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Abstract

Recently, a new training OAXE loss (Du et al.,
2021) has proven effective to ameliorate the
effect of multimodality for non-autoregressive
translation (NAT), which removes the penalty
of word order errors in the standard cross-
entropy loss. Starting from the intuition that re-
ordering generally occurs between phrases, we
extend OAXE by only allowing reordering be-
tween ngram phrases and still requiring a strict
match of word order within the phrases. Exten-
sive experiments on NAT benchmarks across
language pairs and data scales demonstrate the
effectiveness and universality of our approach.
Further analyses show that ngram-OAXE in-
deed improves the translation of ngram phrases,
and produces more fluent translation with a bet-
ter modeling of sentence structure.1

1 Introduction

Fully non-autoregressive translation (NAT) has re-
ceived increasing attention for its efficient decod-
ing by predicting every target token in parallel (Gu
et al., 2018; Ghazvininejad et al., 2019). However,
such advantage comes at the cost of sacrificing
translation quality due to the multimodality prob-
lem: there exist many possible translations of the
same sentence, while vanilla NAT models may con-
sider them at the same time due to the independent
predictions, which leads to multi-modal outputs in
the form of token repetitions (Gu et al., 2018).

Recent works have incorporated approaches to
improving the standard cross-entropy (XE) loss to
ameliorate the effect of multimodality. The motiva-
tion for these works is that modeling word order is
difficult for NAT, since the model cannot condition
on its previous predictions like its autoregressive
counterpart. Starting from this intuition, a thread of
research relaxes the word order restriction based on

∗Zhaopeng Tu is the corresponding author.
1The codes and models are in https://github.

com/tencent-ailab/machine-translation/
COLING22_ngram-OAXE/.

the monotonic alignment assumption (Libovický
and Helcl, 2018; Ghazvininejad et al., 2020; Sa-
haria et al., 2020). Du et al. (2021) take a further
step by removing the penalty of word order errors
with a novel order-agnostic cross entropy (OAXE)
loss, which enables NAT models to handle word
reordering – a common source of multimodality
problem. Accordingly, OAXE achieves the best
performance among these model variants.

However, OAXE allows reordering between ev-
ery two words, which is not always valid in prac-
tice. For example, the reordering of the two words
“this afternoon” is not correct in grammar. The re-
ordering generally occurs between ngram phrases,
such as “I ate pizza” and “this afternoon”. Starting
from this intuition, we extend OAXE by constrain-
ing the reordering between ngrams and requiring
a strict match of word order within each ngram
(i.e., ngram-OAXE). To this end, we first build
the probability distributions of ngrams in the target
sentence using the word probabilities produced by
NAT models. Then we find the best ordering of
target ngrams to minimize the cross entropy loss.
We implement the ngram-OAXE loss in an effi-
cient way, which only adds one more line of code
on top of the source code of OAXE. Accordingly,
ngram-OAXE only marginally increases training
time (e.g., 3% more time) over OAXE.

Experimental results on widely-used NAT bench-
marks show that ngram-OAXE improves transla-
tion performance over OAXE in all cases. Encour-
agingly, ngram-OAXE outperforms OAXE by up
to +3.8 BLEU points on raw data (without knowl-
edge distillation) for WMT14 En-De translation
(Table 1), and narrows the performance gap be-
tween training on raw data and on distilled data.
Further analyses show that ngram-OAXE improves
over OAXE on the generation accuracy of ngram
phrases and modeling reordering between ngram
phrases, which makes ngram-OAXE handle long
sentences better, especially on raw data. The

https://github.com/tencent-ailab/machine-translation/COLING22_ngram-OAXE/
https://github.com/tencent-ailab/machine-translation/COLING22_ngram-OAXE/
https://github.com/tencent-ailab/machine-translation/COLING22_ngram-OAXE/
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Figure 1: Illustration of the proposed ngram-OAXE loss with N = 2 (i.e., bigram-OAXE). We only show the
probabilities of the target words and bigrams for better illustration. Firstly, ngram-OAXE transforms the word
probability distributions to the bigram distributions by multiplying the word probabilities at the corresponding
positions. For example, P(“I ate" | Pos:1,2) = P(“I” | Pos:1) * P(“ate” | Pos:2) = 0.2*0.1=0.02. Then, we select the
ngrams (highlighted in bold) for each neighbouring positions using the efficient Hungarian algorithm.

strength of ngram-OAXE on directly learning from
the complex raw data indicates the potential to train
NAT models without knowledge distillation.

2 Methodology

2.1 Preliminaries: NAT

Cross Entropy (XE) Standard NAT models (Gu
et al., 2018) are trained with the cross entropy loss:

LXE = − logP (Y |X) = −
∑
yn

logP (yi|X), (1)

where (X,Y ) with Y = {y1, . . . , yI} is a bilin-
gual training example, and P (yi|X) is calculated
independently by the NAT model. XE requires a
strict match of word order between target tokens
and model predictions, thus will heavily penalize
hypotheses that are semantically equivalent to the
target but different in word order.

Order-Agnostic Cross Entropy (OAXE) Du
et al. (2021) remove the word order restriction of
XE, and assign loss based on the best alignment
between target tokens and model predictions. They
define the ordering space O = {O1, . . . , OJ} for
Y , where Oj is an ordering of the set of target to-
kens (y1, . . . , yI). The OAXE objective is defined
as finding the best ordering Oj to minimize the
cross entropy loss:

LOAXE = min
Oj∈O

(
− logP (Oj |X)

)
, (2)

where − logP (Oi|X) is the cross entropy loss for
ordering Oi, which is calculated by Equation 1.

2.2 ngram-OAXE Loss
Figure 1 illustrates the two-phase calculation of
ngram-OAXE : 1) constructing the probability dis-
tributions of the ngrams in the target sentence;
2) searching the best ordering of the considered
ngrams to minimize the cross entropy loss.

Formulation Given the target Y = {y1, . . . , yI},
we define the target ngrams GN of size N as all the
N continuous tokens in Y : {y1:N , · · · , yI−N+1:I}.
The output ngram distributions PG is defined as:

PG(yi:i+N−1|X) =

i+N−1∏
t=i

P (yt|X), (3)

where P (yt|X) is the prediction probability of
NAT models for the token yt in position t of the
target sentence, and N is the size of ngrams.

The ngram-OAXE objective is defined as finding
the best ordering Oj to minimize the cross entropy
loss of the considered ngrams in target sentence Y :

Lngram-OAXE = min
Oj∈O

(
− logPG(O

j |X)
)
. (4)

Ideally, the best ordering Oj should meet the fol-
lowing conditions:

1. The ngrams in Oj should not be overlapped
(e.g., “I ate" and “ate pizza" should not occur
simultaneously in one O).

2. Oj is a mixture of ngrams with different sizes
(e.g., “I ate pizza" and “this afternoon").

However, it is computationally infeasible to search
the best ngram segmentation of the target sentence
with highest probabilities. Given a target sentence
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with length I, there are 2I ngram segmentation (i.e,
each token can be labeled as the end of a ngram or
not). For each ngram segmentation with expected
length I/2, the time complexity is O((I/2)3) using
the efficient Hungarian algorithm. In this way, the
total computational complexity of the original two
conditions is O(2II3).

For computational tractability, we loosen the
conditions by:

1. We consider all ngrams in the target sentence
to avoid searching the ngram segmentation. In
other words, each word is allowed to occur in
multiple ngrams in one ordering O.

2. We only consider ngrams with a fixed size N
(e.g., only bigrams), which enables us to cast
this problem as Maximum Bipartite Match-
ing and leverage the efficient Hungarian algo-
rithm, as done in (Du et al., 2021).

By loosening the conditions, there are (I-N+1)
ngrams of size N in the sentence, and the com-
putational complexity is O(I3). Accordingly, the
loss of the ordering Oj is computed as:

PG(O
j |X) =

∏
yi:i+N−1∈Oj

PG(yi:i+N−1|X). (5)

Figure 1 shows the calculation of bigram-
OAXE loss for the target sentence “I ate pizza this
afternoon”. We consider all bigrams in the sentence
(see “Bigram List”), and obtain the probability dis-
tribution of the considered bigrams. We construct
the bipartite graph G = (U, V,E) where the first
part of vertices U is the set of N-1 neighbouring
positions (e.g., the first two positions“Pos:1,2”),
and the second part of vertices V is the list of N-1
target bigrams. Each edge in E is the prediction log
probability for the bigram in the corresponding po-
sition. We can follow Du et al. (2021) to leverage
the efficient Hungarian algorithm (Kuhn, 1955) for
fast calculation of ngram-OAXE (see the assigned
probabilities for the consider bigrams).

Implementation Algorithm 1 shows the pseudo-
code of ngram-OAXE with N = 2. The implemen-
tation of ngram-OAXE is almost the same with that
of OAXE, except that we add one more line (in red
color) for constructing the probability distribution
of ngrams. We implement ngram-OAXE on top of
the source code of OAXE, and leverage the same
recipes (i.e., loss truncation and XE pretrain) to
effectively restrict the free-order nature of OAXE.

Algorithm 1 Bigram-OAXE Loss

Input: Ground truth Y , NAT output logP
bs, len = Y .size()
Y = Y .repeat(1, len).view(bs, len, len)
costM = -logP .gather(index=Y , dim=2)
costM = costM [:, :-1, :-1] +costM [:, 1:, 1:]
for i = 0 to bs do
bestMatch[i] = HungarianMatch(costM [i])

end for
Return:costM .gather(index=bestMatch)

Since both ngram-OAXE and OAXE only mod-
ify the training of NAT models, their inference
latency is the same with the CMLM baseline (e.g.,
15.3x speed up over the AT model). Concerning the
training latency, OAXE takes 36% more training
time over the CMLM baseline, and our ngram-
OAXE takes 40% more training time, which is
almost the same to OAXE since we only add one
more line of code.

Discussion Some researchers may doubt that the
ngram-OAXE loss is not an intuitively understand-
able “global” loss, since some words are counted
multiple times. We use the example in Figure 1 to
dispel the doubt. Firstly, except for the first and
last words (i.e., “I” and “afternoon”), the ngram-
OAXE loss equally counts the other words twice,
which would not introduce the count bias.

Secondly, we follow Du et al. (2021) to start with
an initialization pre-trained with the XE loss, which
ensures that the NAT models can produce reliable
token probabilities to compute ngram probabilities.
We also use the loss truncation technique (Kang
and Hashimoto, 2020) to drop invalid ngrams with
low probabilities (e.g., “pizza this” | Pos:2,3) in the
selected ordering Oj .

Thirdly, the overlapped ngrams can help to pro-
duce more fluent translations by modeling global
context in a manner of ngram LM. For exam-
ple, the high-probability overlapped token in posi-
tion 4 “ate” (i.e., P(ate | Pos:4) = 0.4) will guide
NAT models to assign high probabilities to the
neighbouring ngrams (“I ate” | Pos:3,4) and (“ate
pizza” | Pos:4,5), which form a consistent clause
(“I ate pizza | Pos:3,4,5”). In contrast, ngram-
OAXE would not simultaneously assign high prob-
abilities to the phrases (“this afternoon” | Pos:1,2)
and (“pizza this” | Pos:2,3), since the two phrases
require NAT models to assign high probabilities to
two different words (i.e., “afternoon” and “pizza”)
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in the overlapped position 2.
The Lngram-OAXE loss with N = 2 in Figure 1 is

calculated as:

logP (“this afternoon”|Pos : 1, 2) +

logP (“I ate”|Pos : 3, 4) +

logP (“ate pizza”|Pos : 4, 5)

where the low-probability bigram (“pizza this”
| Pos:2,3) is truncated. In this way, ngram-
OAXE carries out operation at the ngram granular-
ity: ngram-OAXE requires exact match of the word
order within the ngram phrases, and allows reorder-
ing between phrases (e.g., “I ate pizza | Pos:3,4,5”
and “this afternoon | Pos:1,2").

3 Experiment

3.1 Experimental Setup
Data We conducted experiments on major bench-
marking datasets that are widely-used in previ-
ous NAT studies (Ma et al., 2019; Saharia et al.,
2020): WMT14 English⇔German (En⇔De, 4.5M
sentence pairs) and WMT17 English⇔Chinese
(En⇔Zh, 20.0M sentence pairs). We preprocessed
the datasets with a joint BPE (Sennrich et al., 2016)
with 32K merge operations for the En⇔De and
En⇔Zh datasets. For fair comparison with prior
work, we reported the Sacre BLEU (Post, 2018)2

on the En-Zh task, and the compound BLEU (Pap-
ineni et al., 2002) on the other tasks.

Knowledge Distillation We closely followed pre-
vious works on NAT to apply sequence-level knowl-
edge distillation (Kim and Rush, 2016) to reduce
the modes of the training data. Specifically, we
obtained distilled data by replacing the target side
of the original training data (i.e., raw data) with
translation produced by an external AT teacher.
Consistent with previous works (Ghazvininejad
et al., 2019, 2020; Du et al., 2021), we employed
Transformer-BIG (Vaswani et al., 2017) as the AT
teacher for knowledge distillation.

NAT Models We validated our approach on the
representative NAT model – CMLM (Ghazvinine-
jad et al., 2019), which uses the conditional mask
LM (Devlin et al., 2019) to generate the tar-
get sequence from the masked input. The NAT
model shares the same architecture as Transformer-
BASE (Wang and Tu, 2020): 6 layers for both the

2SacreBLEU hash : BLEU+case.mixed+lang.en-zh + num-
refs.1+smooth.exp+test.wmt17+tok.zh+version.1.4.2
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Figure 2: Impact of N-gram choice in ngram-
OAXE loss (i.e., N in Equation 3). OAXE can be
viewed as a special case of ngram-OAXE with N = 1.

encoder and decoder, 8 attention heads, 512 model
dimensions. We chose the CMLM models with the
vanilla XE loss (Ghazvininejad et al., 2019) and
the OAXE loss (Du et al., 2021) as our two main
baselines. To keep consistent with main baselines,
we set 5 as length candidates for all CMLM models
during inference.

We generally followed the hyperparameters
used in (Ghazvininejad et al., 2019). We trained
batches of approximately 128K tokens using
Adam (Kingma and Ba, 2015). The learning rate
warmed up to 5× 10−4 in the first 10K steps, and
then decayed with the inverse square-root schedule.
We trained all models for 300k steps, measured
the validation BLEU at the end of each epoch, and
averaged the 5 best checkpoints. We followed (Li
et al., 2019; Sun and Yang, 2020; Saharia et al.,
2020; Du et al., 2021) to use de-duplication trick to
remove repetitive tokens in the generated output.

3.2 Ablation Study

In this section, we investigated the impact of differ-
ent components for ngram-OAXE on the WMT14
En⇔De validation sets.
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Figure 3: Impact of the truncation margin π for NAT
models trained on the distilled data.

Impact of Ngram Size We first investigated the
impact of different N in the ngram-OAXE loss
on the translation performance. Figure 2 shows
the results for both raw data and distilled data. As
seen, the bigram-OAXE achieves the best perfor-
mance on raw data, while 4gram-OAXE performs
best on the distilled data. We attribute the differ-
ent behaviors to the difficulty of the dataset: raw
data contains more modes than distilled data (Gu
et al., 2018), thus it is more difficult to learn larger
ngrams from the complicated raw data. In the fol-
lowing experiments, we set N = 2 for raw data,
and N = 4 for distilled data.

Impact of Truncation Margin Figure 3 shows
the impact of truncation margin π, which is
searched from {0, 0.05, 0.10, 0.15, 0.20}. Intu-
itively, higher π drops more ngrams. When π in-
creases from 0 to 0.05, we achieved 0.7∼0.9 BLEU
improvement by dropping likely invalid ngrams.
ngram-OAXE is robust to the truncation margin π:
when π further increases, the performance does not
vary too much. We follow Du et al. (2021) to use
π = 0.15 for all language pairs and datasets in the
following experiments.

3.3 Translation Performance

In this section, we conduct comprehensive experi-
ments to validate the effectiveness of the proposed
ngram-OAXE model. First, we use multiple se-
mantically equivalent references to better evaluate
the multimodality nature of generated translation,
which serves as the main results for analyses in the
following sections. Then we compare our approach
with previous work on the benchmarking testsets
with single reference.

Model W14 En-De NIST Zh-En

BLEU ∆ BLEU ∆

Raw Data
Transformer 71.4 - 41.7 -
CMLM 28.1 - 12.1 -
+OAXE 57.5 +29.4 36.5 +24.4
+ngram-OAXE 61.3↑⇑ +33.2 38.6↑⇑ +26.5

Distilled Data
Transformer 72.7 - 42.0 -
CMLM 50.7 - 23.7 -
+OAXE 68.0 +17.3 40.4 +16.7
+ngram-OAXE 68.9 ↑⇑ +18.2 41.2 ↑⇑ +17.5

Table 1: BLEU scores on test sets with multiple refer-
ences. “∆” denotes the improvement over CMLM. “↑”
and “⇑” denotes significantly better than CMLM and
OAXE with p < 0.05, respectively. The Zh-En NMT
model is trained on the WMT17 Zh-En data.

Multiple References We follow Du et al. (2021)
to use two test sets with multiple references: 1) the
dataset released by Ott et al. (2018) that consists
of ten human translations for 500 sentences taken
from the WMT14 En-De test set; and 2) the combi-
nation of NIST02-08 Zh-En test sets that consists
of 7497 sentences with four references. The trans-
lation models are trained on the WMT14 En-De
and WMT17 Zh-En training data, respectively.

Table 1 lists the translation performance. Encour-
agingly, ngram-OAXE narrows the performance
gaps between:

• NAT models trained on raw data and on distilled
data: Take W14 En-De as an example, knowl-
edge distillation brings an improvement of 22.6
BLEU points over raw data for XE (i.e., from
28.1 to 50.7). OAXE narrows the gap to 10.5
BLEU points (i.e., 57.5 vs. 68.0), and our ngram-
OAXE further narrows the gap to 7.6 BLEU
points (i.e., 61.3 vs. 68.9), moving toward train-
ing NAT models without distillation.

• NAT and AT models trained on raw data: For
independent NAT models without distillation,
OAXE reduces the performance gap from 43.3
to 13.9 for En-De, and from 29.6 BLEU to 5.2
BLEU for Zh-En. Ngram-OAXE further reduces
the gaps to 10.1 and 3.1 BLEU points, indicat-
ing the potential of NAT to become a practical
system without relying on external resources.
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Model WMT14

En-De De-En

Autoregressive Transformer 27.6 31.4

Non-Autoregressive
CTC Loss (Libovický and Helcl, 2018) 17.7 19.8
Flowseq (Ma et al., 2019) 18.6 23.4
Imputer (Saharia et al., 2020) 15.6 -
CMLM (Ghazvininejad et al., 2019) 10.6 15.1

+AXE (Ghazvininejad et al., 2020) 20.4 24.9
+Correction (Huang et al., 2022) 20.6 25.4
+OAXE (Du et al., 2021) 22.4 26.8
+ngram-OAXE (Ours) 23.6↑⇑ 27.9↑⇑

Table 2: BLEU scores on testsets with single reference for NAT models trained on the raw data.

Model WMT14 WMT17

En-De De-En En-Zh Zh-En

Autoregressive Transformer 27.8 31.3 34.4 24.0

Non-Autoregressive
Bag-of-ngrams (Shao et al., 2020) 20.9 24.6 - -
Flowseq (Ma et al., 2019) 21.5 26.2 - -
Bigram CRF (Sun et al., 2019) 23.4 27.2 - -
Imputer (Saharia et al., 2020) 25.8 28.4 - -
CMLM (Ghazvininejad et al., 2019) 18.1 21.8 24.2 13.6

+AXE (Ghazvininejad et al., 2020) 23.5 27.9 30.9 19.8
+GLAT (Qian et al., 2021) 25.2 29.8 - -
+CTC+VAE (Gu and Kong, 2021) 27.5 31.1 - -
+OAXE (Du et al., 2021) 26.1 30.2 32.9 22.1
+ngram-OAXE (Ours) 26.5↑⇑ 30.5↑⇑ 33.2↑⇑ 22.8↑⇑

Table 3: BLEU scores on testsets with single reference for NAT models trained on the distilled data.

Benchmarks with Single Reference We also
evaluated the performance of fully NAT models
on benchmarks with single reference. In addition
to the closely related XE variants (e.g., AXE and
OAXE), we also compare against several strong
baseline models: 1) CTC Loss – a NAT model with
latent alignments (Libovický and Helcl, 2018); 2)
Flowseq – a latent variable model based on gen-
erative flow (Ma et al., 2019); 3) Imputer – an ex-
tension of CTC with the use of distillation during
training (Saharia et al., 2020); 4) Corretion – a NAT
model with error correction mechanism (Huang
et al., 2022); 5) Bigram CRF – the CRF-based semi-
autoregressive model (Sun et al., 2019); 6) GLAT
– Glancing-based training (Qian et al., 2021); 7)
CTC+VAE – combining the CTC loss and latent

variables (VAE) (Gu and Kong, 2021).

Table 2 lists the results on the raw data that do
not rely on any external resources (e.g., AT models
for KD). CMLMs trained by ngram-OAXE im-
proves over the XE-trained baseline by 12.8 BLEU
points on average, and outperforms the strong
OAXE by +1.0 BLEU points. These results in-
dicate that the ngram supervision helps to better
capture the complicated patterns from the raw data.

Table 3 lists the BLEU scores on the distilled
data. Our approach consistently improves over
the strong OAXE loss in all cases, demonstrat-
ing the effectiveness and universality of the pro-
posed ngram-OAXE loss. Our approach also out-
performs all existing NAT using a single technique
(exclude Gu and Kong (2021) with two techniques).
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Model Ngram Size

1 2 3 4

Raw Data
CMLM 81.8 48.8 30.1 20.4

+OAXE 86.0 64.3 48.0 35.6
+ngram-OAXE 88.2 69.8 54.7 42.3

Distilled Data
CMLM 86.0 63.3 47.1 36.0

+OAXE 90.6 75.4 62.0 51.1
+ngram-OAXE 90.5 76.1 62.9 52.0

Table 4: Accuracy (%) of the generated ngram phrases
in the model outputs.

Refer.
The Vollmaringen Male Voice Choir got things
running with atmospheric songs such as “Im
Weinparadies” and “Lustig, ihr Brüder”.

CMLM
The MGV Vollmaringen opened with atmo-
spheric songs songs as “Im Weinparapara” and
“Lustig, her brothers”.

OAXE
The MGV Vollmaringen opened with atmo-
spheric songs such “” “Im Weinpara” and
“Lustig, her brothers”.

Ours
The MGV Vollmaringen opened with atmo-
spheric songs such as “Im Weinparadies” and
“Lustig, ihr Brüder”

Table 5: Examples of De-En translation for NAT models
trained on distilled data. OAXE model often mistakenly
translates some ngram phrases (in red color), and ngram-
OAXE can correctly translate them (in blue color).

4 Analysis

In this section, we provide some insights where
ngram-OAXE improves over CMLM (i.e., XE)
and OAXE from different perspectives. Otherwise
stated, we report results on the WMT14 En-De test
set with multiple references (i.e., the column “W14
En-De” in Table 1).

4.1 Analysis of Ngram Translation

We first investigate whether the proposed ngram-
OAXE improves the generation of phrases in the
output. To this end, we use the individual ngram
scores as the accuracy of generating ngrams of the
corresponding size. An individual ngram score is
the evaluation of just matching ngrams of a specific
size, such as unigram and bigram.3 As shown in Ta-

3The individual ngram BLEUs are generally produced
by the BLEU script for the same model outputs, and do not
refer to the model training. For example, given the output of
ngram-OAXE trained on the WMT14 En-De raw data, the
script outputs “BLEU = 61.3 88.2/69.8/54.7/42.3”. The

(a) An example constituent tree.

Level Syntactic Sequence

3 NP VP .
2 PRP VBD NP NP .
1 PRP VBD NN DT NN .

(b) Syntactic sequences at different levels.

Figure 4: Constituent tree of the sentence “I ate pizza
this afternoon.” (a), and the corresponding syntactic
sequences at different levels (b, from bottom to up). “2-
level” denotes the syntactic sequence at the last but one
level of the constituent tree.

ble 4, our ngram-OAXE consistently outperforms
the OAXE counterparts in all ngram levels and the
improvement goes up with the increase of ngram,
demonstrating that ngram-OAXE indeed raises the
ability of NAT model on capturing the patterns of
ngram phrases.

Case Study Table 5 shows an translation exam-
ple on the WMT14 De-En testset. The vanilla
CMLM model mistakenly generates the ngram
phrase “songs songs as” with repeated words
“songs". Although the OAXE model remedies
the repetition problem, it fails to generate the
phrase “such as”. In addition, both the CMLM
and OAXE models fail to generate the names of
the two songs “Im Weinparadies” and “Lustig, ihr
Brüder”. Our ngram-OAXE successfully generate
all the three ngram phrases.

4.2 Analysis of Structure Modeling

Structure Ordering To assess the models’ abili-
ties of modeling reordering between ngram phrases,
we follow Wang et al. (2021) to measure the pre-
cision of outputs at the syntactic level, which can
reflect the structure ordering at phrase level. Specif-
ically, we use the syntactic sequence at a certain

final BLEU score is 61.3, and the individual 1gram, 2gram,
3gram, and 4gram BLEU scores are 88.2, 69.8, 54.7, and 42.3,
respectively.
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Model Syntactic Level

1 2 3 4

Raw Data
CMLM 18.3 11.5 13.4 17.4
OAXE 37.3 28.5 26.6 28.5
ngram-OAXE 39.9↑⇑ 30.9↑⇑ 29.4↑⇑ 30.0↑⇑

Distilled Data
CMLM 31.5 14.7 23.2 25.8
OAXE 41.9 33.0 30.4 31.2
ngram-OAXE 42.6↑⇑ 33.8↑⇑ 31.4↑⇑ 32.3↑⇑

Table 6: BLEU scores of the syntactic sequence at dif-
ferent levels (from bottom to up).
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Figure 5: Translation performance with respect to the
length of the target sentence.

layer (Figure 4b) of the constituent tree of the gen-
erated outputs (Figure 4a). Generally, each tag at
a higher syntactic level covers more words (e.g.,
“VP (ate pizza this afternoon)” at 3-level) and cor-
responds well to a ngram phrase. Accordingly,
higher-level syntactic sequences denotes structure
ordering at a larger granularity. We calculate the
BLEU score for the syntactic sequences of models’
outputs to measure the precision of the structure
ordering at different granularities.

Table 6 shows the results for syntactic sequences
at different levels. OAXE significantly improves
the precision of structure order over the CMLM
baseline by a large margin, which is consistent with
the claim of Du et al. (2021) that OAXE is better
at modeling word order. Our ngram-OAXE can
further improve the precision of structure order,
which we attribute to that ngram-OAXE models
ordering at a larger granularity (i.e., ngrams).

Model Repetition PPLs

Gold Test Set 0.04% 90.9

Raw Data
CMLM 31.11% 1820.2
+OAXE 3.14% 237.6
+ngram-OAXE 2.99% 199.9

Distilled Data
CMLM 12.10% 1435.5
+OAXE 1.56% 240.8
+ngram-OAXE 0.98% 125.9

Table 7: Analyses of the generated outputs. Lower
repeated token percentage (“Repetition") denotes lower
multimodality in a model. Lower perplexities (“PPLs")
denote better fluency.

Sequence Length We also investigate the model
performance for different sequence lengths. We
split the test sets into different buckets based on
the reference sentence length, indicating whether
a system does better or worse at shorter or longer
sentences. Generally, longer sentences are more
complex in linguistic structure. Figure 5 shows
that results on the sampled WMT14 En-De test set
with multiple references. As seen, the performance
of XE drops rapidly when the sequence length in-
creases, and OAXE can significantly improves per-
formance on longer sentences with a better model-
ing of word order. Our ngram-OAXE can handle
long sequences even better, which we attribute to
the strength of ngram-OAXE on both translating
longer ngrams and modeling structure ordering be-
tween ngram phrases.

4.3 Analysis of Generated Output

Token Repetition One widely-cited weakness of
existing NAT models is the multimodality prob-
lem, in which a model may consider many pos-
sible translations at the same time due to the in-
dependent predictions of target words (Gu et al.,
2018). Accordingly, the NAT output typically con-
tains many repetitive tokens (e.g., “songs songs” in
Table 5). We followed the common practices to
use repeated token percentage for measuring mul-
timodality in a NAT model, as listed in Table 7.
While OAXE can mostly alleviate the repetition
problem, the proposed ngram-OAXE can further
reduce the repeated percentage over the very strong
baseline (e.g., 0.98% vs. 1.56% on distilled data).
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Generation Fluency We followed Du et al.
(2021) to measure the generation fluency with
language models released by Fairseq,4 which are
trained on the News Crawl corpus for the tar-
get language. To better evaluate the fluency of
the generated output, we use a practical trick de-
duplication (Saharia et al., 2020) to remove the
repetitive tokens. Clearly, ngram-OAXE consis-
tently improves fluency in all settings compared
with OAXE. We attribute the fluency improvement
to the strength of ngram-OAXE on both translating
longer ngrams5 and modeling sentence structures.

5 Related Work

Alleviating Multimodality Problem for NAT A
number of recent efforts have explored ways to
improve the NAT models’ ability to handle mul-
timodality. One thread of work iteratively refines
the generated outputs with K decoding passes (Lee
et al., 2018; Gu et al., 2019), which sacrifices the
primary benefit of NAT models – fast inference (Ka-
sai et al., 2021). To maintain the advantage of de-
coding efficiency, another thread of research aims
to improve fully NAT models by building depen-
dencies between target tokens (Ma et al., 2019; Shu
et al., 2020), or improving the training loss to ame-
liorate the effect of multimodality (Ghazvininejad
et al., 2020; Saharia et al., 2020; Du et al., 2021).

Knowledge distillation (Kim and Rush, 2016)
is the preliminary step for the majority of NAT
systems, which can effectively alleviate the mul-
timodality problem by simplifying the training
data (Zhou et al., 2020) and reducing the token
dependency in target sequence (Ren et al., 2020).
However, knowledge distillation relies on an exter-
nal AT teacher, which prevents NAT models from
self-completion. The ultimate goal is to train NAT
models from scratch (Huang et al., 2022). Our
work shows that augmenting NAT models the abil-
ity to handle the complex patterns of raw data (e.g.,
reordering patterns) with advanced training loss is
a promising direction to accomplish the goal.

Incorporating Ngrams into NMT Previous
studies have incorporated the ngram phrases as
an external signal to guide the generation in AT
models (Wang et al., 2017; Zhang et al., 2017;
Zhao et al., 2018). Concerning NAT models, Guo

4https://github.com/pytorch/fairseq/
blob/master/examples/language_model/

5The longer ngrams generally account for the fluency of
the translation.

et al. (2019) enhance decoder inputs with ngram
phrases, Sun et al. (2019) use CRF to model bi-
gram dependencies among target tokens to improve
the decoding consistency. Kong et al. (2020) use
LSTM to generate ngram chunks, which are then
merged via heuristic searching algorithm. Closely
related to our work, Ma et al. (2018) use bag of
ngram phrases as additional training objective for
AT models, and Shao et al. (2020) adapt this idea to
NAT models. While Shao et al. (2020) require NAT
models to fit all the possible orderings of ngrams,
we compute the ngram-OAXE loss based on the
best ordering of ngrams.

6 Conclusion

In this work, we extend OAXE by modeling or-
dering at the ngram phrase granularity, which can
better ameliorate the effect of multimodality for
NAT models. Benefiting from modeling transla-
tion at a larger granularity, the proposed ngram-
OAXE loss performs better at translating phrases
and long sentences, and improves the fluency of
generated translations. Extensive experiments on
representative NAT benchmarks show that ngram-
OAXE consistently improves translation perfor-
mance over OAXE, and is especially effective on
raw data without distillation.
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