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Abstract

Recombining known primitive concepts into
larger novel combinations is a quintessentially
human cognitive capability. Whether large
neural models in NLP can acquire this abil-
ity while learning from data is an open ques-
tion. In this paper, we investigate this prob-
lem from the perspective of formal languages.
We use deterministic finite-state transducers to
make an unbounded number of datasets with
controllable properties governing composition-
ality. By randomly sampling over many trans-
ducers, we explore which of their properties
contribute to learnability of a compositional re-
lation by a neural network. We find that the
models either learn the relations completely or
not at all. The key is transition coverage, set-
ting a soft learnability limit at 400 examples
per transition.

https://github.com/valvoda/

neuralTransducer

1 Introduction

Compositionality is a hallmark of human language
(Montague, 1970; Partee, 1995; Fodor, 1998). It
is arguably a requirement for any model to count
as a model of language, or to achieve human-like
natural language understanding. Compositionality
seems to be such a deep property of language
that speakers draw conclusions about the overall
meaning of sentences even when the meanings
of individual words are not known. For instance,
English speakers reading the Jabberwocky (Carroll,
1871) comprehend that the noun phrase slithy
toves is built from the composition of the adjective
slithy with the plural noun toves, despite lacking
a clear understanding of what slithy or toves—let
alone their composition—could mean. In cognitive
science, whether neural networks can learn to
combine a limited number of primitives (in the case
of language, word or morphemes) to describe a

complex environment has been debated for over 30
years (Fodor and Pylyshyn, 1988; Marcus, 1998).

In recent work, researchers have explored
the inherent limitations of neural models to
exhibit compositionality by analyzing sequence-to-
sequence model performance on small, controlled
datasets (Lake and Baroni, 2018; Hewitt et al.,
2020; Hupkes et al., 2020a; White and Cotterell,
2021; Dankers et al., 2022; White and Cotterell,
2022). However, the conclusions of these studies
are often murky. For instance, Lake and Baroni
(2018) cast doubt on neural models’ ability to do
compositional generalization using their toy SCAN
dataset, but shortly thereafter, Bastings et al. (2018)
demonstrated that an out-of-the-box sequence-to-
sequence model could indeed fully master the task.

Instead of hand-crafting small challenge
datasets, we propose to test for compositionality by
randomly sampling from a whole class of string-
to-string functions. In doing so, we draw on two
linguistic traditions. On the one hand, we follow
Montague’s assertion that no important theoretical
difference exists between natural and artificial
languages (Montague, 1970). Following this logic,
the question of whether neural networks composi-
tionally process human language is fundamentally
equivalent to asking whether they compositionally
process artificial languages. On the other hand,
we draw lessons from the field of grammatical
inference (de la Higuera, 2010; Rawski and Heinz,
2019), and evaluate neural sequence-to-sequence
models on many automatically generated artificial
languages sampled from particular classes of
functions—as is standard practice at grammatical
inference competitions (Balle et al., 2017).

In this paper, we study the class of string
functions encoded by subsequential finite-state
transducers (SFSTs), a restricted class of general
finite-state transducers (Mohri, 1997). We sample
arbitrary SFSTs to generate many different
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string-to-string datasets and evaluate the behavior
of neural sequence-to-sequence models when
learning them. By controlling the formal properties
of the SFSTs we sample from, we are able to
make precise statements about the learnability of
systematic phenomena.

Empirically, we find that neural sequence-to-
sequence models are, in many cases, capable of per-
fectly learning SFSTs from finite data. Moreover,
we observe an interesting tendency for neural mod-
els to either generalize correctly or to fail outright—
with little middle ground. Our analysis reveals
a possible explanation for this—generalization
seems to be possible when the training data has
sufficient coverage, i.e., when every transition in a
given transducer is crossed in a minimum number
of training examples (≈ 400 in our experiments).

We then turn to analyze a popular hand-crafted
dataset, SCAN, through the lens of an SFST that
encodes it. We find that SCAN is peculiar in that
it seems to serve as a counterexample to our transi-
tion coverage finding. This suggests that there is a
more nuanced story to tell: We predict the learnabil-
ity of a language based on a notion of complexity
native to subregular languages, but it may be that
a more consistently predictive complexity metric
would come from a higher point on the Chomsky
hierarchy. Future work might seek to limit the
number of outlier languages like SCAN in order to
identify a notion of complexity that is native to the
architecture of the model itself. Such a notion of
complexity would identify the level of abstraction
that best reflects the representations learned by the
model. A fruitful avenue towards this goal might
lie in exploring more complex formalisms.

2 Finite-State Transducers

This section provides a short technical overview of
finite-state transducers and motivates our choice to
learn this class of relations.

2.1 Why Learn Finite-State Transductions?

Our study focuses on learning a particular kind of
transduction. Specifically, we focus on restricted
classes of regular relations, which are those rela-
tions computable by finite-state transducers. We be-
lieve this is a natural starting point since this class
of formal languages is mathematically well-studied,
has provable learning guarantees, and has a long
use history in linguistics and NLP (Mohri, 1997).

Finite-state transducers also encompass most

previous work on compositionality: many datasets,
e.g., SCAN (Lake and Baroni, 2018) and gSCAN
(Ruis et al., 2020), describe finite string relations
and are, therefore, finite-state by definition. These
handcrafted datasets have many advantages,
like easy interpretability and domain specificity
since they directly encode particular relevant
relationships like movement over a grid or specific
linguistic phenomena. However, this realism pays
the price of diminished robustness of any findings
over such datasets (Rogers and Pullum, 2011), see
White and Cotterell (2021) for more discussion of
this point. By removing the ability to simply adjust
properties of the underlying function class, and the
transducers which compute it, one loses the possi-
bility to experiment more robustly over a function
type, rather than just one token instantiation of it.

Rather than manually designing individual
datasets ourselves, we generate unboundedly many
new datasets via randomly sampled SFSTs. This
offers a principled view of the problem of learn-
ing artificial languages by simply varying proper-
ties of the class of transducers that generate them.
Furthermore, as we will see in §6, one may view
existing compositionality tasks as learning a spe-
cific SFST. We contend this view enables a deeper
understanding of modeling results. Both specific
artificial languages, such as the compositionality
datasets mentioned above, and those randomly sam-
pled from a particular function class such as the
work presented in this paper, are worth studying.
However, our approach has been missing from the
compositionality discourse.

2.2 Basic Theory

Now we will overview the basic elements of
finite-state theory that will be necessary for the
rest of the paper; we start with some definitions.

Definition 1. A finite-state automaton (FSA) is a
5-tuple A = 〈Σ, Q, q0, F, δ〉 where

• Σ is an input alphabet whose elements are
denoted σ;

• Q is a finite set of states whose elements are
denoted q;

• q0 ∈ Q is the unique start state;

• F ⊆ Q is the set of final states;

• δ : Q×Σ∪{ε} → Q is the transition relation
and ε is an empty string.
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We denote transitions, i.e., when q′ ∈ δ(q, σ), with
the more suggestive notation q σ−→ q′. We say that
the automaton A accepts a string σ ∈ Σ∗ iff there
exists a path1 through the automaton states q0

σ1−→
q1

σ2−→ q2 · · · σN−−→ qN where q0 is the initial state
and qN ∈ F and σ1 · · ·σN = σ. In our notation
σn can be the empty string ε. We call σ the yield
of the path q0

σ1−→ q1
σ2−→ q2 · · · σN−−→ qN .

Furthermore, we call an automaton complete
when one may transition from every state to every
symbol, i.e., δ(q, σ) is defined for all q ∈ Q and
σ ∈ Σ. And, we say an automaton is determinis-
tic, if, given a state q and an alphabet symbol σ ∈
Σ, there is at most one transition for σ from q, i.e.,
|δ(q, σ)| ≤ 1. We have that |δ(q, σ)| = 1 for all
q ∈ Q and σ ∈ Σ if the automaton is both complete
and deterministic. In our examples below we de-
note the final state as a circle with a double border.

Example 1. Below we exhibit a complete deter-
ministic finite-state automaton.

0 1

a

b

b a

The above finite-state automaton accepts the lan-
guage {(biaj)n | i, j, n ∈ Z+}.
Definition 2. A finite-state transducer (FST) is a
6-tuple T = 〈Σ,Γ, Q, q0, F, δ〉:

• Σ is an input alphabet whose elements are
denoted σ;

• Γ is an output alphabet whose elements are
denoted γ;

• Q is a finite set of states whose elements are
denoted q;

• q0 ∈ Q is the unique start state;

• F ⊆ Q is the set of final states;

• δ : Q× Σ ∪ {ε} → Q× Γ∗ is the transition
relation.

We denote transitions, i.e., when (q′, γ) ∈ δ(q, σ),

with the more suggestive notation q
σ/γ−−→ q′. We

say that the transducer T transduces a string
σ ∈ Σ∗ to a string γ ∈ Γ∗ iff there exists a path

q0
σ1/γ1−−−−→ q1

σ2/γ2−−−−→ q2 · · ·
σN/γN−−−−→ qN where q0

is the initial state and qN ∈ F , σ1 · · ·σN = σ and
1A path is a sequence of transitions.

γ1 · · ·γN = γ. In our notation either σn or γn
can be the empty string ε, from which it follows that
the length |σ| must not equal |γ|. We call σ the
input yield and γ the output yield, respectively, of

the path q0
σ1/γ1−−−−→ q1

σ2/γ2−−−−→ q2 · · ·
σN/γN−−−−→ qN .

As in the case of an FSA, we say an FST is
complete if δ is defined for all states and all
symbols, i.e., |δ(q, σ)| > 0 for q ∈ Q and σ ∈ Σ.
Furthermore, we say an FST is subsequential
if it is deterministic with respect to the input,
i.e., if |δ(q, σ)| ≤ 1 for all q ∈ Q and σ ∈ Σ
and the FST does not have transitions of the
form q

ε/γ−−→ q′. By construction, subsequential
transducers (SFSTs) are functional, i.e., the
string-to-string relations they encode are functions
rather than relations. Indeed, it is this functionality
that makes them a useful tool for the analysis of
neural sequence-to-sequence models. The class
of subsequential functions are those describable
with SFSTs.2 They are a subclass of the regular
relations, but a superclass of the finite relations.

Example 2. Below is an example of a non-
deterministic finite-state transducer:

0 1 2
a/b b/ε

ε/b

The above transducer only has two paths

q0
a/b−−→ q1

b/ε−−→ q2 and q0
ε/b−−→ q2. The first

transduces ab 7→ b and the second ε 7→ b.

Example 3. Below is an example of a complete
subsequential transducer over the input alphabet
Σ = {a, b} and output alphabet Γ = {a, b}.

0 1b/b

a/ε

b/ε

a/a

Note the absence of ε on the input side; however,
we do have ε on the output side.

3 Compositionality Formalized

It is widely held that compositionality is a cor-
nerstone of human language. However, language
researchers use the term compositionality to refer
to a variety of different concepts (Hupkes et al.,

2Note there are other algebraic and logical characterisa-
tions (Oncina et al., 1993; Bhaskar et al., 2020).
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2020b). Here, we discuss the specific definition we
employ throughout the paper and give a theoretical
justification for the use of finite-state transducers
as an instantiation of that definition.

3.1 Montague’s Compositionality3

Montague famously gave a mathematical definition
of what it means for a language to be compositional
(Montague, 1970)—specifically, he proposed that
a relation, e.g., the mapping from syntax to seman-
tics, be called compositional if and only if it is a
homomorphism, i.e., if it is a structure-preserving
map between an input and an output algebra (An-
dreas, 2019). To make this notion more formal, we
have to be specific about what structure we hope
our function preserves. In this paper, we will exclu-
sively focus on monoidal structure. We emphasize,
however, that the notion of a homomorphism is not
restricted to monoids.

Definition 3. A monoid is a set A equipped with
a binary operation • such that

• For f, g ∈ A, f • g ∈ A (closure);

• For f, g, h ∈ A, f • (g • h) = (f • g) • h
(associativity);

• There exists a unique element e such that for
every g ∈ A, we have that g • e = e • g = g
(identity).

Definition 4. A free monoid over strings is the
structure (Σ∗, ◦) where Σ∗ is the Kleene closure of
the alphabet Σ and ◦ is string concatenation.4 The
empty string ε is the identity element as ε ◦ σ =
σ ◦ ε = σ for any σ ∈ Σ∗.

Definition 5. Let (A, •A) and (B, •B) be two
monoids with unique identity elements eA and eB .
We call a function f : A→ B a homomorphism if
it obeys the following two properties:

• f(eA) = eB;

• f(x •A y) = f(x) •B f(y), ∀x, y ∈ A

We call a homomorphism between two free
monoids a string homomorphism. As it turns out,

3A clarifying note: Many readers, post publication, have
reported that they interpreted our paper as asserting that the
natural language syntax–semantics interface can be thought
of as a regular string-to-string transduction. This was not our
intent. Instead, our goal is to exhibit a simple benchmark,
derived from randomly sampled SFSTs, that are formally
compatible with Montague’s definition of compositionality
and allow for extreme experimentation.

4When clear from context, we write σ ◦ σ′ as σσ′.

there is a precise connection between string homo-
morphisms and finite-state theory.

Proposition 1. Let Σ and Γ be two alphabets.
The function f is a string homomorphism between
(Σ∗, ◦) and (Γ∗, ◦) iff it is a minimal non-empty
complete subsequential finite-state transducer with
one state.

Proof. See App. A. �

Proposition 1 starts to shed light on the connec-
tion between Montague’s notion of composition-
ality and finite-state transducers. However, this
connection is quite weak because multi-state trans-
ducers are not covered. We remedy this disparity
in the subsequent section.

3.2 Transducers as Homomorphisms
Now we offer a more formal treatment of the exact
sense in which SFSTs may be considered homo-
morphism and thus fall under Montague’s defini-
tion of compositionality. As shown by Proposi-
tion 1, in general, SFSTs do not encode string ho-
momorphisms. Indeed, it is straightforward to find
a counterexample that hammers this point home.

Example 4. Below we exhibit a two-state subse-
quential finite-state transducer that is not a string
homomorphism.

0 1 2
a/a b/b

b/a

In the above example, we have ab 7→ ab, but also
a 7→ a and b 7→ a. Thus, it is not a homomorphism.

Example 4 is dissatisfying; it contradicts the
intuition that an SFST encodes some notion of
Montague-esque compositionality. Luckily, as it
turns out, we can find a precise sense in which an
SFST is indeed a homomorphism. The idea is to
lift the free monoid into a matrix. Given a complete
SFSA A = 〈Σ, Q, q0, F, δ〉 over |Q| = N states,
for every symbol σ ∈ Σ define an N ×N symbol
transition matrixMσ whose entries are

Mσ
ik

def
=

{
σ, if qi

σ−→ qk ∈ δ
0, otherwise

(1)

where 0 is a distinguished symbol, which is not
in Σ, called the zero string. The zero string
is an anhilitator, i.e., it has the property that
0 ◦ σ = σ ◦ 0 = 0 for any σ ∈ Σ.
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Importantly, because A is complete and deter-
ministic, there is exactly one non-0 entry in every
row of Mσ. Now, we define an operation ⊗ be-
tween two such matrices. Since the automaton is
complete and deterministic, we know there exists a
unique j′ such thatMσ

ij′ 6= 0 and, by the same argu-
ment, there exists a unique k′ such that Mσ

j′k′ 6= 0.
Then, in terms of j′ and k′, we have

(Mσ ⊗Mσ′
)ik =

{
Mσ
ij′ ◦Mσ

j′k′ , if k = k′

0, otherwise
(2)

Clearly, Mσ ⊗Mσ′
, for any σ, σ′ ∈ Σ, enforces

that the resulting product still has the property
that there is exactly one element of every row
that is not equal to 0.5 With Mσ, where
σ = σ1 · · ·σK ∈ Σ∗ is a string of length K, we
denote the product of matricesMσ1 ⊗· · ·⊗MσK .

Proposition 2. Let A = 〈Σ, Q, q0, F, δ〉 be a
complete deterministic finite-state automaton. Let
M def

=
{
Mσ | σ ∈ Σ

}
be the set of A’s symbol

transition matrices. Then (M∗,⊗) with ⊗ defined
in Eq. (2) is a transition monoid with E as a
distinguished identity element.6

Proof. See App. A. �

Now we are in a position to discuss the precise
sense in which subsequential finite-state transduc-
ers are homomorphisms. In the case of a finite-state
transducer T = 〈Σ,Γ, Q, q0, F, δ〉, there are two
symbol transition matrices. The input symbol tran-
sition matrix is defined analogously to that of a
finite-state acceptor. However, the output symbol
transition matrix is defined slightly differently:

Mσ
ik

def
=

{
γ, if qi

σ/γ−−→ qk ∈ δ
0, otherwise

(3)

Indeed, for any product of K output symbol tran-
sition matrices Mσ = Mσ1 ⊗ · · · ⊗MσK , the
entries of σ have a clear interpretation. Let σ =
σ1 · · ·σK and suppose Mσ

ik = γ 6= 0. Then, we
know that if we start in state qi and read in input
string σ we end up in state qk and output string
γ. There are exactly |Q| non-zero entries in Mσ.
Thus, for any given finite-state transducer there is
both an input and output transition monoid, which

5This property is reminiscent of the “tails” of a subsequen-
tial function (Oncina et al., 1993)

6The element E can be thought of as an N × N matrix
where every element is ε.

we denote as (M∗Σ,⊗) and (M∗Γ,⊗), respectively.
Then, the intuition is that SFSTs constitute a homo-
morphism over the closure of the symbol transition
matrices. We state the more formal result below.

Proposition 3. Let T = 〈Σ,Γ, Q, q0, F, δ〉 be
a complete subsequential finite-state transducer.
Let (M∗Σ,⊗) be the transition monoid associated
with the input alphabet Σ and let (M∗Γ,⊗) be
the transition monoid associated with the output
alphabet Γ. Then there exists a homomorphism
f :M∗Σ →M∗Γ.

Proof. See App. A. �

At a higher level, Proposition 3 simply fixes the
bug present in Example 4 by incorporating the state
into the values. Moreover, Proposition 3 is a clear
generalization of Proposition 1 in that if we have a
single-state SFST, we have 1× 1 matrices that may
be viewed as single symbols and the operation ⊗
defined in Eq. (2) reduces to string concatenation.

Briefly back to Montague. To put the above
results in context, we showed by Proposition 3
that arbitrary complete SFSTs are compositional
in the sense of Montague. Specifically, SFSTs
encode a homomorphism between the free monoid
(Σ∗, ·), which is isomorphic to (M∗Σ,⊗), and
the transition monoid (M∗Γ,⊗). This instantiates
compositionality by directly linking it to the
robust class-based characteristics of subsequential
functions. There are of course other ways, but
subsequentiality gives us a theoretical underpin-
ning to use learning SFSTs from finite data as a
benchmark for compositionality, and motivates our
experiments and analysis in the coming sections.

4 Experimental Methods

Next we introduce the methodology for generating
our datasets as well as the neural and symbolic mod-
els employed in the empirical portion of our paper.

4.1 Generating Random SFSTs

We generate random SFSTs using the following
stochastic process. We first generate random
unlabeled directed graphs that correspond to the
symbol-specific transition matrices. Given a set
of states Q (let N = |Q|) and an input alphabet Σ,
we sample a matrixBσ ∈ BN×N for every σ ∈ Σ
where B = {0, 1}. During sampling, we enforce
the constraint that there be at most one non-zero
entry in every row vector bσi . This constraint
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ensures that the resulting SFST is subsequential
by construction. To achieve this, we sample from
{1, . . . , N} uniformly at random for each of the
N rows to determine the location of the non-zero
entry in each of the N rows. In terms of the SFST,
if the entry bσik = 1, then our generated SFST has
a transition from state qi

σ−→ qk with input symbol
σ. Then, for every transition qi

σ−→ qk in our gen-
erated SFST, we sample its output symbol γ from
a uniform distribution over the output alphabet Γ.

This results in a transition qi
σ/γ−→ qk. Finally, to

get a canonical representation for particular SFSTs,
we perform finite-state minimization (Choffrut,
2003). Minimization also ensures that our sampled
SFSTs are canonicalized SFSTs which allows us
to check duplicates and ensure the same SFST is
not sampled more than once.

4.2 Generating the Datasets

Next we discuss the creation of the datasets we
use to investigate the learnability of our sampled
SFSTs. We start by sampling 1000 unique SFSTs
using the process described in §4.1. All SFSTs
have an input alphabet Σ of 10 symbols and output
alphabet of 30 symbols. We consider SFSTs with
states numbering from 10 to 100 in increments of
10, and we sample 100 unique SFSTs for each num-
ber. Additionally, we sample extra SFSTs with 21
to 39 states because it was at this point that we em-
pirically observed performance drop-off during a
preliminary investigation. In total, our experiments
use 2800 unique SFSTs.

Sampling Input–output Pairs. To generate the
input–output pairs to train and evaluate a neural
model, we perform a random walk through the
SFST where we select a transition (including the
option to halt if we are in a final state) uniformly
at random. Following Lake and Baroni (2018), the
maximum length of an input string is capped at
50, i.e., we reject walks with more than 50 steps
during sampling. Using this process, we collect
20, 000 unique input–output pairs from each SFST.
We considered larger dataset sizes (40, 000) for the
SFSTs with 29 to 39 states since we observe an
accuracy drop-off in this region. All datasets are
randomly split 80–20 into training and test sets.

4.3 Neural Sequence-to-Sequence Models

Our experiments make use of Wu and Cot-
terell’s (2019) open-source neural transduction

Figure 1: Accuracy versus frequency of transition cov-
erage, with an inflection point at 400.

library.7 Our experiments consider an LSTM
encoder–decoder with attention in the style of
Bahdanau et al. (2015). We use the following
hyperparameters: 200-dimensional hidden states
in the encoder and decoder, each of which have 2
layers, maximum gradient clipping normalization
of 5, dropout set to 0.5, and a batch size of 64.
Additionally, our alphabet tokens are embedded
as 100-dimensional vectors. We train the model
for 100, 000 epochs using the Adam optimizer
(Kingma and Ba, 2015) with the default learning
rate of 0.001. To determine the effect of model
capacity, we also consider a neural sequence-to-
sequence model with 300-dimensional hidden
states and all other hyperparameters kept the same.

4.4 OSTIA

The onward subsequential transducer inference
algorithm (OSTIA; Oncina et al., 1993) learns
the class of subsequential functions from positive
presentations of input–output strings. OSTIA
works by first building a prefix-tree transducer
of the training data, which is then transformed
through a series of state-merging operations into
the SFST encoding the function the data is drawn
from. If a characteristic sample is contained in the
learning data, OSTIA finds a correct transducer in
polynomial (cubic) time. Since OSTIA is designed
specifically to learn subsequential relations, it
provides a useful baseline. Unfortunately, due to its
cubic runtime, OSTIA is too slow to use on larger
datasets. To give a practical speed-up, we limit
the number of samples we provide to OSTIA to
1000, which is only 5% to 10% of what the neural
transducers train on. This keeps OSTIA’s run time

7The code is available at https://github.com/
shijie-wu/neural-transducer.
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Figure 2: As the number of states in SFST increases,
accuracy drops to nearly zero.

roughly equivalent to its neural counterparts, but
unlevels the playing field, as it were.

5 Results and Discussion

We train a neural network, as described in §4.3, on
the datasets taken from our sampled SFSTs. We
discuss and analyze the results below.

Minimum Transition Coverage. We define
transition coverage of a given transition as the per-
centage of samples in the training dataset that cross
that transition. The results reported in Fig. 1 reveal
a threshold on the number of samples per transition
required to comfortably learn the transducer: 400
samples. This may seem unsurprising given neural
networks’ “notorious thirst” for data (Lake and Ba-
roni, 2018). In the vast majority of the cases when
we train on a dataset that does not meet our transi-
tion coverage threshold, the neural network does
not generalize to held-out data. And, indeed, in
the few cases where they manage to have non-zero
accuracy, we observe that early transitions in such
SFSTs have attained sufficient coverage, and are
responsible for the above zero performance. These
findings give credence to the idea that there is a
relatively simple complexity metric on the SFSTs,
i.e., transition coverage, that determines whether
or not the neural model will generalize.

Bigger Models Generalize Better. Additionally,
we find that our discovered transition coverage
threshold is not constant across all network sizes.
For instance, when we increase the size of the
hidden layers in the encoder and decoder from
200 to 300 dimensions, the sequence-to-sequence
models are able to generalize on datasets where
the transition coverage is lower; see Fig. 3, where
the purple line is the average accuracy of the larger

Figure 3: As SFST state size increases, average ac-
curacy (blue line) decreases. Increasing the neural
model’s size improves accuracy (purple line).

model. With the exception of the higher transition
coverage threshold, these models follow the same
trend as their lower dimensional counterparts.

OSTIA is Slow. In terms of wallclock time,
we find that an open-source implementation of
OSTIA8 does not scale to dataset sizes above
1000. This makes it impossible to perform
an apples-to-apples comparison of our neural
sequence-to-sequence models against OSTIA. On
the one hand, reducing the size of the training
dataset disadvantages OSTIA. On the other hand,
providing OSTIA with the full 20, 000 samples
did not terminate after 3 days on a single dataset.
OSTIA provably halts after a finite number of
steps, but given the above, a proper comparison
with neural models is not possible.

6 What about SCAN?

We now turn to the SCAN dataset and examine it in
light of our findings above. First, we encode SCAN
as an SFST. In so doing, we find it to be an outlier
in terms of the number of states it requires, which
far exceeds the 100 states of our largest SFST.
In fact, we calculate that the full SFST encoding
SCAN has 7, 728 states; see a small example
in Fig. 4. With a finite dataset size of 20, 000
input–output pairs, it should not be possible to
learn SCAN with high accuracy. However, unlike
other datasets of a similar size, SCAN turns out to
be nearly perfectly learnable in our (random-split)
experiments. This result stands in contrast to
our randomly generated SFSTs, which exhibit a
consistent relationship between the complexity of
a formal language and its learnability.

8The code is available at github.com/alenaks/OSTIA.
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q0 q1 q4

q2

q3

jump / ε

around / ε

opposite / ε

left / LTURN JUMP

right / RTURN JUMP

right / RTURN (x4) JUMPleft / LTURN (x4) JUMP

left / LTURN (x2) JUMP right / RTURN (x2) JUMP

Figure 4: A part of the minimal SFST encoding SCAN; in its entirety, it has > 7000 states.

We offer a possible theoretical behavior for
SCAN’s surprising learnability. The class of
subregular relations has a native complexity metric
built into the formalism: The size of the SFST itself,
as measured by the number of transitions. However,
the results on the SCAN dataset indicate that the
number of transitions in an SFST is not the native
complexity metric of neural networks under consid-
eration. This should not come as a surprise because
neural networks can learn context-free transduc-
tions, which are not even representable by an SFST.
While it is interesting that we empirically identify
a scaling law that consistently applies to our
randomly sampled SFSTs, it is not the whole story.

Indeed, SCAN is not a randomly sampled dataset
from the class of SFSTs: It is generated by a hand-
crafted synchronous context-free grammar (Lake
and Baroni, 2018, Figure 6). While SCAN is a com-
plex SFST, requiring thousands of transitions, it can
be encoded by a very small synchronous context-
free grammar. Casting SCAN as an SFST therefore
misrepresents its native complexity. Thus, it is
left for future work to identify a class of automata
whose native complexity metric can consistently
predict the learnability of arbitrary language tasks;
such a class will surely be higher than SFSTs on
the Chomsky hierarchy given our reported results.

7 Related Work

Our paper builds on two common strains of re-
search: The construction of datasets to benchmark
compositional behavior in neural networks and
research in grammatical inference.

7.1 Compositionality Datasets

There is a growing number of artificial language
datasets focused on compositionality. Lake and

Baroni (2018) introduced a SCAN dataset, made
up of simple navigational text commands. The task
is to translate the command in the simple natural
language into sequences of actions. One succes-
sor to SCAN is the NACS dataset (Bastings et al.,
2018), which is comparable to SCAN, but instead
of mapping multiple input signals to a single du-
plicated output symbol (e.g., walk twice→ WALK
WALK), NACS does the opposite (WALK WALK →
walk twice). Since SCAN is a finite language, its
inverse NACS is also a finite language, and it can,
thus, also be encoded as an SFST. However, this
does not hold true for general SFSTs. Inverting an
SFST often results in non-subsequential transducer
because the output tape of SFSTs is, in general, not
deterministic. Another successor is gSCAN (Ruis
et al., 2020) focuses on grounding SCAN-like com-
mands in states of a grid world. This makes gSCAN
closer to Mikolov et al.’s (2016) grid world ground-
ing for their agents. In contrast to SCAN, gSCAN
requires the agent to learn differences between
sizes and colours of different geometric shapes
and interact with them, by moving them around
the grid world. Executing a gSCAN command is
therefore much more difficult than to execute its
SCAN counterpart. As Ruis et al. (2020) assert,
the gSCAN dataset removes artefacts in SCAN
which are not central to the compositional gener-
alization. They find that models perform worse on
gSCAN than on SCAN. More recently, Bogin et al.
(2022) identify that unobserved “local structures”
in compositionality datasets are harder to learn if
no similar structures are observed during training.

7.2 Grammatical Inference

Grammatical inference studies the ability to
learning classes of formal language from data. Our
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work focuses on the learning of a restricted class of
functions generated by a correspondingly restricted
class of finite-state transducers. This allows us to
synthesize our study of compositionality in neural
models as rule-based inference by neural models,
which we can restrict in principled ways. Finite-
state machines generalise many techniques in NLP:
probabilistic finite-state automata, hidden Markov
models, Markov chains, n-grams, probabilistic
suffix trees, deterministic stochastic probabilistic
automata, weighted automata, and other syntactic
objects which generate distributions over sets of
possible infinite cardinality of strings, sequences,
words, trees, and graphs (Vidal et al., 2005).
Many grammatical inference studies of neural
networks test them on samples drawn from some
deterministic finite-state acceptors (Cleeremans
et al., 1989). See Jacobsson (2005) for a review.

Others experiment with neural networks to see
if they can learn languages higher up the Chom-
sky hierarchy. LSTMs (Hochreiter and Schmid-
huber, 1997) can perform dynamic counting and
variably learn simple counter languages such as
some k-Dyck languages and anbn patterns (Weiss
et al., 2018; Suzgun et al., 2019; Bhattamishra et al.,
2020; Hewitt et al., 2020), which are generated
by a finite-state machine with a counter on top
(Schützenberger, 1962). In contrast, Avcu et al.
(2017) show that LSTM and other RNN architec-
tures often fail to learn long-distance dependencies
drawn from simpler subregular language classes,
even on large benchmarks (Mahalunkar and Kelle-
her, 2019). Nelson et al. (2020) study the inference
of sequence-to-sequence networks, showing that
RNN, LSTM, and GRU (Cho et al., 2014) sys-
tematically fail to learn a wide range of regular
string copying functions generated from a family
of two-way transducers, which characterize reg-
ular string-to-string functions. When augmented
with attention, they reliably learn every function,
and the attention history mirrors the derivations
of the corresponding two-way transducers. These
independently productive strands of work in com-
positionality and inference suggest that our work is
a reasonable starting point for future interactions.

8 Conclusion

We study whether neural sequence-to-sequence
models are capable of learning string-to-string
transductions with Montague-style composition-
ality, i.e., where compositional behavior is defined

to be homomorphic. To execute our study, we first
provide a theoretical justification of why SFSTs
meet Montague’s definition. In the empirical
portion of the paper, we randomly sample 2800
SFSTs using the process described in §4.1, and,
then, sample input–output pairs from each SFST
to create our unique string-to-string transduction
datasets. We find that neural networks tend to
either generalize completely or fail miserably—
with little middle ground. Moreover, we identify
a simple complexity metric, transition coverage,
that seems to reliably allow us to predict when an
SFST in our randomly sampled dataset is learnable
from the dataset sampled from it.

Finally, our paper discusses how analyzing
SCAN as an SFST provides a counterexample to
our contention that transtion coverages reliably
predicts the learnability of an SFST from a given
dataset. It seems that while transition coverage
is a good metric for subregular languages, there
are datasets generated by synchronous context-free
grammars that are learnable despite requiring a
large number of transitions when encoded as an
SFST. For example, SCAN’s learnability is likely
due to the fact that the synchronous context-free
grammar used to generate it is relatively small and,
thus, under a metric such as production coverage
it would be considered simple. In conclusion, to
get a more complete view of the factors underlying
learnability, it may be fruitful to consider not
only SFSTs, but other formalisms that describe
more complex formal relations. We hypothesize
that there might yet be a class of automata whose
native complexity will more consistently predict
the learnability of a language task.
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A Proofs

Proposition 1. Let Σ and Γ be two alphabets. The function f is a string homomorphism between (Σ∗, ◦)
and (Γ∗, ◦) iff it is a minimal non-empty complete subsequential finite-state transducer with one state.

Proof. ⇒ Assume a homomorphism f and an alphabet Σ are given. Construct a finite-state transducer

with Q = F = {q0}. Let Γ = {f(σ) | σ ∈ Σ}. Create a transition q0
σ/f(σ)−−−−→ q0 for every σ ∈ Σ. This

finite-state transducer is minimal (i.e. non-empty and already has one state), therefore it is the minimal
representation of f ; see Choffrut (2003) for more details.
⇐ Since T = 〈Σ,Γ, Q, q0, F, δ〉 is non-empty, we know that its only state q0 is also a final state. Thus, T
maps ε 7→ ε, i.e., the identity element to the identity element. Let σ ∈ Σ∗ and suppose that under T we
have σ 7→ γ. Suppose σ = σ′σ′′. Since T is subsequential, there is a unique path in T that transduces
σ 7→ γ with exactly |σ| transitions. Let γ ′ be the output yield of the first |σ′| transitions and let γ ′′

be the output yield of the next |σ′′| transitions. Thus, σ′ 7→ γ ′ and σ′′ 7→ γ ′′ which shows that T is a
homomorphism since γ = γ ′γ ′′ and T a single-state transducer and we remain in that state. Finally,
we assumed completeness so that f is a total function over Σ∗. �

Proposition 2. Let A = 〈Σ, Q, q0, F, δ〉 be a complete deterministic finite-state automaton. Let
M def

=
{
Mσ | σ ∈ Σ

}
be the set of A’s symbol transition matrices. Then (M∗,⊗) with ⊗ defined in

Eq. (2) is a transition monoid with E as a distinguished identity element.9

Proof. We defineE to be the identity element, i.e., for anyA ∈M∗, we defineE⊗A def
= A

def
= A⊗E =

A. Closure follows from the fact forA,B ∈M+, we have thatA⊗B has by construction exactly one
non-zero entry in every row, as elaborated upon in the main text. To check associativity, consider

(
Mσ ⊗Mσ′ ⊗Mσ′′

)
ik

= Mσ
ijM

σ′
jj′M

σ′′
j′k (4)

for some i, j, j′, k. By the associativity of string concatenation (including when it is augmented to include
the zero string), we have that

(Mσ
ijM

σ′
jj′)M

σ′′
j′k = Mσ

ij (M
σ′
jj′M

σ′′
j′k ) (5)

which in turn implies that
(

(Mσ ⊗Mσ′
)⊗Mσ′′

)
ik

=
(
Mσ ⊗ (Mσ′ ⊗Mσ′′

)
)
ik

(6)

Thus, we have that (M∗,⊗) is a monoid. �

Proposition 3. Let T = 〈Σ,Γ, Q, q0, F, δ〉 be a complete subsequential finite-state transducer. Let
(M∗Σ,⊗) be the transition monoid associated with the input alphabet Σ and let (M∗Γ,⊗) be the transition
monoid associated with the output alphabet Γ. Then there exists a homomorphism f :M∗Σ →M∗Γ.

Proof. We define f as follows. First, we define f(E)
def
= E. Next, consider an arbitrary elementM∗Σ.

BecauseM∗Σ is a Kleene closure, we may write this arbitrary element asMσ1
Σ ⊗ · · · ⊗M

σK
Σ . Now we

define f(Mσ1
Σ ⊗ · · · ⊗M

σK
Σ )

def
= Mσ1

Γ ⊗ · · · ⊗M
σK
Γ . Thus,

f(Mσ1
Σ ⊗ · · · ⊗M

σK
Σ )

= f
(
(Mσ1

Σ ⊗ · · · ⊗M
σk
Σ )⊗ (M

σk+1

Σ ⊗ · · · ⊗MσK
Σ )
)

=
(
Mσ1

Γ ⊗ · · · ⊗M
σk
Γ

)
⊗
(
M

σk+1

Γ ⊗ · · · ⊗MσK
Γ

)

= Mσ1
Γ ⊗ · · · ⊗M

σK
Γ

This proves f is a homomorphism. �
9The element E can be thought of as an N ×N matrix where every element is ε.
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