+ KBLSTM (Independent) 79.22 78.38 71.00 69.22
+ KBLSTM (Joint Train) 79.92 79.62 72.10 70.21

Table 4: Joint/Independent training performance on IN-
FOTABS dataset. First row shows results of training
only RoBERTaLARGE model without knowledge. Sec-
ond row shows results of training KBLSTM indepen-
dently after freezing RoBERTaLARGE parameters. Third
row shows the results of our proposed approach i.e.
Joint-training of RoBERTaLARGE and KBLSTM.
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4 Comparison with Related Work

Recently, several papers have been published focus-
ing on NLP tasks involving semi-structured Tabular
data. Examples include tabular NLI (Gupta et al.,
2020), and fact verification (Chen et al. (2020); Aly
et al. (2021); Zhang and Balog (2019)). The use of
external knowledge into Tabular data was first ex-
plored by Neeraja et al. (2021) through KG-Explicit
model described in §3.1. We aim to improve on
this benchmark through this extensive study.

Knowledge Integration. Traditional approaches
to integrating external knowledge into deep learn-
ing models do not use contextual embeddings from
pre-trained language models. The Knowledge-
based Inference Model (KIM) (Chen et al., 2018)
incorporates lexical relations (such as antonyms
and synonyms) into the premise and hypothesis
representations using attention and composition
units. Lin et al. (2017) provides a method to mine
and exploit commonsense knowledge by defining
inference rules between elements under different
kinds of commonsense relations, with an infer-
ence cost for each rule. KG-Augmented Entail-
ment System (KES) (Kang et al., 2018) augments
the NLI model with external knowledge encoded
using graph convolutional networks. ConseqNet
(Wang et al., 2019) concatenates the output of
the text-based model and the graph-based model
and then feeds it to a classifier. Lin et al. (2019)
uses LSTMs and a novel knowledge-aware graph
network module named KagNet to achieve state-
of-the-art performance on CommonSenseQA. Bi-
CAM (Gajbhiye et al., 2020) models incorporate
knowledge from ConceptNet and AristoTuple KGs
(Dalvi Mishra et al., 2017) by factorized bilinear
pooling to improve performance on NLI Datasets.

Incorporating external knowledge into language
models has been extensively explored in recent
times. Approaches similar to the Tok-KTrans base-
line described in §3.1 where external knowledge
is added at input level were explored in Chen et al.
(2021); Xu et al. (2021); Mitra et al. (2019). At the
representational level, the model understands these
external knowledge additions and interacts with
these representations using multi-head attention
modules (Chang et al., 2020). Other approaches
include, pretraining on external knowledge cor-
pus to inject knowledge (Wang et al., 2021; Pe-
ters et al., 2019; Umair and Ferraro, 2021), bet-
ter knowledge representations (Bauer et al., 2021),

modifications to multi-head attention in pre-trained
language models (Li and Sethy, 2019; Haihong
et al., 2019), designing relation-aware tasks (Xia
et al., 2019) and integration of knowledge through
multi-head attention (Gajbhiye et al., 2021).

Closely Related Work. Li et al. (2019) finds
that when explicit knowledge is added in the form
of word-pair information, models such as Chen
et al. (2018) improve performance. However, such
models necessitate the use of classic seq2seq archi-
tectures such as BiLSTM to integrate word-level
knowledge. In our proposed approach, external
knowledge is separately added to the premise and
hypothesis using a multi-head attention dot prod-
uct. To encode the contextual relationships between
premise and hypothesis, we use a pre-trained lan-
guage model, RoBERTa (Liu et al., 2019). We com-
bine the LM embeddings (Gajbhiye et al., 2021)
and BiLSTM embeddings using a skip connection
which preserves the premise-hypothesis relational
context and integrates knowledge effectively.

5 Conclusion and Future Work

In this paper, we introduce Trans-KBLSTM, a
novel architecture to integrate external knowledge
into tabular NLI models. Trans-KBLSTM is shown
to improve reasoning on the INFOTABS dataset.
The performance advantage is particularly pro-
nounced in low-data regimes. The reasoning study
demonstrates that the model enhances lexical, nu-
merical, and multiple-row reasoning. Ablation ex-
periments demonstrate the critical nature of each
component in the model’s design. We believe that
our findings will be valuable to researchers work-
ing on the integration of external knowledge into
deep learning architectures. Performance of the
proposed architecture on more datasets can be ex-
plored in future studies. Looking forward, the ap-
plication of this architecture to other NLP tasks
that can benefit from external knowledge enhanced
relational connections between sentence pairs, such
as question answering and dialogue understanding.
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A Hypothesis Attention Module

In Hypothesis attention module, we calculate hy-
pothesis relation values by normalizing Rijk with
respect to row-axis(2), to generate Rhyp

ik ∈ Rm×k

which is the average hypothesis relation for every
premise word.

Rhypik =
∑

i = 1n
Rijk

n

We reduce the dimension by applying the dot prod-
uct attention.

Rr
ik = F r

H(Rhyp
ik ) ∈ Rm×lk

F r
N can again be a single layer neural network. We

then use the Hypothesis attention head to highlight
the importance of the hypothesis and its relations
to the premise. The context-aware premise hid-
den state ps is used as queries, the hypothesis hid-
den state is used as keys, and reduced hypothesis
premise relation values are used. The attention
function can be defined as follows:

Attention(ps, hs, Rr
ik) = softmax(

pshsT√
l

)Rr
ik

Then the multi-head attention is as follows:

patth = MH(ps, hs, Rr
ik)

= Concat(head1, ..., headh)W o

where, headi = Attention(psW q
i , h

sW k
i , R

rikW v
i )

and W q
i ,W

k
i , and W v

i are projection matrices and
i is the number of attention heads. The output
patth ∈ Rm×lk is an attention-weighted context ma-
trix measuring the importance of premise and re-
lations to each of the hypothesis. We calculate
patth ∈ Rm×lk , attention-weighted context matrix
measuring the importance of premise and relations
to each of the hypothesis. We also extract Hatt,
the attention weights of the hypothesis multi-head
attention.

B Knowledge Relations to Sentence
Conversion

We create templates to convert knowledge relations
in ConceptNet & WordNet to natural language sen-
tences. These templates resemble natural English
text, which can be encoded using pretrained lan-
guage models. The templates can be seen in table
5.
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KB Relation Natural Language

Antonym is opposite of
AtLocation is at location
CapableOf is capable of
Causes causes
CausesDesire causes desire to
CreatedBy is created by
DefinedAs is defined as
DerivedFrom is derived from
Desires desires
DistinctFrom is distinct from
Entails entailes
EtymologicallyDerivedFrom is etymologically derived from
EtymologicallyRelatedTo is etymologically related to
ExternalURL external url
FormOf is a form of
HasA has a
HasContext has context
HasFirstSubevent has first subevent
HasLastSubevent has last subevent
HasPrerequisite has prerequisite
HasProperty has property
HasSubevent has subevent
InstanceOf is an instance of
IsA is a
LocatedNear is located near
MadeOf is made of
MannerOf is manner of
MotivatedByGoal is motivated by goal
NotCapableOf is not capable of
NotDesires does not desire
NotHasProperty does not have property
PartOf is part of
ReceivesAction receives action
RelatedTo is related to
SimilarTo is similar to
SymbolOf is a symbol of
Synonym is same as
UsedFor is used for
dbpedia/capital has capital
dbpedia/field has field
dbpedia/genre has genre
dbpedia/genus has genus
dbpedia/influencedBy is influenced by
dbpedia/knownFor is known for
dbpedia/language has language
dbpedia/leader has leader
dbpedia/occupation ‘ has occupation
dbpedia/product has product
Hypernym is hypernym of
Hyponym is hyponym of
Co-Hyponym is co-hyponym of

Table 5: ConceptNet and Wordnet Relations with their
Natural language templates

C Domain Analysis

To understand the models performance across tabu-
lar domains (i.e. RQ3(b)), we analyse domain-wise
table category results. We evaluate the twelve ma-
jor categories contained in the INFOTABS datasets.
All remaining categories are grouped together in
the “Other” category. Table summarizes the per-
formance of models (trained with 2% and 5% IN-

FOTABS train data)7 on the INFOTABS develop-
ment set across several categories.

Category
1% 3% 10%

w/o KG w KG w/o KG w KG w/o KG w KG

Album 65.87 65.87 73.81 76.98 77.78 73.02
Animal 60.49 66.67 75.31 66.67 67.9 72.84
City 64.05 64.71 56.21 61.44 63.4 64.71
Country 56.48 54.63 56.48 55.56 60.19 62.96
Food & Drinks 69.44 70.83 72.22 73.61 83.33 79.17
Movie 61.11 63.89 63.89 63.89 70 73.89
Musician 62.57 69.88 73.1 74.56 75.73 76.9
Organization 61.11 58.33 55.56 66.67 69.44 72.22
Painting 80.25 80.25 75.31 77.78 77.78 80.25
Person 57 62.96 62.35 67.28 74.9 75.72
Sports 65.08 73.02 61.9 71.43 68.25 69.84
Others 63.89 65.28 66.67 70.84 63.89 61.11

TOTAL 62 65.83 65.88 68.61 72.27 73.22

Table 6: Accuracy (%) across different categories ob-
served in the Development set (Others (<10%) includes
the categories, University, Awards, Event, Book and Air-
craft), trained on 1%, 3% and 5% samples of the data.
w/o KG represents RoBERTa and w KG represents
Trans-KBLSTM model.

As the supervision increases from 1% to 10%,
we observe an increasing accurate prediction
trend across the categories. Our proposed model
shows significant improvements in “Musician” and

“Sports” categories. We attribute these huge gains
to two main reasons: (a) . Under minimal super-
vision, knowledge relations enable the model to
concentrate on relevant context, thus helping in es-
tablishing premise rows and hypothesis tokens con-
nections. For example refer to table 10 in Appendix
§E. (b) and the acquisition of additional knowledge
enhances the models’ overall world knowledge and
common sense reasoning capability. E.g. in the ta-
ble 1, the understanding of the California is located
at the coast.

Additionally, we observe that our proposed
model performs poorly in a few categories.
This part comprises instances from “Album”,

“Food & Drinks”, and “University”. This can be at-
tributed to the noisy addition of knowledge. Some-
times knowledge relations give out the relational
context that might not be needed. For example refer
to table 11 in Appendix §E. Additional knowledge
filtering may be addressed in future studies. For
domain analysis results of models trained on 2%
and 5% training data, refer to table 7.

D Limited Supervision

We present detailed results on limited supervision
experiments. All the reported numbers are aver-
7 For details results on other percentages refer to Appendix
§C Table 7.
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Category
2% 5%

w/o KG w KG w/o KG w KG

Album 68.25 67.46 72.22 73.81
Animal 65.43 64.20 72.84 69.14
City 55.56 58.17 60.13 61.44
Country 58.33 62.96 61.11 68.52
Food&Drinks 69.44 66.67 75.00 73.61
Movie 58.33 65.00 65.56 65.56
Musician 68.42 71.64 71.35 76.32
Organization 58.33 61.11 66.67 66.67
Painting 66.67 59.26 75.31 76.54
Person 61.32 60.49 68.72 67.08
Sports 66.67 69.84 61.90 68.25
Others 62.50 66.67 63.89 65.28

TOTAL 63.11 64.44 68.22 69.50

Table 7: Accuracy (%) across different categories ob-
served in the Development set (Others (<10%) includes
the categories, University, Awards, Event, Book and Air-
craft), trained on 2% and 5% samples of the data. w/o
KG represents RoBERTa baseline and w KG represents
Trans-KBLSTM

age over three seed runs with a standard deviation
of 0.233 (w/o KG), 0.49 (KG Explicit), 0.5 (Tok-
KTrans), and 0.30 (Trans-KBLSTM). All the im-
provements are statistically significant with p <
0.05 of one-tailed Student t-test.

E Qualitative Examples

Table 10, 11, 12, 13, and 14 present examples to
supplement the results presents in Section 3.

F Additional Results Reasoning Analysis

Table 15 detailed results of performance across
reasoning keys for models trained on 1%, 3%, 5%
and 10% data.

G Training and Hyperparameters Details

Trans-KBLSTM is implemented in PyTorch
(Paszke et al., 2019) using Huggingface (Wolf et al.,
2020) implementation of RoBERTa (Liu et al.,
2019). We pretrain the transformer components
on MultiNLI dataset (Williams et al., 2018) for fair
comparison with the Knowledge-INFOTABS base-
line of Neeraja et al. (2021). We use AdaGrad
optimizer (Duchi et al., 2011) with an initial learn-
ing rate of 1e-4 for RoBERTa and 1e-3 for non-
RoBERTa i.e. LSTM parameters with a scheduler.
The batch size is slected from {3,4, 5}. All the
hyper-parameters are fined tuned on the develop-
ment set of INFOTABS .

% Train Model Dev α1 α2 α3

1%

w/o KG 66.05 63.81 64.00 62.59
KG Explicit 65.15 63.22 62.24 60.63
Tok-KTrans 63.57 61.96 58.83 59.18
Trans-KBLSTM 68.03 65.18 64.83 64.12

2%

w/o KG 68.42 66.24 66.22 64.55
KG Explicit 66.70 65.07 63.77 62.11
Tok-KTrans 67.74 66.59 62.46 62.78
Trans-KBLSTM 69.72 67.02 66.51 65.36

3%

w/o KG 69.48 66.14 66.16 64.61
KG Explicit 68.12 66.05 64.85 62.85
Tok-KTrans 67.52 66.57 63.98 64.07
Trans-KBLSTM 70.00 67.09 67.00 64.90

5%

w/o KG 70.50 67.44 67.33 65.18
KG Explicit 68.78 66.65 65.20 63.74
Tok-KTrans 69.44 67.31 65.14 63.53
Trans-KBLSTM 70.98 67.50 68.01 66.11

10%

w/o KG 72.23 69.27 68.14 66.27
KG Explicit 70.68 68.77 67.07 64.70
Tok-KTrans 71.24 69.79 65.25 65.29
Trans-KBLSTM 72.51 70.18 68.40 66.77

15%

w/o KG 72.92 70.27 68.46 66.66
KG Explicit 72.05 70.16 67.37 65.05
Tok-KTrans 72.47 70.94 66.68 65.20
Trans-KBLSTM 73.61 70.96 68.90 67.29

20%

w/o KG 74.09 71.25 69.31 67.68
KG Explicit 72.70 70.99 67.89 65.55
Tok-KTrans 73.05 70.77 67.72 65.94
Trans-KBLSTM 74.29 72.16 69.77 67.29

25%

w/o KG 74.50 72.25 68.90 67.53
KG Explicit 74.46 72.32 68.61 66.91
Tok-KTrans 74.44 72.79 68.22 66.83
Trans-KBLSTM 75.09 73.20 69.57 68.18

30%

w/o KG 74.70 72.86 69.61 67.55
KG Explicit 74.83 72.26 68.69 66.89
Tok-KTrans 74.17 73.96 68.03 66.63
Trans-KBLSTM 75.57 74.25 69.62 67.57

50%

w/o KG 75.93 73.79 69.59 67.90
KG Explicit 75.99 74.05 70.36 68.51
Tok-KTrans 78.44 76.38 70.66 70.38
Trans-KBLSTM 76.71 74.86 70.68 68.93

100%

w/o KG 77.30 76.44 70.49 69.05
KG Explicit 78.97 77.84 71.13 69.58
Tok-KTrans 78.17 76.19 70.75 69.77
Trans-KBLSTM 79.73 78.92 71.62 70.21

Table 8: Shows the results of of our experiments, where
we train under limited supervision setting. w/o KG
Original RoBERTa baseline, KG Explicit KG-Explicit
knowledge addition, Tok-KTrans Token appended
transformers, Trans-KBLSTM Proposed model. We
train these models on data samples 1, 2, 3, 5, 10, 15, 20,
25, 30, 50, 100 %s. For full results, see appendix.
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Figure 6: The figures show error bar plots of limited supervision training on 1,2,3,5,10 and 15% of data. for
Trans-KBLSTM and RoBERTa baseline. We notice that the error overlap increases with increase in supervision.
The improvements are higher under low-data regimes.

Hyperparameter Value

LSTM Max Length 200
LSTM layers 2
LSTM learning rate 1e-3
LSTM Hidden state size 128
Word Embedding Dimension 300
RoBERTa Hidden state size 768
RoBERTa learning rate 1e-4
# Attention heads 4
Embedding Spatial Dropout 0.3
Dropout (Final classification) 0.2

Table 9: Enlists the hyperparameters used while training
the baselines and proposed model on INFOTABS

Joe Budden Premise

Premise Joe Budden was Born on ( 1980-
08-31 ) August 31, 1980 (age 38)
in New York, New York. The Ori-
gin of Joe Budden are Jersey City,
New Jersey. The Years active
of Joe Budden are 1999-present.
The Labels of Joe Budden are
Mood Muzik, EMPIRE (current),
Desert Storm, Def Jam, Amal-
gam Digital, and E1 (former)

Hypothesis Joe Budden started his career in
his twenties.

Focused Relation age
Co−Hyponym←−−−−−−−−→ twenties

Gold Label Contradiction

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table 10: In the absence of knowledge, the model is un-
able to understand the word twenties and concludes that
the information is not present in the text. However, ad-
dition of knowledge re-enforces the connection between
age and twenties thereby producing correct label
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Crooked Teeth Premise

Premise The Released of Crooked Teeth
are May 19, 2017. The Studio
of Crooked Teeth are Steakhouse
Studios, North Hollywood, CA.
The Genre of Crooked Teeth are
Hard rock, nu metal, and rap rock.
The Label of Crooked Teeth are
Eleven Seven.

Hypothesis The album Crooked Teeth took
over a year to make.

Focused Relation genre
Co−Hyponym←−−−−−−−−→ make ||

metal RelatedTo−−−−−−→ make || rap
Hypernym−−−−−−−→ make

Gold Label Neutral

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table 11: The baseline prediction correctly predicts the
gold label. Our proposed model gets confused with
semantically irrelevant relations and hence concludes
the statement as contradiction.

Jeff Bridges Premise

Premise The Born of Jeff Bridges are De-
cember 4, 1949 (age 69) Los
Angeles, California, U.S.. The
Years active of Jeff Bridges are
1951-present. The Children of
Jeff Bridges are 3. The Family
of Jeff Bridges are Beau Bridges
(brother), and Jordan Bridges
(nephew).

Hypothesis Jeff Bridges started his career as
a young child.

Focused
Relations

born RelatedTo−−−−−−→ young

born RelatedTo−−−−−−→ child

child RelatedTo−−−−−−→ age

active
Co−Hyponym−−−−−−−−−→ child

Gold Label Entailment

Prediction

RoBERTa Contradiction

Trans-KBLSTM Entailment

Table 12: The inference of the hypothesis requires the
model to focus on 1st and 2nd sentences at the same
time. The original model gets confused due to mention
of age 69 and young and concludes contradiction. The
focused relations develop appropriate connections to the
first two sentences and enable better understanding to
the model.

Chibuku Shake Premise

Premise The Type of Chibuku Shake
shake are Opaque Beer. The
Alcohol by volume of Chibuku
Shake shake are 3.3% to 4.5%.
The Colour of Chibuku Shake
shake are Tan-pink to white. The
Ingredients of Chibuku Shake
shake are Sorghum, and Maize.

Hypothesis Corn is an ingredient found in a
Chibuku Shake.

Focused
Relations

corn
Synonym←−−−−−→ maize

Gold Label Entailment

Prediction

RoBERTa Entailment

Trans-KBLSTM Entailment

Table 13: The inference of the given hypothesis requires
the knowledge of Synonymy between Corn and Maize

Hashemite Kingdom of Jordan Premise

Premise The Legislature of Hashemite
Kingdom of Jordan are Parlia-
ment. The Religion of Hashemite
Kingdom of Jordan are 95% Is-
lam (official), 4% Christianity,
and 1% Druze, Baha’i. The
Government of Hashemite King-
dom of Jordan are Unitary parlia-
mentary constitutional monarchy.
The Monarch of Hashemite King-
dom of Jordan is Abdullah II.

Hypothesis Hashemite Kingdom of Jordan
does not have any democracy.

Focused Relation Kingdom IsA←−→Monarch
Gold Label Contradiction

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table 14: The focused external knowledge relation con-
nects the Monarchy in premise to Kingdom in hypothe-
sis.
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Percent(%)Reasoning
keys

Entailment Neutral Contradiction
B.L KtLSTM . B.L KtLSTM . B.L KtLSTM .

KCS 64.52 70.97 31 85.71 85.71 21 50.00 62.50 24
coref 50.00 62.50 8 81.82 68.18 22 30.77 15.38 13
entitytype 83.33 83.33 6 87.50 87.50 8 50.00 50.00 6
lexicalreasoning 40.00 60.00 5 33.33 33.33 3 25.00 25.00 4
multirowreasoning 60.00 75.00 20 68.75 75.00 16 52.94 47.06 17

1% nameidentity 0.00 0.00 2 0.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 66.67 83.33 6
numerical 63.64 54.55 11 66.67 100.00 3 42.86 42.86 7
quantification 25.00 25.00 4 100.00 92.31 13 16.67 16.67 6
subjectiveoot 33.33 33.33 6 75.61 80.49 41 50.00 50.00 6
temporal 73.68 78.95 19 45.45 45.45 11 56.00 60.00 25

KCS 67.74 83.87 31 66.67 80.95 21 75.00 70.83 24
coref 37.50 50.00 8 54.55 63.64 22 53.85 53.85 13
entitytype 50.00 50.00 6 62.50 87.50 8 66.67 50.00 6
lexicalreasoning 60.00 80.00 5 33.33 66.67 3 75.00 75.00 4
multirowreasoning 60.00 70.00 20 56.25 68.75 16 76.47 76.47 17

3% nameidentity 50.00 100.00 2 100.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 100.00 100.00 6
numerical 54.55 81.82 11 66.67 66.67 3 71.43 71.43 7
quantification 75.00 75.00 4 69.23 76.92 13 66.67 66.67 6
subjectiveoot 50.00 50.00 6 65.85 80.49 41 66.67 66.67 6
temporal 47.37 63.16 19 54.55 72.73 11 64.00 40.00 25

KCS 87.10 83.87 31 71.43 90.48 21 66.67 62.50 24
coref 75.00 62.50 8 68.18 81.82 22 30.77 30.77 13
entitytype 83.33 83.33 6 87.50 87.50 8 83.33 83.33 6
lexicalreasoning 60.00 80.00 5 33.33 66.67 3 50.00 50.00 4
multirowreasoning 85.00 85.00 20 68.75 81.25 16 58.82 76.47 17

5% nameidentity 100.00 100.00 2 50.00 100.00 2 100.00 0.00 1
negation 0.00 0.00 0 0.00 0.00 0 100.00 66.67 6
numerical 72.73 90.91 11 100.00 100.00 3 71.43 85.71 7
quantification 75.00 50.00 4 92.31 100.00 13 33.33 16.67 6
subjectiveoot 66.67 33.33 6 73.17 87.80 41 50.00 50.00 6
temporal 94.74 84.21 19 36.36 63.64 11 56.00 52.00 25

KCS 74.19 80.65 31 95.24 90.48 21 70.83 70.83 24
coref 50.00 75.00 8 77.27 77.27 22 46.15 23.08 13
entitytype 66.67 83.33 6 87.50 87.50 8 100.00 83.33 6
lexicalreasoning 80.00 80.00 5 66.67 66.67 3 25.00 75.00 4
multirowreasoning 80.00 80.00 20 81.25 81.25 16 76.47 70.59 17

10% nameidentity 50.00 50.00 2 100.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 83.33 100.00 6
numerical 81.82 100.00 11 100.00 100.00 3 71.43 71.43 7
quantification 50.00 50.00 4 84.62 92.31 13 33.33 33.33 6
subjectiveoot 33.33 50.00 6 82.93 87.80 41 50.00 33.33 6
temporal 78.95 89.47 19 63.64 63.64 11 68.00 68.00 25

Table 15: The above numbers represent accuracy on development dataset across different reasoning types with
varying percentage of data. The third number indicates the number of examples corresponding to the reasoning type
and label.
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Abstract
We study few-shot debugging of transformer
based natural language understanding models,
using recently popularized test suites to not
just diagnose but correct a problem. Given
a few debugging examples of a certain phe-
nomenon, and a held-out test set of the same
phenomenon, we aim to maximize accuracy
on the phenomenon at a minimal cost of ac-
curacy on the original test set. We examine
several methods that are faster than full epoch
retraining. We introduce a new fast method,
which samples a few in-danger examples from
the original training set. Compared to fast
methods using parameter distance constraints
or Kullback-Leibler divergence, we achieve su-
perior original accuracy for comparable debug-
ging accuracy.

1 Introduction

When deep transformer models make mistakes,
ML engineers have had little recourse but to col-
lect a better training set and hope the problem is
fixed. Adversarial datasets have exposed a vari-
ety of phenomena under which models trained on
common datasets fail, particularly for question an-
swering and natural language inference (Jia and
Liang, 2017; Gururangan et al., 2018; Kim et al.,
2018; McCoy et al., 2019; Nie et al., 2020; Thorne
et al., 2019). They have provided new test data to
expose problems but not always new training data
to correct them. Recently, the natural language
processing community has adopted methodologies
inspired by software development for probing and
testing the capabilities of a model. Ribeiro et al.
(2020) introduce CheckList, which helps users to
develop test suites of examples, organized by capa-
bility.

Collecting hundreds or thousands of examples
for each error phenomenon is slow, expensive, and
not always feasible. In this paper, we investigate
how just a few examples of a phenomenon (“de-
bugging examples”, which were not in the original

dataset) can be utilized to correct a model. The goal
is higher accuracy on the phenomenon (“debugging
accuracy”) while retaining accuracy on the original
dataset (“original accuracy”). This problem differs
from domain adaptation and few-shot learning be-
cause performance must be maintained on original
examples, and no new classes are introduced.

We repurpose published test suites for several
natural language understanding (NLU) tasks as de-
bugging problems, not just diagnostics. We identify
methods that can update a model using a few de-
bugging examples without the expense of iterating
over the whole original training set. We introduce
a new fast method that samples in-danger exam-
ples from the original training set to obtain even
better original accuracy for comparable debugging
accuracy.

2 Related work

Two recent works (Zhu et al., 2020; De Cao et al.,
2021) study how to modify transformer language
models so that they store updated facts, testing their
approaches on downstream tasks such as zero-shot
relation extraction and closed-book fact checking.
To apply these methods, one is given a modified
fact as an example to train on, and one must pre-
dict the modified fact correctly (success rate) while
achieving low performance deterioration on the
original test set. Because success rate is measured
on just one example which is available at train-
ing time, to determine whether the update really
generalizes, De Cao et al. (2021) also measures
equivalence accuracy, which reflects accuracy on
paraphrases of the updated fact.

By contrast, our setting provides ten examples
(not just one) for a phenomenon where the predic-
tions are to be updated. The phenomenon being
debugged may involve deeper semantics than a
factoid update, which usually requires only a re-
association of particular words that appear in the
example. We assume we are given a testing set for
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the phenomenon, so we can measure generaliza-
tion by directly measuring accuracy on the testing
examples instead of paraphrasing the training ex-
amples.

Despite these differences, ideas from these pa-
pers provide relevant ideas that can be used in our
debugging setting as well. One baseline considered
by Zhu et al. (2020), which we call intensive fine-
tuning, simply takes the updated facts (for us, the
debugging training set) and repeatedly performs
gradient descent updates on them until they are
classified correctly.

The proposed approach of Zhu et al. (2020) is to
minimize loss on the updated facts (the debugging
set) subject to either an L∞ or L2 constraint on the
difference of the model parameters. We consider
these as baselines.

As De Cao et al. (2021) observe, constraining
the norm of the parameter update is only loosely
tied to how a parameter change can affect the out-
put of a model. For this reason they introduce
an approach based on constraining the Kullback-
Leibler divergence between the updated model and
the original. Their proposed method trains a hyper-
network to read a single updated example and make
a change minimizing debugging loss subject to the
Kullback-Leibler divergence constraint. That does
not apply as well to our scenario of multiple de-
bugging examples, but we borrow the idea of using
Kullback-Leibler divergence to incentivize similar
predictions in a more straightforward baseline.

Sinitsin et al. (2020) introduce a meta-learning
method for making a model that will preserve orig-
inal accuracy when performing a series of gradient
descent steps to change the label of any particular
example. We are interested in methods that can be
applied to any model, and for real debugging it is
not necessary that all examples be easily relabeled.

Contemporaneously to our work, Pasunuru et al.
(2021) investigate few-shot debugging on error cat-
egories that are apparently too broad to be corrected
with just a few examples. Although they report
some success with feature matching methods such
as prototypical networks (Snell et al., 2017), they
either suppose that test examples are identified as
needing a correction or not (i.e. debugging or origi-
nal), more like domain adaptation, or else train the
prototypical network on a combined training set,
which is the slowness we are trying to avoid. Our
setting requires a single model that can be applied
to all examples without source information.

3 Method

We suppose we are given a model pθ(x, y) trained
on training set X . We are also given debugging
training set X ′, and original test set Xtest and de-
bugging test set X ′

test. These four sets are pairwise
disjoint. We consider the cross-entropy loss

L(x, y; θ) = −pθ(x, y) log pθ(x, y). (1)

Our method initializes θ0 = θ and then performs in-
tensive fine-tuning on the debugging set X ′, by per-
forming Adam (Kingma and Ba, 2015) iterations
θt+1 = Adam(L, X ′, θt) where Adam(L, S, θ)
represents the parameter update achieved by train-
ing θ with respect to the loss L over a complete
epoch on S. Intensive fine-tuning stops at the mini-
mal step t = tX′ such that argmaxypθt(xi, y) = yi
for all (xi, yi) ∈ X ′. We write θX′ = θtX′ .

Next we collect random samples W ⊂ X that
are misclassified by θX′ but not by θ. In our ex-
periments we select |W | = 2|X ′| such examples.
Collecting W is a fast process involving iterating
through a random shuffle of X and stopping when
the required number of examples is retrieved. The
expected iteration time depends only on the error
rates and correlation of the errors of the models
and not on the size of the original training set |X|.

Finally we restart from the original parameters
θ and intensively fine-tune using the set X ′ ∪W .
We take θ′0 = θ and iterate Adam

θ′t+1 = Adam(L, X ′ ∪W, θ′t) (2)

until we reach t′ where argmaxypθ′
t′
(xi, y) = yi

for all (xi, yi) ∈ X ′ ∪W . The resulting θ′ = θ′t′ is
the debugged model by our proposed method.

4 Experiments

We consider a BERT base model (Devlin et al.,
2019) implemented in Pytorch (Paszke et al., 2019)
by the HuggingFace Transformers library (Wolf
et al., 2020) for all experiments, with batch size
16 per GPU on 3 or 4 GPU’s, otherwise following
default training parameters.

Our data sets are test suites from HANS (McCoy
et al., 2019) debugging an MNLI model (Williams
et al., 2018) and CheckList (Ribeiro et al., 2020)
debugging models for SST-2 and QQP from GLUE
(Wang et al., 2018). We take test cases with the
worst accuracy before debugging, and select 10
examples from each suite for debugging (X ′) and
use the rest (e.g. 990 examples for HANS) to test

80



Test suite Dog Or/And Becoming People Passive
Before debugging (.000, .913) (.000, .913) (.002, .913) (.005, .913) (.009, .913)
Fast
Debug only (.731, .909) (1.000, .909) (1.000, .910) (.922, .910) (.819, .910)
L2 (δ = .1) (.704, .909) (1.000, .909) (1.000, .911) (.880, .910) (.876, .910)
L∞ (δ = .1) (.704, .909) (1.000, .909) (1.000, .911) (.880, .910) (.876, .910)
K-L (λ = 10) (1.000, .905) (1.000, .908) (1.000, .909) ( 1.000, .908) (1.000, .908)
Ours (.731, .909) (.994, .913) (1.000, .913) (.993, .911) (.975, .912)
Slow
Mixed in (1.000, .913) (.999, .912) (1.000, .913) (.933, .912) (.859, .912)
Oversampling (1.000, .911) (1.000, .913) (1.000, .912) (.999, .914) (1.000, .911)

Table 1: (Debugging accuracy, Original accuracy) on CheckList test suites for QQP.

Test suite Used to but now Negation with neutral Opinion matters
Before debugging (.793, .925) (.448, .925) (.616, .925)
Fast
Debug only (.860, .914) (1.000, .917) (.602, .915)
L2 (δ = .1) (.860, .915) (1.000, .919) (.600, .915)
L∞ (δ = .1) (.860, .915) (1.000, .919) (.600, .915)
K-L (λ = 10) (.838, .915) (1.000, .916) (.538, .920)
Ours (.877, .919) (1.000, .913) (.777, .885)
Slow
Mixed in (.909, .913) (1.000, .925) (.673, .923)
Oversampling (.735, .931) (1.000, .921) (.512, .928)

Table 2: (Debugging accuracy, Original accuracy) on CheckList test suites for SST-2.

debugging (X ′
test). See the appendix for details.

Our data splits and our code for extracting exam-
ples from CheckList are available for download.1

For HANS we use the BERT cased model and for
CheckList we use the uncased model.

4.1 Fast baselines

The first of four fast baselines we consider, which
is labeled “debug only,” performs intensive fine-
tuning on the debugging set X ′ only, returning
the model θX′ . In every case we tested, tX′ ≤ 3
epochs over ten examples, so this completed within
a minute.

The next baselines from Zhu et al. (2020) are
finding θ′ to minimize L(X ′, θ′) subject to an L∞

constraint ||θ′ − θ||∞ < δ or an L2 constraint
||θ′ − θ||2 < δ. Following Zhu et al. (2020) we
use δ = 0.1 and implement the optimization as
projected gradient descent, e.g. for L∞, taking a
gradient descent step from θ0 to θ and projecting

1https://github.com/necla-ml/debug-test-suites

the updated parameters back into the L∞ ball as

θ0 +min(max(θ − θ0,−δ), δ) (3)

limiting the excursion in any coordinate to ±δ.
The fourth baseline we consider introduces a

Kullback-Leibler divergence on randomly sampled
examples from X into the loss:

L′(θ′) = L(X ′; θ′) + λLKL(X; θ′) (4)

where

LKL(X; θ′) =
∑

(x,y)∈X

∑

y′
pθ(x, y

′) log
pθ(x, y

′)
pθ′(x, y′)

(5)
In practice, LKL(X; θ′) is estimated on mini-
batches from X simultaneously with selecting a
minibatch of the same size from X ′.

Training on each of these baselines stops when
we reach t′ where argmaxypθ′

t′
(xi, y) = yi for all

(xi, yi) ∈ X ′. In experiments, this always happens
within three epochs over X ′ .
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Test suite After If P. Participle Disjunction Passive NP/S
Before debugging (.000, .838) (.001, .838) (.005, .838) (.004, .838) (.006, .838)
Fast
Debug only (1.000, .813) (1.000, .804) (1.000, .807) (.929, .827) (1.000, .811)
L2 (δ = .1) (.999, .816) (.999, .810) (.999, .812) (.933, .827) (.999, .817)
L∞ (δ = .1) (1.000, .812) (1.000, .804) (1.000, .807) (.933, .827) (1.000, .811)
K-L (λ = 10) (1.000, .825) (1.000, .820) (1.000, .822) (1.000, .824) (1.000, .826)
Ours (1.000, .841) (.926, .835) (1.000, .836) (.994, .832) (.939, .842)
Slow
Mixed in (.468, .835) (.114, .833) (.344, .837) (.791, .835) (.298, .837)
Oversampling (.920, .836) (.992, .837) (1.000, .838) (.869, .837) (1.000, .833)

Table 3: (Debugging accuracy, Original accuracy) on HANS test suites for MNLI.

4.2 Slow baselines
Our first slow baseline is simply to train the model
starting with the original BERT base parameters
for three full epochs on randomly shuffled X ′ ∪
X , without accounting for the difference in size
|X ′| << |X|. We call this “mixed in” training.

Our second baseline (“oversampling”) equally
weightsX ′ andX in the training. It starts with orig-
inal BERT base parameters and trains for three full
epochs over X , each time taking a batch consist-
ing half of examples from X and half of examples
from X ′, interleaved. Although the X samples are
sampled without replacement, the X ′ samples are
replaced and are each seen many times.

4.3 Results
We consider the CheckList and HANS test suites
for QQP, SST-2, and MNLI together (Tables 1, 2,
and 3). Among fast methods, our method has the
highest original accuracy in 11 out of 13 subcases
and the highest debugging accuracy in 6 out of 13.
This makes it a better choice for retaining origi-
nal accuracy out of several fast, good methods for
improving debugging accuracy. Kullback-Leibler
divergence, which ranks first most often among
fast methods in debugging accuracy, only ranks
first in original accuracy once out of 13 subcases.
Notably, both methods frequently outperform the
debug only approach in debugging accuracy, show-
ing that sampling non-debugging examples helps
achieve an update that generalizes better even on
the debugging phenomenon.

Considering slow methods, oversampling
achieves maximal debugging accuracy on 8 of 13
subcases and best original accuracy on 8 of 13.
On HANS, mixing the debugging examples into
the full training set is not sufficient for them to be

learned, though this method achieves reasonable
debugging accuracy on the other datasets.
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Figure 1: Comparing our method to debug-only inten-
sive fine-tuning for different numbers of shots.

Number of shots and stability. Besides the
10 shot setting described above, we compare our
method to “debug only” intensive fine-tuning for 5
shots and 20 shots. Results are shown for HANS’s
cn_after_if_clause test suite in Figure 1.
Each experiment is repeated, sampling eight differ-
ent sets of debugging and in-danger examples. The
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standard deviation in accuracy over the samples is
indicated by the error bars around each mean result
in the figure.

Five shots is too few to be sure of good de-
bugging accuracy. Our method achieves signifi-
cantly higher debugging accuracy and original ac-
curacy, compared to intensive fine-tuning, with ten
or twenty shots. With twenty shots the debug only
method loses original accuracy, possibly due to the
tightened constraints of classifying more debug-
ging examples correctly.

Other base models. We repeat 10-shot experi-
ments using Electra (Clark et al., 2020) instead of
BERT. Using Electra, our method has the highest
original accuracy among fast methods in 7 out of
13 subcases and the highest debugging accuracy in
8 out of 13.

Method Seconds
Fast
Debug only 10.89
L2 14.74
L∞ 15.85
K-L 14.79
Ours - total 25.29
debug-only fine-tuning 10.89
finding new misclassifications W 2.86
final fine-tuning 11.54

Slow
Mixed in 12663.14
Oversampling (estimated) 25326.28

Table 4: Model debugging time in seconds.

Time. Intensive fine-tuning usually finishes af-
ter a few small batches, but collecting the 20 mis-
classified examples potentially can require more
evaluations. On QQP these can be found in 1/60 of
an epoch (forward only) and at worst (on “negation
with neutral” of SST-2) in 1/5, yielding roughly
720x and 60x speedups over oversampling (three
epochs, forward and back, alternating with debug-
ging examples), respectively.

In Table 4 we collect total timings for
each debugging procedure on HANS’s
cn_after_if_clause test suite, includ-
ing the time our method needs to collect the new
misclassifications W from the original MNLI
training set. Whereas the slow methods require
hours to update the model, all the fast methods
finish in a matter of seconds.

5 Conclusion

We study the new problem of few-shot debugging
natural language understanding problems on nar-
rowly defined test suites, addressing a real-life need
not addressed by past benchmark datasets. Inten-
sive fine-tuning on debugging examples with a few
newly misclassified examples is substantially faster
than full epoch retraining, and retains superior ac-
curacy on the original dataset in more of our tests
than any other fast method, for competitive de-
bugging accuracy. Kullback-Leibler regularization
may achieve better debugging accuracy, but its orig-
inal accuracy is lagging, probably because it sam-
ples randomly rather than focusing on the newly
misclassified examples that the debugging exam-
ples are opposed to. Our results suggest a way
for practitioners to quickly address problems in
deployed systems and inspire the search for more
refined ways of using debugging information.

To further this research, there is a need for test
suites that are not constructed by templates, so that
the debugging phenomena are less easily learned,
and yet not too broad to be taught in the few-shot
setting. This limitation forced us to focus on rela-
tively small differences in accuracy. Because our
method requires only a few debugging examples, it
should be practical to construct test suites by hand
or by manually organizing existing misclassifica-
tions.
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A Test suites

HANS. The Multi-Genre Natural Language Infer-
ence (MNLI) dataset (Williams et al., 2018) tests
natural language inference in multiple domains,
such as fiction, letters, telephone speech, and gov-
ernment reports. It is framed as a three-class clas-
sification problem of pairs of sentences, as entail-
ment, neutral, or contradiction. MNLI provides
matched and mismatched development and test sets,
in which the mismatched setting tests domains not
present in the training data. Here we consider a
model trained on MNLI and take its accuracy on
the matched development set as a measure of its
original performance.

HANS (McCoy et al., 2019) is a dataset that
compiles phenomena that may not be adequately
learned from the MNLI training set. Three heuris-
tics (lexical overlap, sequence, or constituent) for
generating challenging examples are considered,
each with ten subcases, for a total of thirty sub-
cases. Templates are used to generate one thousand
training and one thousand test examples for each.
For our experiments, we individually consider the
five subcases on which the MNLI model attains the
lowest accuracy before debugging. Since we are in-
terested in few-shot debugging, we randomly take
ten of the HANS training examples for a subcase
as our debugging set X ′ but use the rest (990) as
X ′
test for testing debugging performance.
HANS examples are labeled only as entailment

or non-entailment, without specifying whether the
non-entailments should be contradiction or neutral
classifications. When training on a non-entailment
example, we backpropogate through a logit repre-
senting the total non-entailment probability speci-
fied by the three-class model

pθ(x, nonent) = pθ(x, n) + pθ(x, c)(6)

log pθ(x, nonent) = log
eln + elc

ele + eln + elc
(7)

where ly = log epθ(x,y) and y ranges over the entail-
ment (e), neutral (n), and contradiction (c) classes.

CheckList. CheckList (Ribeiro et al., 2020)
compiles test suites for sentiment analysis (SST-
2) and duplicate question detection (QQP), two
datasets which can be found in the GLUE bench-
mark (Wang et al., 2018).

SST-2 binarizes classifications from Stanford
Sentiment Treebank (Socher et al., 2013) into posi-
tive or negative, but some test suites of CheckList
utilize a neutral target label. We eliminate such test

suites. Some test suites of CheckList test invari-
ance or directional properties of classifications (e.g.
whether two examples are classified with the same
label, without specifying what that label should be)
and we eliminate those as well, focusing only on
suites with given labels for each example. We are
left with three suites on which accuracy of the base
SST-2 model before debugging is worse than the
overall SST-2 accuracy.

Quora Question Pairs (QQP) is already a binary
classification task and no adjustments to the test
suites are needed. Again, we consider only test
suites consisting of individually labeled examples.
We take the five suites where the base QQP model
achieves lowest accuracy before debugging. For
each suite, we randomly pick 10 examples for X ′

and put the rest (usually about 1000) in X ′
test.

The full names of the tests utilized are as follows.
For HANS: cn_after_if_clause,

sn_past_participle, cn_disjunction,
ln_passive, and sn_NP/S.

For SST-2: Used to but now, Hard negation of
positive with neutral stuff in the middle should be
negative, and My opinion is what matters.

For QQP: Do you have to X your dog before
Y it, A or B is not the same as A and B, What
was person’s life before becoming X / What was
person’s life after becoming X, Traditional SRL
wrong active passive swap, and Traditional SRL
wrong active passive swap with people.
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Abstract
In the real world, many relational facts require
context; for instance, a politician holds a given
elected position only for a particular timespan.
This context (the timespan) is typically ignored
in knowledge graph link prediction tasks, or is
leveraged by models designed specifically to
make use of it (i.e. n-ary link prediction mod-
els). Here, we show that the task of n-ary link
prediction is easily performed using language
models, applied with a basic method for con-
structing cloze-style query sentences. We intro-
duce a pre-training methodology based around
an auxiliary entity-linked corpus that outper-
forms other popular pre-trained models like
BERT, even with a smaller model. This method-
ology also enables n-ary link prediction without
access to any n-ary training set, which can be
invaluable in circumstances where expensive
and time-consuming curation of n-ary knowl-
edge graphs is not feasible. We achieve state-of-
the-art performance on the primary n-ary link
prediction dataset WD50K and on WikiPeople
facts that include literals - typically ignored by
knowledge graph embedding methods.

1 Introduction

Large-scale knowledge graphs (KGs) have gained
prominence over the past several decades as a
means for representing complex structured data
at scale, leading to the development of machine
learning models designed to predict new or un-
known information from a KG (Ji et al., 2021). A
subclass of such models deals with link prediction,
i.e. inferring new facts from a given KG consisting
of (subject, relation, object) triples. For instance,
a link prediction model might reason from a KG
containing the triple (USA, ElectedPresident, JFK)
to infer that the triple (JFK, BornInCountry, USA)
also likely exists (i.e. JFK was born in the country
USA).

The triple format is often too restrictive to rep-
resent a query effectively. For instance, the query

Figure 1: N-ary query representation in KG vs. natural
language frameworks. (a) In a knowledge graph, the
primary triple query (USA, ElectedPresident, [MASK])
is augmented with an auxiliary link for qualifer infor-
mation (InYear, 1960). Each entity or relationship is
represented by a unique identifier. Qualifiers require the
use of specialised encoder architectures; literal quali-
fiers like 1960 typically cannot be used at all. (b) We in-
stead represent the query in a templated language model,
where the qualifier detail can be directly appended.

Who was elected President of the United States in
1960? permits multiple correct answers when sim-
plified to the triple format (USA, ElectedPresident,
[MASK]), in the absence of the context 1960 (also
referred to as a qualifier (Vrandečić and Krötzsch,
2014)). Recently, several KG completion models
have been developed aimed specifically at link pre-
diction in the presence of qualifiers, collectively re-
ferred to as hyper-relational or n-ary link prediction
models (Wen et al., 2016; Zhang et al., 2018; Guan
et al., 2019; Liu et al., 2020; Rosso et al., 2020;
Galkin et al., 2020; Yu and Yang, 2021; Wang et al.,
2021b). Usage of qualifiers becomes particularly
difficult when they include literals, i.e. values that
cannot be efficiently represented as discrete graph
entities. Examples of literals include years (like
1960), times, or numerals. Existing KG comple-
tion algorithms typically remove literals (Rosso
et al., 2020; Galkin et al., 2020) or use specialised
techniques to leverage them (Kristiadi et al., 2019).

The need for new models to leverage qualifiers
and literals reveals some fundamental weaknesses
in discrete, triple-based knowledge graph represen-
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tations. Unlike graphs, written languages clearly
permit the use of qualifiers and literals to repre-
sent facts and queries. Pre-trained language mod-
els like BERT (Devlin et al., 2019) have already
shown competitive performance compared to exist-
ing KG link prediction approaches on triple-based
KGs (Clouâtre et al., 2021; Yao et al., 2019). As
such, it is natural to ask whether Language Models
(LMs) present a better alternative for inferring facts
with qualifiers and literals compared to n-ary KG
inference models.

Apart from their ability to represent qualifiers
and literals, using LMs with novel pre-training
methodologies on vast corpora also presents op-
portunities to enable n-ary link prediction without
access to any n-ary training set. The need to con-
struct large, partially complete n-ary knowledge
graphs in new domains is an expensive and time-
consuming requirement of link prediction (Nichol-
son and Greene, 2020).

Here, we present Hyper Relational Link Pre-
diction using an auxiliary Entity Linked Corpus
(Hyper-ELC), the first fully natural-language-based
approach applied to KG link prediction bench-
marks containing qualifiers and literals. We make
use of model pre-training to leverage the large cor-
pora directly available to language models, apply-
ing a simple entity-linking approach to prime the
model for later inference on named KG entities and
to enable link prediction without access to any n-
ary training set. To our knowledge, this is the first
approach to link prediction without KG supervi-
sion. We also use fine-tuning to specifically focus
Hyper-ELC on the types of queries represented
in the training set. By using KG link prediction
datasets, we can directly compare language models
to KG models specifically designed to take advan-
tage of additional context in form of qualifiers and
literals. Our results show competitive performance
compared to these link prediction models, suggest-
ing that language models provide a performant and
practical alternative to KG models for link predic-
tion beyond triple-based datasets.

2 Related Work

2.1 N-Ary Link Prediction

Several models have been developed over the past
decade to learn from and infer on n-ary relation-
ships. This has been driven by the recognition that
knowledge bases like Freebase (Bollacker et al.,
2008) contain a sizeable number of relationships

involving more than two named entities. Wen et al.
(2016) generalized the triple-based translational
embedding model TransH (Wang et al., 2014) to
hyper-relational facts. Zhang et al. (2018) extended
this approach using a binary loss learned from the
probability that any two entities participate in the
same n-ary fact.

Unlike these earlier embedding-based models,
NaLP (Guan et al., 2019) addressed the n-ary link
prediction problem with a neural network, repre-
senting n-ary facts as permutation-invariant sets
of role-value pairs. Liu et al. (2020) developed
the first tensor decomposition-based approach to
the problem, adapting earlier tensor decomposition
methods applied to link prediction in triple-based
KGs. HINGE (Rosso et al., 2020) applied a con-
volutional network to the underlying triples and
qualifiers in an n-ary fact.

More recently, several specialised n-ary pre-
diction models have been developed by combin-
ing knowledge graph embeddings with attention-
based transformer architectures (Vaswani et al.,
2017); namely StarE (Galkin et al., 2020), Hy-
Transformer (Yu and Yang, 2021) and GRAN
(Wang et al., 2021b). In the StarE model, embed-
dings are fed through a graph neural network before
entering the transformer layer. Hy-Transformer and
GRAN instead feed the processed embeddings into
the transformer directly. Hy-Transformer also adds
a qualifier prediction-based auxiliary task, while
GRAN modifies the transformer attention model to
represent the link structure of the n-ary input. To-
gether, these three transformer-based models have
achieved state-of-the-art performance on the n-ary
link prediction task.

Hyper-ELC differs from other n-ary link predic-
tion models in that it represents facts in natural
language, eliminating the need for specialised en-
coders or graph-based methods and introducing
the ability to pre-train on massive natural language
corpora. By representing facts as token sequences,
earlier modelling constraints can be avoided; e.g.
multiple arities can be supported with the same
model (unlike Liu et al. (2020)), and structural
information can be retained in token positional en-
codings, unlike Wen et al. (2016) and Guan et al.
(2019). The pre-training introduced here also en-
ables prediction on the downstream task without
access to any n-ary training set. Nonetheless, like
the most recent approaches, we also use a trans-
former architecture. In particular, Hyper-ELC is
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most similar to Hy-Transformer and GRAN, with
named graph entities exchanged for word tokens
with positional embeddings.

2.2 Literals in Link Prediction
Parallel to research on incorporating qualifiers, sev-
eral groups have investigated leveraging numerical
attributes of entities in triple-based KG comple-
tion tasks (García-Durán and Niepert, 2017; Tay
et al., 2017; Wu and Wang, 2018; Kristiadi et al.,
2019). In these models, the numerical literals are
general attributes associated with one of the enti-
ties involved in the triple (e.g. the latitude of a city
entity); conversely, in the tasks we consider here,
literals directly participate in n-ary facts. Nonethe-
less, we note that our approach could be straight-
forwardly applied to numerical attributes as well,
by inserting them into the textual templates.

Hyper-ELC also differs from previous models
by using a standard word-piece tokenisation ap-
proach to efficiently parse the literal data. While
some literals, like 1962, are single tokens in the
BERT base uncased vocabulary, less commonly
discussed dates are split into multiple tokens - for
example 1706 becomes 170 and ##6. Additionally,
pre-training gives the model additional context to
learn the relationships between dates - e.g. that sim-
ilar people and events are discussed in sentences
containing 1961 and sentences containing 1962,
revealing a similarity.

Notably, literal attributes composed of textual de-
scriptions have also been investigated in KG com-
pletion, e.g. Xie et al. (2016); Xu et al. (2016).
While we focus on numerical literals here, our nat-
ural language-based approach could also be ex-
tended to general textual attributes.

2.3 Language Models for Link Prediction
The success of large pre-trained language models
has motivated multiple investigations into whether
they can be used as knowledge bases. Petroni et al.
(2019) proposed a benchmark for evaluating factual
knowledge present in LMs with cloze-style queries.
Their work has been further extended to probing ar-
eas including semantic (Ettinger, 2020; Wallace
et al., 2019), commonsense (Tamborrino et al.,
2020; Forbes et al., 2019; Roberts et al., 2020),
and linguistic (Lin et al., 2019; Tenney et al., 2019)
knowledge. Furthermore, in order to improve the
performance of LMs in extracting factual knowl-
edge, Jiang et al. (2020) and Shin et al. (2020)
proposed methods for automatic discovery and cre-

ation of cloze-style queries. This body of work
focuses mainly on predicting tokens for filling in
blanks, rather than ranking unique entity IDs, as
we do here, and therefore requires an entity dis-
ambiguation post-processing step. It also focuses
on comparison to open-domain question answering
or relation extraction approaches rather than link
prediction.

Several groups have proposed using LMs for
triple-based link prediction. Yao et al. (2019) pro-
posed KG-BERT, which encodes a triple as a se-
quence, where the entities and relation are sepa-
rated by a [SEP] token and represented by their
textual descriptions. They train to classify whether
an individual triplet is correct or not, scoring every
(h, r, ?) and (?, r, t) triplet to be ranked. This ap-
proach can involve millions of inference steps for
a single completion. This work was extended for
improved efficiency and performance in Kim et al.
(2020); Wang et al. (2021a). This methodology,
including entity separation and precise entity de-
scriptions, diverges from plain masked text and is
therefore incompatible with our simple pre-training
approach that enables n-ary link prediction without
access to a training knowledge graph.

An alternative approach to triple-based link pre-
diction is MLMLM (Clouâtre et al., 2021), which
also improves on KG-BERT’s inference complex-
ity with respect to the number of entities in the KG.
They instead use the MLM setup to generate the
logits for the tokens required to rebuild all of the
entities. These logits are used alongside mean like-
lihood sampling to rank all entities. The head entity
prediction input includes the head entity mask, re-
lation, tail entity and tail entity definition. The
tail entity prediction input is analogous. Unlike
KG-BERT and its extensions, this method shares
the MLM setup with our approach, however they
predict tokens rather than unique entity ids. The
maximum number of tokens of all of the entities is
predicted for each example - predicting the pad to-
ken if necessary. This has the benefit that they can
predict previously unseen entities (as long as they
have fewer than the maximum number of tokens).
However, again, this work requires entity disam-
biguation to go from tokens to a unique entity.

Finally, none of the language model approaches
discussed above have been adapted to higher order
link prediction with qualifiers and literals. Hyper-
ELC additionally extends upon these approaches
with a task-specific pre-training approach that en-
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Figure 2: Overview of the training procedure. The names in brackets below the labels are purely informative; as
in the typical link prediction setup, we rank the unique identifiers. [Left] Entities of interest in the pre-training
corpus are linked and replaced with mask tokens; the model is trained to predict the corresponding named entity of
interest. [Right] The finetuning task is the same, but performed on automatically generated sentences from the train
set. Surface forms are used for the other entities in each fact.

ables us to perform this task without access to a
training knowledge graph.

3 Definitions

A hyper-relational (n-ary) graph, made up of hyper-
relational facts, can be defined as G = (V,R, E),
where V is the set of vertices (entities), R is the
set of relations, and E is a set (e1, . . . , en) of edges
with ej ∈ V ×R×V ×P(R×V) for 1 ≤ j ≤ n.
Here, P denotes the power set.

A hyper-relational fact ej ∈ E is written as a tu-
ple (s, r, o,Q), with s, o ∈ V and r ∈ R. Here, Q
is the set of qualifier pairs (qri, qvi) with qualifier
relations qri ∈ R and qualifier values qvi ∈ V . An
example of a fact in this representation would be
(StephenHawking (s), AwardReceived (r), Edding-
tonMedal (o), (PointInTime (qr1), 1975 (qv1))).

4 Methods

Our approach consists of three stages:

1. Pre-training to predict the unique identifier
of a masked entity in the sentences of an aux-
iliary entity linked corpus.

2. Finetuning on sentence-like natural language
templates created from the training set of the
n-ary link prediction dataset.

3. Evaluation on the test set of the n-ary link
prediction dataset using the same format of
natural language templates.

For a visual representation of the process, see
Figure 2.

4.1 Pre-Training

Our method may use any corpus that references the
entities of interest and any entity linking methodol-
ogy for recognising them within the corpus. As we
use the entity linked corpus only in pre-training and
not for evaluation, we do not require it to be gold
standard. However, increased coverage and preci-
sion of the linking may result in better downstream
performance.

Each pre-training example is a tuple consisting
of a unique entity ID and a masked sentence in
which that entity occurs. In the sentence, the span
of every occurrence of the entity of interest is re-
placed by a “[MASK]” token. A single unique
entity is masked in each example while all other
entities are left as plain text. For example, the label
for the entity StephenHawking is Q17714 and a
masked sentence would be: “[MASK] (8 January
1942 – 14 March 2018) was an English theoretical
physicist, cosmologist, and author.”

4.2 Finetuning and Evaluation

In order to use our pre-trained language model for
the n-ary link prediction task, we must format the
query in natural language as a cloze-style sentence.
This may be done in any way that represents the
query, but linguistic alignment with the pre-training
corpus may benefit performance (Jiang et al., 2020;
Shin et al., 2020).
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Dataset Statements Statements w/ Qualifiers (%) Statements w/ Literals (%) Entities
Train Test Train Test Train Test

WikiPeople Pre 37.4M 380,396 — — — — 29,720
WikiPeople 294,439 37,712 2.6 2.6 0 0 34,839
WikiPeople Lit 294,439 3,906 12.1 100 10.9 100 34,839

WD50K Pre 48.6M 494,881 — — — — 42,800
WD50K 166,435 46,159 13.8 13.1 0 0 47,155
WD50K (100) 22,738 5,297 100 100 0 0 18,791

Table 1: Statistics of the datasets used in the experiments. The “Pre” and “Lit” labels on the datasets indicate
pre-training and literal datasets, respectively. “M” indicates million. Validation set statistics have been left out for
brevity, but they follow a similar pattern to the test set statistics. In the original WikiPeople source data, 10.9% of
statements have literals in the qualifiers. The source data also includes 12,363 (3.3%) statements with a literal in the
tail position, which are removed from all datasets.

One simple approach is to space separate the enti-
ties, relationships and roles in the (s, r, o,Q) order
(Figure 2) described in Section 3. This requires that
each of the entities have associated textual names,
which is usually the case in knowledge graphs.

4.3 Model

Our models are all based on the Transformer ar-
chitecture (Vaswani et al., 2017), more specifically
BERT (Devlin et al., 2019). However, we found
a smaller version of the BERT architecture to be
more stable during pre-training, which enabled a
higher learning rate and larger batch size (see Table
5 in the Appendix). We use the BERT base uncased
word-piece tokenisation for all text-based models.

We use a single linear layer as a decoder, fol-
lowed by a softmax. For optimisation, we leverage
a standard categorical cross-entropy loss. All of
our models are trained with the Adam optimiser,
and are regularised via dropout and gradient clip-
ping. We follow the same setup during pre-training
and finetuning. We believe that this alignment be-
tween pre-training and the downstream task is part
of what makes this approach so powerful. Note
that the pre-trained model can also be applied on
the downstream task even without additional fine-
tuning on a training graph (Section 6.3).

5 Datasets

5.1 WikiPeople and WD50K

For finetuning and evaluation we use two n-ary
link prediction datasets: WikiPeople1 (Guan et al.,
2019) and WD50K2 (Galkin et al., 2020). Both

1Downloaded from: https://github.com/
gsp2014/NaLP/tree/master/data/WikiPeople

2Downloaded from: https://zenodo.org/
record/4036498

WikiPeople and WD50K are extracted from Wiki-
data and contain a mixture of binary and higher-
order facts. WikiPeople is a commonly used bench-
mark containing facts related to entities represent-
ing humans.

WD50K was created by Galkin et al. (2020)
from the 2019/08/01 Wikidata dump3. It was de-
veloped with the goal of containing a higher pro-
portion of non-literal higher-order relationships. It
is based on the entities from FB15K-237 (Bordes
et al., 2013) that have a direct mapping in Wikidata.

In order to transform the facts in these datasets
into natural language queries, we use the English
Wikidata names for each of the entity and relation-
ship/role IDs4. We then create templates in the
simple manner described in Section 4.2. We find
that while the queries are not particularly natural
in their structure and vocabulary, their meaning
remains largely the same (an example template is
shown in Figure 2, right).

5.2 Non-Named Entity Qualifiers

Galkin et al. (2020) noted that most of the qualifier
values in WikiPeople are literals, in this case date-
time instances. Literals appear in approximately
13% of the statements in the WikiPeople dataset,
but they are typically ignored in knowledge graph
embedding approaches (Rosso et al., 2020). If the
literals are ignored, only 2.6% of statements in
WikiPeople are higher-order. None of the previous
approaches to this dataset encode literals.

Note that, for evaluation purposes, alternative
correct entities are filtered from the ranking at eval-
uation time when assessing a given potential an-
swer (Bordes et al., 2013). This has implications

3https://dumps.wikimedia.org/wikidatawiki/20190801/
4https://www.wikidata.org/wiki/Special:EntityData
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for treating literals. Consider the case where literals
are ignored: when evaluating whether the model
correctly predicted EddingtonMedal as a comple-
tion for the fact (StephenHawking, AwardReceived,
[MASK], (PointInTime, 1975)), the entity Cop-
leyMedal would be filtered out of the ranking if
the fact (StephenHawking, AwardReceived, Cop-
leyMedal, (PointInTime, 2006)) also exists in the
dataset. This occurs because the PointInTime qual-
ifier is ignored, so that the subject and relation of
the facts are identical (and both medals are equally
valid completions). When literal-containing qual-
ifiers are not ignored, the facts are distinct, with
only one correct answer for each.

The primary WikiPeople dataset used here was
adapted by Rosso et al. (2020) from the original
WikiPeople (Guan et al., 2019). To investigate
whether this literal data can be leveraged by our
model, we generated a new dataset from a subset
of WikiPeople that we call WikiPeople Literal. Un-
like in Rosso et al. (2020) and Galkin et al. (2020),
where literal qualifier terms are ignored when fil-
tering the rankings for evaluation, we include the
literal terms during filtering in WikiPeople Literal.
Additionally, we evaluate only on facts that include
at least one literal. This focus enables us to probe
the model’s ability to interpret literal qualifiers.

Following Rosso et al. (2020), we drop all state-
ments that contain literals in the main triple.

5.3 Entity Linked Corpus

For pre-training we create an entity linked corpus
based on the 2019/08/01 English Wikipedia5 dump
used in BLINK (Ledell Wu, 2020). We process
the XML with Gensim6, which we adapt to leave
article hyperlinks in the text.

For simplicity, we use a regex to find occurrences
of the entities of interest in the large hyperlinked
Wikipedia corpus. For each article we extract the
title entity and all of the hyperlinked entities, along
with their surface forms in the text and their title
name in the hyperlink. We find the wikidata IDs for
each of these entities7 and we retain those entities
that are in our downstream n-ary dataset. We then
split the article into sentences and run a case insen-
sitive regex over each sentence to find the spans of

5http://dl.fbaipublicfiles.com/BLINK/enwiki-pages-
articles.xml.bz2

6https://github.com/RaRe-Technologies/gensim/
blob/develop/gensim/corpora/wikicorpus.py

7https://dumps.wikimedia.org/wikidatawiki/latest/
wikidatawiki-latest-wb_items_per_site.sql.gz

these entities and link them to their Wikidata IDs,
using the ID to surface form/title name dictionaries.
Given this collection of entity linked sentences, we
create the pre-training examples as described in
Section 4.1.

6 Experiments

Throughout this section we compare to the fol-
lowing external baselines developed for n-ary link
prediction: (i) NaLP-Fix (Rosso et al., 2020), (ii)
HINGE (Rosso et al., 2020), (iii) StarE (Galkin
et al., 2020), (iv) Hy-Transformer (Yu and Yang,
2021), and (v) GRAN (Wang et al., 2021b). NaLP-
Fix is an improved version of the original NaLP
model (Guan et al., 2019). None of these methods
make predictions over natural language and none
of them encode literals.

The metrics that we use are based on predicting
only the subject and object of the hyper-relational
facts. We follow the filtered setting introduced by
Bordes et al. (2013) as discussed in Section 5.2
to ensure that corrupted facts are not valid facts
from the rest of the dataset. For each test example,
we filter from the model’s predicted ranking all
of the entities that appear in the same position in
otherwise identical examples in either the training,
validation or test set (except the test entity of inter-
est). We consider mean reciprocal rank (MRR) and
hits at 1 and 10 (H@1 and H@10 respectively).

6.1 Link Prediction with Literals

In order to showcase the expressive power of nat-
ural language as a representation, we employ an
experiment that involves making predictions with
non-named entity qualifier terms (i.e. literals). We
use an evaluation dataset (described in Section 5.2)
that contains only the examples in the WikiPeople
dataset that have at least one literal qualifier. Addi-
tionally, we consider these qualifiers when filtering
the ranking at evaluation time, unlike the typical
WikiPeople evaluation.

To the best of our knowledge, no existing works
leverage literals in qualifiers, so no strong base-
lines exist. We therefore use two baselines that
cannot leverage literals as comparison points. The
first, Hyper-ELC [UNK], is an ablated version of
our model that replaces any literal entity with the
[UNK] token. We also used the publicly-available
StarE repository 8 to reproduce StarE performance

8Hy-Transformer did not have a published codebase, and
we were unable to successfully run the published GRAN code.

92



Method WikiPeople Literal WikiPeople

MRR H@1 H@10 MRR H@1 H@10

NaLP-Fix — — — 0.420 0.343 0.556
HINGE — — — 0.476 0.415 0.585
StarE 0.246 0.161 0.424 0.491 0.398 0.648
Hy-Transformer — — — 0.501 0.426 0.634
GRAN — — — 0.503 0.438 0.620
Hyper-ELC [UNK] 0.211 0.141 0.347 0.415 0.325 0.566

Hyper-ELC 0.322 0.226 0.519 0.440 0.348 0.592

Table 2: Performance comparison on the two WikiPeople-derived datasets. WikiPeople Literal evaluates only
on examples with literal qualifiers (about 10.9% of the full test set) and filters ranking for evaluation with literals
included. Methods above the line can encode literal terms, while methods below can’t.

on literal-containing qualifiers after adding them
back into the dataset (note that StarE achieves state-
of-the-art on the full dataset on Hits@10).

On the WikiPeople Literal dataset, Hyper-ELC
significantly outperformed both StarE and Hyper-
ELC [UNK] (Table 2, first three columns). In par-
ticular, the performance boost over the [UNK] ab-
lation illustrates that our model specifically makes
use of the information represented in literal quali-
fiers.

Hyper-ELC also performed reasonably well on
the standard WikiPeople dataset (Table 2, last three
columns), outperforming NaLP-Fix, but with lower
overall performance than the most recent baselines
(StarE, Hy-Transformer and GRAN).

To investigate the differences between Hyper-
ELC and the other state-of-the-art baselines on
WikiPeople, we examined the MRR performance
ratio of StarE compared to Hyper-ELC for the
relationship-entity position (i.e. head or tail) pairs
that occur more than 500 times in the evaluation
set (see Appendix, Table 6 in the appendix). No-
tably, Hyper-ELC displayed the most pronounced
performance deficit compared to StarE on inferring
correct entities in one-to-many relationships with
many possible answers. In Section 7, we discuss
potential reasons for this deficit and possible future
improvements.

6.2 Link Prediction with Named Entities Only

Next, we evaluated Hyper-ELC on the WD50K
datasets (Table 3), which do not contain any lit-
eral entities. WD50K (100) has been created by
filtering WD50K to have 100% higher order rela-
tionships.

In order to understand the value of the pre-
training and finetuning steps, we consider multiple
ablation models:

Hyper-ELC (only P): a pre-trained version of
Hyper-ELC without any exposure to the templated
finetuning data (the train set).

Hyper-ELC (only F): a randomly initialised (i.e.
only finetuned) version of Hyper-ELC.

BERT (only F): a BERT model (base uncased)
with its own initialisation followed by a randomly
initialised classification layer, finetuned.

On the full WD50K dataset, Hyper-ELC
achieved an MRR of 0.354, nearly identical to the
state-of-the-art Hy-Transformer with 0.356. While
Hy-Transformer achieved the best performance on
Hits@1, Hyper-ELC achieved state-of-the-art on
Hits@10.

On the smaller, purely hyper-relational WD50K
(100) dataset, Hyper-ELC performed comparably
to StarE but was outperformed by Hy-Transformer
(see discussion in Section 7).

6.3 Link Prediction without a Training Graph

Finally, we focus specifically on hyper-relational
link prediction with the ablated version of Hyper-
ELC exposed only to the pre-training data (Table
3, last row, and Table 4). Hyper-ELC (only P) has
some ability to perform inference, without any ac-
cess to the training knowledge graph; it achieves
an MRR of 0.087 and 0.207 on WD50K and
WD50K (100) respectively, compared to 0.0003
and 0.0006 for the random model and 0.356 and
0.699 for the state-of-the-art Hy-Transformer. This
approach could be very powerful in domains where
expensive and time consuming curation of hyper-
relational knowledge graphs is not feasible.

The significant performance difference between
Hyper-ELC and Hyper-ELC (only P) can likely be
partially attributed to the distributional shift in the
language from pre-training to the templated for-
mat used in finetuning and evaluation on the “Ba-
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Method WD50K WD50K (100)

MRR H@1 H@10 MRR H@1 H@10

NaLP-Fix 0.177 0.131 0.264 0.458 0.398 0.563
HINGE 0.243 0.176 0.377 0.492 0.417 0.636
StarE 0.349 0.271 0.496 0.654 0.588 0.777
Hy-Transformer 0.356 0.281 0.498 0.699 0.637 0.812
Hyper-ELC 0.354 0.273 0.508 0.642 0.564 0.789
Hyper-ELC (only F) 0.283 0.214 0.415 0.549 0.475 0.688
BERT (only F) 0.29 0.22 0.43 0.609 0.536 0.748

Random < 0.001 < 0.0001 < 0.001 < 0.001 0.00 < 0.001
Hyper-ELC (only P) 0.087 0.051 0.157 0.207 0.129 0.360

Table 3: Performance comparison on the WD50K datasets. We train and test on the dataset indicated following the
approach used by the baselines. Model names “only P” and “only F” indicate that only pre-training or finetuning
was performed respectively. Methods above the line use the n-ary training graph, while those below do not.

Method Dataset
WD50K

(100)

MRR

Random — < 0.001

Hyper-ELC (only P) Basic 0.207
Hyper-ELC (only P) Cleaned 0.232

Hyper-ELC Basic 0.642
Hyper-ELC Cleaned 0.645

Table 4: With some minor adjustments to the word-
ing of some of the most frequent relationships/roles,
to move from the “Basic” to the “Clean” dataset, we
can boost performance for the model that doesn’t have
access to graph based training data. Here, “only P” indi-
cates only pre-training, without finetuning.

sic” dataset, where the templates are often stilted
and ungrammatical. To test the hypothesis that
improved templates could drive improved perfor-
mance, we considered 37 of the roles/relationships
that occur most frequently in the WD50K (100)
training dataset and altered some to make the tem-
plates for the “Clean” dataset to be more similar
to the natural language occurring in the Wikipedia
pre-training corpus; for instance, we improved the
grammar with stop words like “the”. Table 7 in
the appendix shows the 37 roles/relationships that
we considered and the changes that we made. In
Table 4 we can see a performance increase from
0.207 MRR to 0.232 for Hyper-ELC (only P) with
these simple template changes. However, we saw
only a minimal improvement when finetuning was
introduced, from 0.642 MRR to 0.645, suggesting
that the model adapts effectively to the templated
linguistic style with finetuning.

7 Discussion and Future Work

Here, we presented Hyper-ELC, the first purely
natural language-based approach to n-ary link pre-
diction and the first model to leverage literals in
n-ary qualifiers. The natural language-based ap-
proach allows us to take advantage of pre-training
on massive entity-linked corpora and easily lever-
age the detail present in hyper-relational facts.

Hyper-ELC matched state-of-the-art perfor-
mance on WD50K and established state-of-the-art
on a version of WikiPeople containing only literal
qualifiers. However, it did not reach the perfor-
mance of existing KG models on the full WikiPeo-
ple dataset. As shown in Table 6, Hyper-ELC tends
to perform significantly worse than StarE on one-to-
many relationships; e.g. ([MASK], SexOrGender,
Male). One hypothesis for this result is that the
softmax loss function used in training the model
assumes a single correct answer out of all entities
for a given masked template; for each unique train-
ing example, all competing entities (including valid
ones) are treated as false. The objective function
and negative sampling approach are therefore po-
tential areas for investigation in future work.

In addition, we expect performance improve-
ments by increasing coverage of relevant informa-
tion for the entities of interest in the pre-training
dataset. The WD50K and WikiPeople pre-training
datasets only have 88.2% and 85.3% coverage of
the WD50K and WikiPeoople entities, respectively.
This could be achieved by improving the quality
of the entity linking methodology used. Simple
improvements could be made to our regex method,
such as including the WikiData surface forms in
the regex dictionaries. Even greater improvements
could likely be made with feature based or neural
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entity linking methodologies.
Finally, we found that Hy-Transformer had the

best performance on WD50K (100), though Hyper-
ELC performed similarly to or better than the other
KG baselines. Yu and Yang (2021) propose that Hy-
Transformer’s auxiliary masked qualifier prediction
task allows it to better leverage the train set, which
could explain why Hy-Transformer performs well
on the smaller train set in WD50K (100). A similar
qualifier prediction task could also be investigated
in the context of a language model, which we leave
for future work.

Overall, our results show how a language model
can leverage weakly relevant data (an entity-linked
corpus) to reach strong performance on a complex
link prediction task. In particular, we note that
many practical relational inference problems do not
exist in isolated domains where only a structured
KG model is available; rather, they are loosely in-
formed by massive, readily available unstructured
natural language datasets. In these cases, the sheer
quantity and variety of data available to language
models, combined with their inherent flexibility
in representing context, may swing the balance in
their favour.
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Hyperparameter Hyper-ELC BERT

lr 0.0001 0.00001
gradient clip 1 1
pre-FF dropout 0.2 0.2
max sentence length 100 100
batch size 512 128
ES patience 3 3
ES monitor quantity val mrr val mrr
max pretrain epochs 20 —
hidden size 256 768
intermediate size 512 3072
# attention heads 4 12
# hidden layers 4 12

# encoder parameters 10M 109M
# decoder parameters 12M 37M
WD50K
# decoder parameters 9M 27M
WikiPeople

Table 5: Hyperparameters used for pre-training and
finetuning models. During pre-training the model was
trained with early stopping and a maximum number of
epochs, but for finetuning only early stopping was used.
Only learning rate (lr) was tuned. [0.00001, 0.0001,
0.001] were experimented with and the maximum learn-
ing rate that led to convergence was used. FF indicates
the feed-foward layer and ES indicates early stopping.
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MRR Ratio (StarE/Hyper-ELC) Count Relationship (head/tail)

0.23 1205 given name (t)
0.69 691 nominated for (h)
0.93 1038 educated at (h)
0.96 1175 member of sports team (h)
0.98 586 described by source (t)
0.99 1982 sex or gender (t)
0.99 542 family (t)
0.99 691 nominated for (t)
1.01 1688 country of citizenship (t)
1.02 1075 languages spoken, written or signed (t)
1.05 1019 place of birth (t)
1.05 596 work location (t)
1.05 606 position held (t)
1.08 695 father (t)
1.08 883 place of death (t)
1.09 606 position held (h)
1.1 1205 given name (h)
1.11 6657 sibling (t)
1.15 3892 occupation (t)
1.17 1038 educated at (t)
1.17 1492 bmember of (t)
1.17 6657 sibling (h)
1.18 4018 award received (t)
1.19 875 child (t)
1.19 875 child (h)
1.19 695 father (h)
1.24 4018 award received (h)
1.44 542 family (h)
1.47 3892 occupation (h)
1.47 883 place of death (h)
1.47 1019 place of birth (h)
1.5 1492 member of (h)
1.58 586 described by source (h)
1.63 1175 member of sports team (t)
2.09 1075 languages spoken, written or signed (h)
2.18 1688 country of citizenship (h)
2.23 596 work location (h)
6.77 1982 sex or gender (h)

Table 6: MRR ratio between Hyper-Elc and StarE for relationship head/tail prediction combinations on WikiPeople.
Limited to the relationship head/tail pairs that occur more than 500 times in the evaluation set.
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ID Train Count Original Name Clean Name

P805 9204 statement is the subject of is the subject of
P1686 9204 for work for their work on
P1411 5590 nominated for was nominated for the
P1346 4867 winner winner was
P530 3515 diplomatic relation diplomatic relations with
P166 3432 award received received the award of
P2453 3011 nominee the nominee was
P3831 1856 object has role had the role of
P459 1755 determination method which was determined by
P518 999 applies to part for the part of
P453 989 character role played the character
P17 879 country in the country of

P2293 859 genetic association is genetically associated with
P6942 736 animator (movie) animator
P3092 682 film crew member (movie) film crew member
P161 537 cast member (movie) cast member
P750 477 distributed by is distributed by
P421 414 located in time zone is located in the time zone
P725 409 voice actor —
P1264 400 valid in period during the period of
P366 297 use used for
P2852 259 emergency telephone number emergency telephone number is
P159 241 headquarters location is located in
P1552 237 has quality has the quality
P642 221 of —
P131 204 located in the administrative in

territorial entity
P39 202 position held held the position of
P69 200 educated at was educated at
P812 199 academic major with academic major
P156 187 followed by is followed by
P5800 178 narrative role had the narrative role of
P31 175 instance of is an instance of

P1365 167 replaces —
P674 166 characters character
P155 166 follows —
P1366 157 replaced by was replaced by
P19 153 place of birth place of birth is

Table 7: 37 of the roles/relationships that occur most frequently in the WD50K (100) train dataset were considered
and some were altered to make templates more similar to natural language - for example improving grammar.
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Abstract

GPT-3 has attracted lots of attention due to its
superior performance across a wide range of
NLP tasks, especially with its in-context learn-
ing abilities. Despite its success, we found that
the empirical results of GPT-3 depend heavily
on the choice of in-context examples. In this
work, we investigate whether there are more
effective strategies for judiciously selecting in-
context examples (relative to random sampling)
that better leverage GPT-3’s in-context learn-
ing capabilities. Inspired by the recent suc-
cess of leveraging a retrieval module to aug-
ment neural networks, we propose to retrieve
examples that are semantically-similar to a test
query sample to formulate its corresponding
prompt. Intuitively, the examples selected with
such a strategy may serve as more informative
inputs to unleash GPT-3’s power of text gener-
ation. We evaluate the proposed approach on
several natural language understanding and gen-
eration benchmarks, where the retrieval-based
prompt selection approach consistently outper-
forms the random selection baseline. Moreover,
it is observed that the sentence encoders fine-
tuned on task-related datasets yield even more
helpful retrieval results. Notably, significant
gains are observed on tasks such as table-to-
text generation (44.3% on the ToTTo dataset)
and open-domain question answering (45.5%
on the NQ dataset).

1 Introduction

GPT-3 (Brown et al., 2020) is a new breakthrough
in NLP research. Previously, NLP models are
firstly pre-trained and then fine-tuned on a spe-
cific task. What sets GPT-3 apart from other mod-
els is its impressive “in-context” learning ability.
Provided with a few in-context examples, GPT-3
can generalize to unseen cases without further fine-
tuning. This opens up many new technological
possibilities that are previously considered unique

∗Work was done when Jiachang (intern) and Yizhe were
at Microsoft.

Trial 1 2 3 4 5
Accuracy 94.6 95.0 95.8 93.9 86.9

Table 1: Results of GPT-3 on the SST-2 sentiment anal-
ysis dataset. Five different examples are randomly se-
lected from the training set for each trial. Different
contexts induce different accuracies on the test set.

to human. Future NLP systems can be developed to
expand emails, extract entities from text, generate
code based on natural language instructions with a
few demonstration examples.

Despite its powerful and versatile in-context
learning ability, GPT-3 has some practical chal-
lenges. The original paper utilizes task-relevant
examples that are randomly sampled from the train-
ing set. However, we observe that the performance
of GPT-3 tends to fluctuate with different choices
of in-context examples. As shown in Table 1, the
variance with distinct in-context examples can be
significant. Our work aims to carefully examine
this issue to gain a deeper understanding on how to
better select in-context examples to improve GPT-
3’s performance without fine-tuning. Note that our
approach requires a training set to select exam-
ples. With such a training dataset, it is possible
to fine-tune GPT-3 to take full advantage of the
model’s strength. However, currently GPT-3 has
not been released to public for fine-tuning. Even
if it is available, fine-tuning GPT-3 requires hun-
dreds of GPUs to load the 175B model, which is
prohibitively expensive and time-consuming for
ordinary research labs. Another issue is that stor-
ing large fine-tuned model checkpoints require
huge storage space. Consequently, we resort to
prompt/example engineering strategy. Neverthe-
less, the fine-tuning results using T5 are provided
for reference.

A brute-force approach for selecting the optimal
in-context instances would be to perform combina-
torial search over the entire dataset. Unfortunately,
this strategy is computationally impractical. To this
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X

What county is Frederick, MD in?

Training Data

GPT-3

Frederick County

encode
Test Prompt

encode

select nearest neighbors

What county is Duluth Minnesota in? 1

What Olympic athlete has won the most medals? N

encode

Q: What county is Duluth Minnesota in?
A: St. Louis County

Q: What county is Frederick, MD in?
A: 

Figure 1: In-context example selection for GPT-3. White dots: unused training samples; grey dots: randomly
sampled training samples; red dots: training samples selected by the k-nearest neighbors algorithm in the embedding
space of a sentence encoder.

end, we empirically investigate the influences of
employing different in-context examples. Interest-
ingly, we find that the in-context examples that are
closer to the test sample in the embedding space
consistently give rise to stronger performance (rel-
ative to the farther ones). Inspired by this observa-
tion and the recent success of retrieval-augmented
models (Hashimoto et al., 2018), we propose to
utilize nearest neighbors of a given test sample
(among all the training instances available) as the
in-context examples.

To verify the effectiveness of the proposed
method, we evaluate it on several natural language
understanding and generation tasks, including sen-
timent analysis, table-to-text generation and open-
domain question answering. It is observed that
the retrieval-based in-context examples unleash
the in-context learning capabilities of GPT-3 much
more effectively than the random sampling base-
line, even when the number of examples is small.
Moreover, we find that the specific sentence en-
coders employed for the retrieval procedure play
a critical role. Thus, an extensive exploration is
conducted and shows that encoders fine-tuned on
natural language matching tasks serve as more ef-
fective in-context examples selector on the QA task.
In summary, our contributions are as follows:

i) to the best of our knowledge, we take a first
step towards understanding the sensitivity of GPT-
3’s in-context learning ability with respect to the
choice of in-context examples;

ii) to alleviate the sensitivity issue, an additional
retrieval module is introduced to find semantically-
similar in-context examples of a test instance,
which greatly outperforms the baseline based on

randomly sampled in-context examples;
iii) empirically, the better selected examples lead

GPT-3 to achieve comparable performance to a
fine-tuned T5 model on the table-to-text task and
outperforms the T5 model on the QA tasks;

iv) fine-tuning the retrieval model on task-related
dataset(s) leads to stronger empirical results;

v) the performance of GPT-3 improves as the
number of examples for retrieval increases.

2 Method
2.1 GPT-3 for In-Context Learning
The in-context learning scenario of GPT-3 can be
regarded as a conditional text generation problem.
Concretely, the probability of generating a target y
is conditioned on the context C, which includes k
examples, and the source x. Therefore, the proba-
bility can be expressed as:

pLM(y|C, x) =
T∏

t=1

p(yt|C, x, y<t) (1)

where LM denotes the parameters of the language
model, and C = {x1, y1, x2, y2, ..., xk, yk} is a
context string concatenating k training instances
with the special character "\n". A concrete illustra-
tion can be found in the Appendix.

For GPT-3, this generation process is imple-
mented through a giant transformer-based archi-
tecture (Vaswani et al., 2017). Due to the computa-
tional burden of fine-tuning, GPT-3 is leveraged in
an in-context learning manner as described above.
Unfortunately, as shown in Table 1, the results of
GPT-3 tend to fluctuate significantly with different
in-context examples. We aim to alleviate this issue
via judicious in-context example selection.
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2.2 The Impact of In-Context Examples

We start the investigation by looking at the role
of in-context examples from an empirical perspec-
tive. Previous retrieve-and-edit literature usually
retrieve prototypes that are close to the test source
x in some embedding space. These examples and
the test source x often share semantic or lexical
similarities. This hints on how we may select in-
context examples for GPT-3.

To this end, we examine the impact of the dis-
tance between the in-context example and the
test sample on GPT-3’s performance. Concretely,
a comparison is made on the the Natural Ques-
tions (NQ) dataset between two selection strate-
gies. Given a test example, the first method utilizes
the 10 farthest training instances as the in-context
examples, while the second employs the 10 clos-
est neighbors. We use the CLS embeddings of
a pre-trained RoBERTa-large model as sentence
representations to measure the proximity of two
sentences (using the Euclidean distance).

For evaluation, 100 test questions are randomly
sampled and the average Exact Match (EM) scores
with the two distinct strategies are reported in Ta-
ble 2. It can be observed that the nearest neighbors,
used as the in-context examples, give rise to much
better results relative to the farthest ones. Moreover,
the pre-trained RoBERTa model serves as effective
sentence embeddings for the retrieval procedure.

2.3 kNN-augmented Example Selection

Based on the findings above, we propose KATE1,
a strategy to select good examples for in-context
learning. The process is visualized in Figure 1.
Specifically, we first use a sentence encoder to con-
vert sources in both the training set and test set to
vector representations. For online prediction, we
can convert the training set first and encode each
test source on the fly. Then, for each test source
x, we retrieve its nearest k neighbors x1, x2, ..., xk
from the training set (according to the distances
in the embedding space). Given some pre-defined
similarity measure s such as the negative Euclidean
distance or the cosine similarity, the neighbors are
ordered so that s(xi, x) ≥ s(xj , x) when i < j.

The k sources are concatenated with
their targets to form the context C =
{x1, y1, x2, y2, ..., xk, yk}, which is sent to
GPT-3 along with the test input. The algorithm
is presented in Algorithm 1. Note that different

1KATE: Knn-Augmented in-conText Example selection

Method Closest Farthest
Accuracy 46.0 31.0

Table 2: Comparison of the EM score on the closest 10
neighbors and farthest 10 neighbors on a subset of 100
test samples of the NQ dataset.

Algorithm 1 kNN In-context Example Selection
Given: test prompt xtest, training set DT =
{xi,yi}Ni=1, sentence encoder µθ(·), and number
of in-context examples k (hyperparameter).

1: vtest = µθ(xtest)
2: for xi ∈ DT do
3: vi = µθ(xi)
4: si = −∥vtest − vi∥2 (or vtest·vi

∥vtest∥2∥vi∥2 )
5: end for
6: Select largest k similarities si’s (in descending

order) with indices {σ(1), ..., σ(k)}
7: C = [xσ(1);yσ(1); ...;xσ(k);yσ(k)]
8: ŷtest = GPT-3([C;xtest])

numbers of examples can be employed, and we
conduct study on its impact in a later section.

Choices of Retrieval Module A core step for our
context selection approach is mapping sentences
into a latent semantic space, leaving a question
as what sentence encoders we should choose. We
compared among existing pre-trained text encoders
and found them sufficient to retrieve semantically
similar sentences. The sentence encoders can be
divided into two categories.

The first category includes generally pre-trained
sentence encoders such as the BERT, RoBERTa,
and XLNet models. These models have been
trained on large quantities of unsupervised tasks
and achieved good performance on many natural
language tasks. The corresponding embeddings
contain rich semantic information from the original
sentences.

The second category includes sentence encoders
fine-tuned on specific tasks or datasets. For exam-
ple, a sentence encoder trained on the STS dataset
should be able to assess similarities among differ-
ent questions better than a generally pre-trained
sentence encoder. Sentence-BERT (Wolf et al.,
2019; Reimers and Gurevych, 2019, 2020) shows
that these fine-tuned encoders have achieved great
performance on tasks such as sentence clustering,
paraphrase mining, and information retrieval.
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3 Experimental Setup

We apply our proposed method to the following
three tasks: sentiment analysis, table-to-text gener-
ation, and question answering. Dataset split setups
and prompt templates are shown in Table 9 and 11
in the Appendix. For the hyper-parameters in the
GPT-3 API, we set the temperature to 0.

3.1 Sentence Embeddings for Retrieval
To retrieve semantically-similar training instances,
we consider two types of sentence embeddings.

• The original RoBERTa-large model (Liu et al.,
2019), which is abbreviated as KATEroberta;

• The RoBERTa-large models which are: i) fine-
tuned on the SNLI and MultiNLI datasets
(KATEnli) (Bowman et al., 2015; Williams
et al., 2017); ii) first fine-tuned on the SNLI
and MultiNLI dataset and then on the STS-B
datasets (KATEnli+sts-b) (Cer et al., 2017).

All sentence encoders share the same architecture.
The only differences are the specific datasets used
for fine-tuning. The negative Euclidean distance is
used for KATEroberta, while the cosine similarity is
employed for KATEnli and KATEnli+sts-b.

Sentiment Analysis For this task, we conduct
experiments under the dataset-transfer setting. In-
context examples are selected from one dataset,
and the evaluation is made on another dataset. This
setting is designed to simulate a real-world sce-
nario where we want to leverage an existing labeled
dataset for a unlabeled one (of a similar task).

Specifically, we select examples from the SST-
2 training set (Socher et al., 2013; Wang et al.,
2018) and ask GPT-3 to predict on the IMDB
test set (Maas et al., 2011). To explore whether
a sentence encoder fine-tuned on a similar task
would benefit KATE, we also employ a pre-trained
RoBERTa-large model fine-tuned on the SST-2
training set (dubbed as KATEsst-2). The number of
examples is chosen to be 3 since adding more ex-
amples does not further improve the performance.

Table-to-Text Generation Given a Wikipedia ta-
ble and a set of highlighted cells, this task focuses
on producing human-readable texts as descriptions.
ToTTo (Parikh et al., 2020)2 is utilized for evalua-
tion due to its popularity. We use BLEU (Papineni

2The ToTTo code base and evaluation scripts can be
found at https://github.com/google-research/
language/tree/master/language/totto

et al., 2002) and PARENT (Dhingra et al., 2019)
metrics for evaluation. Because the token length
limit of GPT-3 is 2048, we add a preprocessing
step by deleting the closing angle brackets such as
</cell> and </table> to save space. The number
of in-context examples is set as 2 so that the input
length is within the token limit.

Question Answering We conduct experiments
on three QA benchmarks: Natural Questions
(NQ) (Kwiatkowski et al., 2019), Web Questions
(WQ) (Berant et al., 2013), and TriviaQA (Joshi
et al., 2017). For evaluation, we use the Exact
Match (EM) score, which is defined as the propor-
tion of the number of predicted answers being ex-
actly one of the ground-truth answers. The match-
ing is performed after string normalization, which
includes article and punctuation removal. The num-
ber of examples is set to be 64 for NQ and WQ and
10 for TriviaQA (The retrieved 64 examples exceed
the token limit). We evaluate on the test sets of NQ
and WQ and the dev set of TriviaQA.

3.2 Baseline Methods

Random Sampling For each test sentence, we
randomly select in-context examples from the train-
ing set. We refer to this method as Random in the
experimental results. On the test set, the random
baseline is repeated for five times to obtain the av-
erage score and corresponding standard deviation.

k-Nearest Neighbor Additionally, to investigate
whether the retrieval module is complementary to
GPT-3’s in-context learning ability, we further con-
sider a k-nearest neighbor baseline. Specifically,
the target y1 associated with the first retrieved ex-
ample is considered as the predicted target for the
test sample. For the sentiment analysis and QA
tasks, the top k retrieved examples {y1, ..., yk} are
utilized, where the final prediction is determined
by majority voting among the k examples’ targets.
If there is a tie case, we use the target of the ex-
ample most similar to the test sentence. To ensure
fair comparison, we compare the baseline kNN
and KATE under the same embedding space of a
pre-trained RoBERTa-large model. This baseline
is abbreviated as kNNroberta.

Fine-tuned T5 Although this work aims at im-
proving the in-context learning abilities of GPT-3,
we include a fine-tuned T5 (3B) model as a baseline.
This comparison informs us where GPT-3 performs
comparably or surpasses a fine-tuned model.
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Method Accuracy
T5 (fine-tuned) 95.2

Ours
Random 87.95 ± 2.74
kNNroberta 50.20

KATEroberta 91.99
KATEnli 90.40

KATEnli+sts-b 90.20
KATEsst-2 93.43

Table 3: Results on the IMDB dataset. In-context exam-
ples are from the SST-2 dataset.

4 Experimental Results

4.1 Sentiment Analysis

We first evaluate KATE on the sentiment analysis
task. The results are in Table 3. KATE consis-
tently produces better performance relative to the
random selection baseline. Notably, there is no
variance with the obtained results since the fixed
retrieved in-context examples are employed. For
KATE, when the pre-trained sentence encoder is
fine-tuned on NLI or NLI+STS-B datasets, the per-
formance slightly decreases. Since the objectives of
the IMDB and the NLI+STS-B datasets are differ-
ent, this shows that fine-tuning on a dissimilar task
hurts KATE’s performance. In contrast, KATEsst-2
obtains the best accuracy, showing that fine-tuning
on a similar task improves KATE’s performance.
To verify that the gains are not merely from the
retrieval step, we further compare KATEroberta with
the kNNroberta. It turns out that the performance of
kNNroberta is close to random guessing. This ob-
servation is consistent when one neighbor or three
neighbors are retrieved. Notably, with the sentence
encoder fine-tuned on the SST-2 dataset, the accu-
racy of kNNsst-2 is 92.46, which is lower than that
of KATEsst-2. These results suggest that GPT-3 is
critical to the final results, and the retrieval module
is complementary to GPT-3.

The fine-tuned T5 model works better since
its parameters has been adapted to this specific
task. However, fine-tuning requires access to model
parameters, lots of memory storage, and time.
The fine-tuning result here is just for reference.
Through KATE, the performance of GPT-3 has in-
creased significantly without fine-tuning.

4.2 Table-to-text Generation

We next evaluate KATE on the ToTTo dataset and
present results in Table 4. KATE gives rise to con-
siderable gains over the random baseline, according
to both the BLEU and PARENT scores. Notably,

KATE enables GPT-3 to achieve performance com-
parable to a fine-tuned T5 model. On a finer scale,
the evaluation can be done on the overlap subset
and the nonoverlap subset. The overlap dev subset
shares a significant number of header names with
the training set, while the nonoverlap one does not.
KATE improves results on both subsets, meaning
that the retrieval module is helpful even when the
dev set is out of distribution of the training set.
Similar to sentiment analysis, there is a slight drop
in performance from KATEroberta to KATEnli and
KATEnli+sts-b. This is due to the difference between
the objectives of the ToTTo dataset and NLI+STS-
B datasets. The drop from KATEnli to KATEnli+sts-b
further validates the idea that fine-tuning on a dis-
similar task can hurt KATE’s performance. For the
kNN baseline, it performs much worse than the
random selection method and KATE, suggesting
that the retrieval process and GPT-3 work collabo-
ratively to achieve better results.

To understand how the retrieval mechanism
helps GPT-3, we conduct a case study on the re-
trieved examples (see Table 5). By retrieving rel-
evant examples from the training set, KATE pro-
vides useful detailed information within the table,
e.g., the number of points, rebounds, and assists, to
GPT-3 for more accurate description. On the other
hand, the random selection method has the issue of
hallucination, where the generated sequences con-
tain information (i.e., “senior year” and “University
of Texas”) not present in the table.

4.3 Questing Answering

Lastly, we evaluate KATE on the open-domain
QA tasks, as shown in Table 6. We compare with
some state-of-the-art fine-tuned methods such as
RAG (Lewis et al., 2020) and T5 (Raffel et al.,
2019). The T5 results were reported in (Brown
et al., 2020) using the 11B model, which needs
specialized TPUs to do fine-tuning. KATE again
improves GPT-3’s performance substantially across
various benchmarks. Moreover, KATE helps GPT-
3 to even outperform the fine-tuned T5 model. It
is worth noting that this time both KATEnli and
KATEnli+sts-b improve upon KATEroberta because
fine-tuning on NLI or STS-B datasets is helpful for
retrieving semantically similar questions from the
QA datasets. Moreover, on the NQ and TriviaQA
datasets, further fine-tuning on the STS-B dataset
improves KATE’s results. We evaluate the base-
line kNNroberta by using the top-1 nearest neigh-
bor. The kNN baseline results again suggest that
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Method Overall Overlap Subset Nonoverlap Subset
BLEU PARENT BLEU PARENT BLEU PARENT

T5 (fine-tuned) 41.2 53.0 46.7 56.1 35.8 50.0
Ours

Random 28.4 ± 2.1 39.3 ± 2.6 31.2 ± 2.5 41.8 ± 3.0 25.6 ± 1.8 37.0 ± 2.3
kNNroberta 14.1 12.6 20.1 17.9 8.0 7.52

KATEroberta 41.0 50.6 48.4 55.9 33.6 45.5
KATEnli 39.9 49.5 47.4 54.6 32.5 44.5

KATEnli+sts-b 38.8 48.2 46.2 53.1 31.5 43.4

Table 4: Table-to-text generation results on the ToTTo dev dataset.

Test Table Table: <page_title >Trey Johnson <section_title >College <table ><cell >32 <col_header >
GP <cell >4.8 <col_header >RPG <cell >2.3 <col_header >APG <cell >23.5 <col_header >PPG
Table: <page_title >Dedric Lawson <section_title >College <table ><cell >9.9 <col_header >
RPG <cell >3.3 <col_header >APG <cell >19.2 <col_header >PPG

Retrieved Sentence: Dedric Lawson averaged 19.2 points, 9.9 rebounds and 3.3 assists per game.
Examples Table: <page_title >Carsen Edwards <section_title >College <table ><cell >3.8 <col_header >

RPG <cell >2.8 <col_header >APG <cell >18.5 <col_header >PPG
Sentence: Edwards averaged 18.5 points, 3.8 rebounds and 2.8 assists per game.

Predictions
Ground-truth: Trey Johnson averaged 23.5 points, 4.8 rebounds, and 2.3 assists in 32 games.
Random: Trey Johnson averaged 23.5 points per game in his senior year at the University of Texas.
KATE: Johnson averaged 23.5 points, 4.8 rebounds and 2.3 assists per game.

Table 5: A sample of retrieved in-context examples from the ToTTo dataset. For the KATE method, GPT-3 pays
more attention to detailed information such as the number of points, rebounds, and assists. In contrast, the random
selection method leads GPT-3 to generate details which do not exist in the original table.

Method NQ WQ TriviaQA∗

RAG (Open-Domain) 44.5 45.5 68.0
T5+SSM (Closed-Book) 36.6 44.7 60.5

T5 (Closed-Book) 34.5 37.4 50.1
GPT-3 (64 examples) 29.9 41.5 -

Ours
Random 28.6 ± 0.3 41.0 ± 0.5 59.2 ± 0.4
kNNroberta 24.0 23.9 26.2

KATEroberta 40.0 47.7 57.5
KATEnli 40.8 50.6 60.9

KATEnli+sts-b 41.6 50.2 62.4

Table 6: Results on QA datasets. (*) We used 10 exam-
ples for TriviaQA and 64 examples for NQ and WQ.

the retrieval module and GPT-3 work together to
achieve better performance. We also explore using
64 nearest neighbors (10 for TriviaQA) to deter-
mine the answer (by majority voting explained in
Section 3.2). The EM score are similar to retrieving
the top-1 nearest neighbor.

To investigate why the retrieved examples are
helpful, we present a case study. Concretely, the re-
trieval examples from the NQ dataset are shown in
Table 7. For the first and second cases, the random
baseline provides wrong answers because GPT-3
is unable to recall the exact detail. However, the
in-context examples selected by KATE contain the
correct details, which facilitate GPT-3 to answer
questions. For the third case, the random baseline

leads GPT-3 to misinterpret the question as asking
for a specific location. In contrast, KATE selects
similar types of questions asking for the origins of
objects. Using these in-context examples, GPT-3 is
able to interpret and answer the question correctly.

5 Analysis of Different Factors

5.1 Number of In-context Examples

We first investigate the impact of the number of
examples on KATE’s performance. Concretely, on
the NQ dataset, we choose the number of examples
to be 5, 10, 20, 35, and 64, and KATEnli+sts-b is com-
pared with the random baseline and KATEroberta
across different settings. As shown in the left plot
of Figure 2, both KATE and the random baseline
benefit from utilizing more examples. However,
KATE consistently outperforms the random selec-
tion method, even when the number of in-context
examples is as few as 5. This result is interesting
because in practice, employing less examples leads
to more efficient inference with GPT-3.

5.2 Size of Training Set for Retrieval

We further examine how the size of the training
set may influence the KATE method. On the NQ
dataset, we create new subsets from the original
training set, with sizes of 1k, 2k, 5k, 10k, 30k, and
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In-Context Examples Predictions

Question: The Mughal Gardens of Rashtrapati Bhavan is modelled on which garden?

The Mughal Garden of Rashtrapati Bhavan is modelled on? The Persian style of architecture Ground-truth: Persian garden
Who built the first Mughal Garden in India? Babur KATE: The Persian gardens
The landscape design of the Gardens of Versailles is known as which style? French garden Random Baseline: Shalimar gardens

Question: What city was Zeus the patron god of?

What is the symbol of Zeus the Greek God? Bull Ground-truth: Olympia
Where did Zeus spend most of his time? Mount Olympus KATE: Olympia
Where was the statue of Zeus at Olympia located? In the Temple of Zeus Random Baseline Athens

Question: Where did the Dewey decimal system come from?

Where did the formula for area of a circle come from? Archimedes Ground-truth: Melvil Dewey
Where did the name jack russell come from? Reverend John Russell KATE: Melvil Dewey
Where did the letters of the alphabet come from? The Phoenician alphabet Random Baseline: the library of Congress

Table 7: Three samples of retrieved in-context examples from the NQ dataset. Three retrieved Q-A pairs are shown
on the left. Predictions by the KATE method and useful details from in-context examples are shown in Green.
Gold-standard references are shown in Blue. Predictions by the random baseline are shown in Red.
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Figure 2: Left: Effect of number of in-context examples for different selection methods. Right: Effect of the size of
training set for retrieval on KATE. Two representative sentence encoders are used in these studies.

70k, respectively. In-context examples are retrieved
from these subsets instead of the original training
set. The number of nearest neighbors is set to 64.
We compare KATEnli+sts-b with the random selec-
tion method and KATEroberta, and the results are
shown in the right plot of Figure 2. For KATEroberta
and KATEnli+sts-b, as the size of the training set in-
creases, the EM scores also increase. In contrast,
the result of the random sampling baseline does
not change much. Intuitively, as the training size
gets larger, it is more likely for KATE to retrieve
relevant in-context examples to help GPT-3 answer
a question correctly. As we have shown previously
in Table 7, the retrieved in-context examples could
provide critical detailed information to GPT-3, thus
helping GPT-3 to better answer the questions.

5.3 Order of In-context Examples

Moreover, we explore how the order of in-context
examples may affect KATE’s results. As mentioned

in Section 2.3, under the standard setting, the re-
trieved in-context examples are ordered such that
s(xi, x) ≥ s(xj , x) whenever i < j. Here, we ran-

Trial 1 2 3 Default Reverse
EM Score 42.0 42.5 42.0 41.6 42.8

Table 8: Analysis on the effect of orders of in-context
example on the NQ dataset using KATEnli+sts-b. The
default order puts the most similar example in the front,
and the reverse order does the opposite.

domly permute the order of in-context examples
in the NQ dataset for the proposed KATEnli+sts-b
method, and conduct the experiments for 3 differ-
ent orders. Additionally, we explore the reverse
order where s(xi, x) ≤ s(xj , x) whenever i < j.
The results are presented in Table 8. On this partic-
ular NQ dataset, the reverse order performs the best.
However, we also did the experiments on the WQ
and TriviaQA and find that the default order per-
forms slightly better than the reverse order. Hence,
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the choice of orders is data-dependent. Addition-
ally, it can be observed that the variation among the
NQ results tends to be quite small (compared with
the difference between the random baseline and
KATE), indicating that the example order does not
have a significant impact on KATE’s performance.

6 Related Work
Pre-trained Language Models NLP systems
have made tremendous progress by pre-training
models on unlabeled text (Devlin et al., 2018; Liu
et al., 2019; Yang et al., 2019; Lewis et al., 2019;
Raffel et al., 2019; Xue et al., 2020; Lample and
Conneau, 2019; Radford et al., 2018, 2019). These
models can be fine-tuned for a wide range of down-
stream tasks. GPT-3 (Brown et al., 2020), however,
can perform in-context learning without fine-tuning.
People have just started trying to understand GPT-
3 from different perspectives. (Hendrycks et al.,
2020) studies which categories of questions GPT-3
is more capable of answering. (Zhao et al., 2021)
proposes to improve the model by contextual cal-
ibration. However, their method is limited to pre-
dicting very few tokens because for long sequence
generation, the contextual calibration step needs
to be repeatedly performed after each newly gen-
erated token. In contrast, our work, KATE, only
calls the API once and is suitable for both text
classification and generation tasks. Another re-
lated work is LM-BFF (Gao et al., 2020), which
uses a smaller language model (RoBERTa-large) to
demonstrate that prompt-based fine-tuning can out-
perform standard fine-tuning on text classification
tasks. Our work differs by showing that, without
fine-tuning, relevant examples can still substan-
tially improve the performance of GPT-3 for both
text classification and generation tasks. Finally, Au-
toPrompt (Shin et al., 2020) explores adding some
additional tokens to smaller language models to
improve performance on classification tasks.

Retrieval-based Text Generation There is a
long history of applying information retrieval to
text generation (Sumita and Hitoshi, 1991). It is
very related to the exemplar-based learning (Jäkel
et al., 2008; Ziyadi et al., 2020). Some represen-
tative applications in the field of deep learning in-
clude machine translation (Gu et al., 2018), sen-
timent transfer (Li et al., 2018; Guu et al., 2018),
QA (Karpukhin et al., 2020; Mao et al., 2020),
dialogue generation (Yan et al., 2016; Cai et al.,
2018; Song et al., 2016; Pandey et al., 2018; We-

ston et al., 2018; Wu et al., 2019), text summa-
rization (Cao et al., 2017; Peng et al., 2019), data-
to-text generation (Peng et al., 2019), and text-to-
code generation (Hashimoto et al., 2018). All these
retrieve-and-edit frameworks require their editors
to be trained or fine-tuned on specific tasks. In
contrast, our work uniquely examines how to better
use GPT-3 as a universal editor without fine-tuning.
We find that the more semantically similar context
we provide to GPT-3, the better results the model
can generate.

Improve NLP Systems with kNN Some recent
works try to incorporate non-parametric methods to
improve a given model’s performance. For exam-
ple, the newly introduced kNN-LM (Khandelwal
et al., 2019), kNN-MT (Khandelwal et al., 2020),
and BERT-kNN (Kassner and Schütze, 2020) gen-
erate the next token by retrieving the nearest k
neighbors from the datastore. Another related work
kNN classification model (Rajani et al., 2020) uses
kNN as backoff when the confidence is low from
the classification model. There are two key dif-
ferences between our work and other approaches.
First, we retrieve the nearest k neighbors to modify
the conditional context instead of the prediction.
Second, we do not have access to the parameters
of GPT-3. Instead, we rely on some independently
pre-trained models to get the sentence embeddings
to retrieve the nearest k neighbors.

7 Conclusion

This work presented a first step towards investigat-
ing the sensitivity of GPT-3 to in-context examples.
To this end, we proposed KATE, a non-parametric
selection approach that retrieves in-context exam-
ples according to their semantic similarity to the
test samples. On several natural language under-
standing and generation tasks, the proposed method
improves GPT-3’s performance, over the random
sampling baseline, by a significant margin. Particu-
larly, KATE enables GPT-3 to achieve performance
comparable to a fine-tuned T5 model on the table-
to-text generation task and outperforms T5 on the
QA task. Moreover, we found that fine-tuning the
sentence embeddings for retrieval on task-related
datasets gave rise to further empirical gains. De-
tailed analysis was conducted to explore the robust-
ness of KATE to different hyperprameters, such
as the number of in-context examples, examples’
order, etc. One limitation we notice is that despite
the improved performance on sentiment analysis,
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GPT-3 still lags behind the fine-tuned T5 model by
a small margin. This suggests that our proposed
method is more suitable and effective on long text
generation tasks. We hope this work could provide
insights for better understanding the behaviors of
GPT-3 and represents a helpful step towards further
improving its in-context learning capabilities.

8 Ethical and Broader Impacts

Risk Our proposed KATE method significantly
improves the in-context learning ability of GPT-3
and makes long-text generation more easily with-
out fine-tuning the pre-trained model. However,
one risk implication is that our proposed method
will benefit the research groups which are finan-
cially capable of using such huge models. For
individual or small-group researchers, they cannot
apply our proposed method to their specific appli-
cations since they don’t have access to the model.
Our work has suggested researchers should focus
more on investigating the in-context learning of pre-
trained models. One potential future direction is for
researchers to scale-down the sizes of pre-trained
models to find a balance between model perfor-
mance and model size. Once a smaller model is
obtained with comparable performance (enhanced
by KATE), our proposed method can become more
widely accessible to individual researchers.

Potential Bias During the experiment on table-
to-text generation, we have pointed out that large
pre-trained language models could be susceptible
to hallucination (case study in Table 5). This prob-
lem is more pronounced when we use randomly
sampled examples. This happens because the lan-
guage model is biased toward the training dataset.
As shown in Table 5, when random examples are
used, the sentence generated by GPT-3 is gram-
matically correct, but some details never exist in
the given table. In contrast, our proposed method,
KATE, can significantly alleviate this problem by
guiding GPT-3 to look for and generate the cor-
rect information. For similar reasons, large pre-
trained models could be potentially susceptible to
gender and racial bias. Since our KATE method
shows that in-context examples are crucial for high-
quality long-text generations, one way to alleviate
the racial and gender bias is to incorporate an ad-
ditional module to filter out offensive in-context
examples. Since racial and gender bias are not our
main research focus, a full investigation goes be-
yond the scope of our work. However, we believe

this is an exciting opportunity for future work.

Code Availability

Implementations of the proposed KATE method
discussed in this paper are available at https:
//github.com/jiachangliu/KATEGPT3.
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A An Example of In-context Learning

As shown in the illustration of Figure 3, GPT-3 is
asked to translate “mountain” to its German version
based on the three examples given as part of the
input.

1

2

3

4

source target

context

prompt

watermelon == wassermelone

sports car == sportwagen

blue sky == blauer Himmel

mountain ==   …………….

Figure 3: The figure above shows how to perform
in-context learning with a language model. Three in-
context examples and the test prompt are concatenated
as a single string input for GPT-3, with a special charac-
ter "\n" inserted between two adjacent examples. GPT-3
keeps generating tokens until there is a special character
"\n".

B Data Split

Dataset Train Dev Test
SST-2 67k 872 1.8k
IMDB 25k - 25k
ToTTo 120k 7.7k 7.7k

NQ 79k 8.8k 3.6k
WQ 3.4k 361 2k

TriviaQA 78.8k 8.8k 11.3k

Table 9: Data split for different datasets. In-context
examples are selected from the training set. Because
ToTTo and TriviaQA require submitting to their leader-
boards, the evaluation is done on the dev sets. For all
other datasets, the evaluation is done on the test sets.

C Complete ToTTo Case Study

Due to the length limit of the main paper, we
present in the appendix the full ToTTo case study
comparing the random sampling baseline and our
proposed KATE method. We present the case study
in Table 10.

As we have discussed in the main paper, the
in-context examples retrieved by KATE facilitates
GPT-3 to effectively extract key information from
the given table. Detailed numbers such as the num-
ber of points, rebounds, and assists have all been
included in the sentence.

In contrast, the sentence generated by GPT-3 us-
ing randomly sampled in-context examples only

extract partial information from the table. Only the
number of points is included while the numbers of
rebounds and assists are ignored. Moreover, the
random sampling baseline could lead to the issue of
hallucination. Both "senior year" and "University
of Texas” are not present in the given table. One
may wonder whether these wrong phrases were
present in the randomly sampled in-context exam-
ples, which might have caused this issue. How-
ever, if we look at the randomly sampled in-context
examples in the second block of the table, such
information do not exist. This suggests such hal-
lucinated phrases are generated by the language
model itself.

This comparison provides some key insights on
why KATE works better than the random sampling
baseline. By retrieving semantically/syntactically
similar in-context examples, KATE provides GPT-
3 with a much more accurate template/structure to
do text generation. Without such structure, GPT-3
can generate sentences that are fluent but do not
meet the goal of a particular task.

D On Prompt Engineering vs.
Fine-tuning

As we mentioned in the main paper, given a train-
ing dataset, we could take the full advantage of
the GPT-3’s model strength through fine-tuning.
However, there are several advantages of prompt
engineering over fine-tuning. First, fine-tuning re-
quires access to the model parameters and gradi-
ents. It is impossible to access this information via
the current GPT-3’s API. Second, fine-tuning large
models are time-consuming and costly. Ordinary
research labs and individual developers do not have
resources to accomplish such tasks. Third, storing
large fine-tuned model checkpoints requires large
storage space. Even if GPT-3 is fine-tuned and
stored for many specific tasks/datasets, many fine-
tuned checkpoints may not be frequently called.
This is not energy efficient. Our proposed KATE
method does not require costly fine-tuning and im-
proves the random baseline on both text classifica-
tion and generation tasks, sometimes by a signifi-
cant margin. This makes it more practical to deploy
the same GPT-3 model across all tasks.

E T5 Baseline

Although our primary goal is to improve GPT-3’s
in-context learning ability, we also include the fine-
tuned T5 results as a reference (3B T5 on SST-2 and
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Test Table Table: <page_title >Trey Johnson <section_title >College <table ><cell >32 <col_header >
GP <cell >4.8 <col_header >RPG <cell >2.3 <col_header >APG <cell >23.5 <col_header >PPG
Table: <page_title >List of RAGBRAI overnight stops <section_title >By year <table ><cell >
1986 <col_header ><col_header >Year <cell >Audubon (1) <col_header >Route - start to finish
(number indicates occurrence) <col_header >Monday <cell >2006 <col_header ><col_header >
Year <cell >Audubon (2) <col_header >Route - start to finish (number indicates occurrence)

Randomly <col_header >Monday
Sampled Sentence: Audubon has been an RAGBRAI overnight stop in 1986 and 2006.
Examples Table: <page_title >List of Administrators of British Brunei <section_title >British Brunei

administrators <table ><cell >Malcolm Stewart Hannibal McArthur <col_header >Consul
Generals to Brunei <col_header >British Consuls in Brunei <col_header >British Residents in Brunei
Sentence: Malcolm Stewart Hannibal McArthur was the first British resident in Brunei.
Table: <page_title >Dedric Lawson <section_title >College <table ><cell >9.9 <col_header >

KATE- RPG <cell >3.3 <col_header >APG <cell >19.2 <col_header >PPG
Retrieved Sentence: Dedric Lawson averaged 19.2 points, 9.9 rebounds and 3.3 assists per game.
Examples Table: <page_title >Carsen Edwards <section_title >College <table ><cell >3.8 <col_header >

RPG <cell >2.8 <col_header >APG <cell >18.5 <col_header >PPG
Sentence: Edwards averaged 18.5 points, 3.8 rebounds and 2.8 assists per game.

Predictions
Ground-truth: Trey Johnson averaged 23.5 points, 4.8 rebounds, and 2.3 assists in 32 games.
Random: Trey Johnson averaged 23.5 points per game in his senior year at the University of Texas.
KATE: Johnson averaged 23.5 points, 4.8 rebounds and 2.3 assists per game.

Table 10: A sample of retrieved in-context examples from the ToTTo dataset. For the KATE method, GPT-3 pays
more attention to detailed information such as the number of points, rebounds, and assists. In contrast, the random
selection method leads GPT-3 to generate details which do not exist in the original table. Information such as "senior
year” and "University of Texas” also do not exist in the randomly sampled in-context examples. This suggests that
the wrong information was generated by the language model itself. Although the sentence by the random sampling
baseline is fluent, it does meet the goal of the table-to-text task.

ToTTo datasets, and 11B T5 on the QA datasets).
The reason for reporting the 3B T5 results on the
SST-2 and ToTTo datasets is that this is the largest
T5 model we can use. For the 3B T5 model, Google
Colab 3 provides a free V2-8 TPU to fine-tune the
3B model. We used the Colab tutorial notebook to
fine-tune the 3B T5 model on the SST-2 and ToTTo
training sets. We couldn’t fine-tune the 11B T5
model because the model size is too large. Fine-
tuning such a large model requires a V3-8 TPU,
which is not free of charge. Fortunately, the origi-
nal GPT-3 paper (Brown et al., 2020) has already
reported the finet-tuned 11B T5 results on the three
QA datasets, so we reuse these results in our main
paper for the QA task. Our proposed KATE method
significantly improves GPT-3, performing compa-
rably to the fine-tuned T5 model on the table-to-text
task and outperforming the fine-tuned T5 model on
the QA task.

F Details on Retrieval Modules

As we mention in the main paper, we use the pre-
trained RoBERTa-large model (Liu et al., 2019)

3The Colab notebook on how to fine-tune
the 3B T5 model can be found at https:
//github.com/google-research/
text-to-text-transfer-transformer.

as the first retrieval module, which has 355M pa-
rameters and is pre-trained with the MLM (masked
language modeling) objective. The result given by
this module is denoted as KATEroberta. We directly
download this model from the HuggingFace Model
Zoo (MIT license) 4. All other retrieval modules
share the same architecture as the RoBERTa-large
module but are fine-tuned on specific datasets.

For the fine-tuned retrieval modules, the first we
use is the RoBERTa-large model fine-tuned on the
SNLI and MultiNLI datasets (KATEnli) (Bowman
et al., 2015; Williams et al., 2017); the next we
use is the RoBERTa-large model fine-tuned on the
SNLI and MultiNLI dataset and then on the STS-B
datasets (KATEnli+sts-b) (Cer et al., 2017). These
fine-tuned models have already been accomplished
and included by the Sentence-BERT family and are
publicly available, so we directly download from
the Sentence-BERT Model Zoo 5.

Lastly, specifically for the sentiment analysis
task, we include a RoBERTa-large model fine-
tuned on the SST-2 dataset (KATEsst-2) (Socher
et al., 2013; Wang et al., 2018). At the time of our

4The HuggingFace Model Zoo can be found at https:
//huggingface.co/models.

5The Sentence-BERT Model Zoo can be found at https:
//huggingface.co/sentence-transformers.
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research, we didn’t find a good publicly available
fine-tuned model, so we fine-tune the pre-trained
RoBERTa-large model on SST-2 by ourselves. The
exact fine-tuning procedure, including the hyperpa-
rameters and learning rate, can be found at the Hug-
gingFace website 6. We fine-tune the RoBERTa-
large model using a single V100 GPU.

G Prompt Templates Used

For reproducibility, we show the prompt templates
used for all tasks in Tables 11 .

6The fine-tuning script we use can be found
at https://huggingface.co/transformers/
v2.7.0/examples.html#glue.
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Task Prompt Template

SST-2 & IMDB Sentence: comes from the brave , uninhibited performances. Label: Positive

Sentence: This tearful movie about a sister and her battle to save as many souls as she can is very
moving. The film does well in picking up the characters and showing how Sister Helen deals with
each. A wonderful journey from life to death. Label:

ToTTo Table: <page_title>Dedric Lawson <section_title>College <table><cell>9.9 <col_header>RPG
<cell>3.3 <col_header>APG <cell>19.2 <col_header>PPG
Sentence: Dedric Lawson averaged 19.2 points, 9.9 rebounds and 3.3 assists per game.

Table: <page_title>Trey Johnson <section_title>College <table><cell>32 <col_header>GP
<cell>4.8 <col_header>RPG <cell>2.3 <col_header>APG <cell>23.5 <col_header>PPG
Sentence:

QA Q: The landscape design of the Gardens of Versailles is known as which style?
A: The Persian style of architecture.

Q: The Mughal Gardens of Rashtrapati Bhavan is modelled on which garden?
A:

Table 11: The prompt templates used for all tasks discussed in the paper. We show only one in-context example per
task for illustration purposes.
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