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Abstract

Datasets with significant proportions of bias
present threats for training a trustworthy model
on NLU tasks. Despite yielding great progress,
current debiasing methods impose excessive
reliance on the knowledge of bias attributes.
Definition of the attributes, however, is elusive
and varies across different datasets. Fur-
thermore, leveraging these attributes at input
level to bias mitigation may leave a gap
between intrinsic properties and the underlying
decision rule. To narrow down this gap
and liberate the supervision on bias, we
suggest extending bias mitigation into feature
space. Therefore, a novel model, Recovering
Intended-Feature Subspace with Knowledge-
Free (RISK) is developed. Assuming that
shortcut features caused by various biases
are unintended for prediction, RISK views
them as redundant features. When delving
into a lower manifold to remove redundan-
cies, RISK reveals that an extremely low-
dimensional subspace with intended features
can robustly represent the highly biased dataset.
Empirical results demonstrate our model can
consistently improve model generalization to
out-of-distribution set, and achieves a new state-
of-the-art performance 1.

1 Introduction

Pretrained language models have achieved remark-
able performance on a wide range of natural lan-
guage understanding (NLU) benchmarks (Devlin
et al., 2019). However, when encountering more
challenging test sets, they dramatically fail (McCoy
et al., 2019). Studies indicate such a dilemma is
mainly rooted in the model’s reliance on specific
dataset biases (Gururangan et al., 2018; Zhang
et al., 2019a; Schuster et al., 2019), which correlate
well with labels but not for the intended underlying
task. For instance, on the natural language

*Corresponding author.
1Our code and data are available at https://github.com/C

uteyThyme/RISK.git.

Figure 1: A toy example that illustrate bias in MNLI-
matched dev set. BERT’s prediction Neutral does not
comply with the assumed decision rule (Entailment,
Contradiction) caused by pre-defined bias.

inference (NLI) task, models tend to use negation
cues ("not", "no", etc.), for a Contradiction
prediction, whereas a learner intended to learn
the underlying correlation based on the context
semantics.

To train a NLU model that captures the un-
derlying correlation from biased datasets, current
approaches focus on how to leverage kinds of
supervision effectively. One of the most popular
forms of such supervision is to explicitly construct
a bias-only model under human annotations, e.g., a
hypothesis-only model for NLI task, and factor
it out from the main model through ensemble-
based training (Clark et al., 2019; Utama et al.,
2020a). Another empirical line of research shifts
supervision from bias type annotations to weak
model learners. They find models with limited
capacity (Clark et al., 2020; Sanh et al., 2021)
or training on limited dataset (Utama et al.,
2020b) prone to extract shortcut patterns first, the
observation of which can be utilized to mitigate
dataset bias.

Despite the supervision on bias has shown
effectiveness in bias mitigation, the fundamental
questions remain unsolved. On one hand, ac-
quirement of supervision on the bias either from
human knowledge or model learning behaviours, is
often a laborious and expensive cost. Moreover,
considering the definition of bias attributes is
elusive and varies across datasets, the external

https://github.com/CuteyThyme/RISK.git
https://github.com/CuteyThyme/RISK.git
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knowledge can not cover all types of biases in the
dataset, leaving potential bias underexplored, e.g.,
bias beyond the definition or bias harder to learn.
On the other hand, capturing bias only at the input
examples is just like a black box, being oblivious
to the intrinsic properties that drives model to make
prediction. The toy example shown in Figure 1
reveals that predefined bias does not necessarily
lead the model to learn the unintended decision
rule (i.e., constituent bias triggers an Entailment
prediction, negation bias triggers an Contradiction
prediction). Hence, current debiasing methods
inevitably fall short in above two limitations.

On account of the consensus that shortcut
features induced by biased examples are detri-
mental for prediction, various kinds of biases
can thus be equivalently viewed as redundan-
cies. When delving into feature space, closer
to the decision rule to remove these redundant
features, supervision of the attributes from biased
examples can be liberated as well. Therefore,
we develop a novel model, Recovering Intended-
Feature Subspace with Knowledge-Free (RISK).
Aimed with purifying redundancies from feature
space, RISK reveals that for a highly biased dataset,
a small subset of informative and shared features,
i.e. intended ones, can give rise to a robust
prediction. Concretely, RISK maps features into a
lower manifold and learns an orthogonal projector
spanned by geometric median subspace to recover
the intended-feature subspace in an end-to-end
manner.

Experimental results on three NLU tasks show
RISK outperforms other methods by a large margin,
indicating its potential to mitigate bias and the
prerequisites of supervision on biased attributes
can be liberated. Moreover, when transferring
to more challenging out-of-distribution set, RISK
can consistently improve the robustness of NLU
models. To sum up, our contributions are three-fold
as follows:
• We propose a novel feature-based debiasing

model, termed as RISK. RISK is the initial attempt
that free of the supervision on bias attributes.
• We reveal shortcut features as part of redun-

dancy, and thus only leveraging the informative
features shared across biased and bias-free exam-
ples can achieve the goal of bias mitigation.
• We conduct extensive experiments to validate

the effectiveness of RISK in mitigating bias. More-
over, RISK exhibits great power to generalize to

more challenging scenarios, showing its potential
to robustify NLU models.

2 Bias Mitigation As Feature Redundancy

2.1 Problem Setup
Given training dataset D = {xi, yi}Ni=1 including
C classes, a NLU task requires the model to
understand the semantic of input text xi and then
predict the target label yi. Generally, the model is
composed of a feature extractor F(·) : F(x) → z
and a linear classifier g(·) : g(z) → ŷ.

When the model is trained on a highly biased
dataset, it will easily capture shortcut features in
high-dimensional z. Since the shortcut features are
the unintended ones that induce predictions, we
treat them as a kind of redundancy. Therefore,
mitigating dataset bias can be subsumed under
minimizing redundancy in feature space.

2.2 Feature Redundancy by Subspace
Modeling

In statistical machine learning, feature subspace
paves a path towards eliminating redundant
features, as it sheds light on projecting high-
dimensional feature onto one subspace, which
can significantly capture its most significant
information. A common formulation for subspace
modeling is to find an orthogonal projection P
of dimension d whose subspace can robustly
represents the input features (Vaswani et al., 2018).
Let I denote the identity matrix in the ambient
space of the high-dimensional feature z, and the
least q-th power deviations formulation for q > 0
seeks P that minimizes:

L(P) =
N∑
i=1

∥∥(I−P)zi
∥∥q
2

(1)

Classically, taking q = 2 results in principal
component analysis(PCA), which finds the orthog-
onal directions of maximum variance:

L(P) =
N∑
i=1

∥∥(I−P)zi
∥∥2
2

2.3 Geometric Median Subspace as solution.
However, even approximate minimization of Eq. 1
is nontrivial, since it has been shown to be NP
hard for 1 ≤ q < 2, furthermore, q < 1 can
result in a wealth of local minima. Literature have
theoretically proven the preferable minimization
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Figure 2: Model Architecture of RISK.

is q = 1 (Osborne and Watson, 1985; Nyquist,
1988), and thus equals to replace the least squares
formulation in PCA with least absolute deviations
as follows:

L(P) =
N∑
i=1

∥∥(I − P )zi
∥∥1
2

(2)

A nice interpretation of the minimizer of above
equation is a Geometric Median Subspace (Fletcher
et al., 2009), analogous geometric median in
modeling centers of input features. Ideally, once
we solve a orthogonal projection spanned by this
geometric median space, we can achieve an robust
estimation of all input features. Since the shortcut
features are not shared by bias-free examples, they
will be removed automatically as redundancy.

3 RISK: Feature-based Debiasing
Without Supervision on Bias

Guided by the theoretical subspace modeling
discussed above, in this section, we illustrate
the detailed implementation of RISK. In practice,
we adopt autoencoder as the main architecture.
Leveraging autoencoder to map features into a
lower manifold is the first stage of removing
redundant features. We further add a simple but
effective Recovery Layer within autoencoder to
learn a orthogonal projection P, leaving the shared
informative features to perform final predictions.

3.1 Delving into Feature Space

We use BERT Fθ to map each textual data point
xi into a high-dimensional feature space, that is,

z = F(x, θ). To be specific, z corresponds
to [CLS] token embedding the last layer BERT
outputs. It has been convinced that embeddings
from pre-trained language models contain much
redundency for down-stream NLU tasks (Dalvi
et al., 2020). As for highly biased dataset, z will
easily capture substantial shortcut ones. We thus
categorize z into following two feature types:

Intended Features are the informative features
shared across biased and bias-free examples.

Redundant Features include shortcut features
that only correlate well with labels, and other
redundant features (e.g., task-irrelevant, task-
relevant but non-robust ones).

3.2 Autoencoder: To Be Informative Features
For the first stage of mitigating feature redundancy
as a way of bias mitigation, we opt to employ an
encoder E composed of a three-layer MLP to map
z into a lower manifold.

Reconstruction loss. As shown in Figure 2, to
be symmetric of the encoder E that project z into a
lower manifold, we also train a decoder D that map
ẑ into z̃, i.e., the reconstruction representation of
z, formulating a bottleneck autoencoder as result.
The reconstruction loss is thus defined as:

Lrecon =
N∑
i=1

∥∥zi − D(ẑi)
∥∥2
2

(3)

The reconstruction term is used to ensure that a
good reconstruction of the original feature can be
obtained by using the learned low-dimensional
subspace features. Notably, as we defined,
informative is one of the key characteristics of
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the intended features. We can further prove
that minimize the reconstruction error can serve
as maximizing the lower bound of the mutual
information between z and ẑ. In general ẑ is
not an exact reconstruction of z, but rather in
probabilistic terms as the mean of a distribution
p = (Z|Ẑ = ẑ), this yields an associated
reconstruction error (Vincent et al., 2010) to be
optimized:

Lrecon ∝ −logp(z|ẑ)

In conjuction with it, minimizing the reconstruction
loss actually carry the following optimization:

minE[Lrecon(z, ẑ)] = maxE[logP(z|ẑ)] (4)

Maximizing the expectation of the conditional
probabilty E[logP(z|ẑ)] is equivalent to maxi-
mizing the mutual information between z and
ẑ (Chen et al., 2022). This promises the subspace
where ẑ lies in is informative and task-relevant for
downstream task.

3.3 Recovery Layer: To Be Shared Features
In fact, only utilizing autoencoder can not promise
the latent subspace as the intended one we defined
before, since shortcut features dominated by
biased examples also contain useful but not robust
information for prediction. Therefore, going a step
further to remove redundant features is needed.

Projection Loss. Leveraging the core idea of
subspace modeling, geometric median subspace is
a preferable minimum to solve the shared features
in ideal. In this way, we can recast the problem into
learning an orthogonal projector spanned by such
median subspace. With the expansion of Eq. 2, the
following projection loss function can be achieved:

Lproj(A) = λ1

N∑
i=1

∥∥zi −A⊤Azi
∥∥1
2

+ λ2

∥∥AA⊤ − Id
∥∥2
F

(5)

we use A to denote the transformation that reduces
feature dimension to d, and A⊤ denotes the
transpose of A, Id denotes the d×d identity matrix
and

∥∥ ·
∥∥
F

denotes the Frobenius norm. Here λ
is an hyperparameter represent the weight of the
projection loss to the whole learning objective,
for the simplicity, we let λ1 = λ2. We later
show it associates with the dataset characteristics
in Sec. 5.1.

It can be noted that the first term in the weighted
sum of above loss function is close to Equation 2
as long as AA⊤ is close to an orthogonal projector.
To enforce this requirement, we introduce the
second term that imposes the nearness of AA⊤

to an orthogonal projection.
Practically, the transformation A is implemented

as a linear MLP layer within the autoencoder
E , coined as the Recovery Layer. By applying
the projection loss, the parameters of the trained
Recovery Layer can approximate the minimal
result of Eq. 2. In a sense, the Recovery Layer can
be considered as bridging the connections between
statistical machine learning and DNN.

3.4 Predictors Fitting in the Intended-Feature
Subspace

Intuitively, as a robust model to defend against
various distribution shift, it is expected to learn
an optimal predictor g, which relies on only the
intended features most relevant to current task to
make predictions. So for the final step, we just fit a
linear classifier in the recovered subspace:

g(ẑ) = W⊤ẑ+ b

Along with minimizing the cross entropy be-
tween g(ẑ) and y, the final learning objective of
RISK is summed into:

LRISK = LCE + Lrecon + Lproj

With the dual regularization of reconstruction
loss and projection loss, we therefore promise the
intended-feature subspace is de facto informative
and shared.

4 Experiments

In this section, we provide comprehensive analysis
on RISK through extensive experiments on three
NLU tasks, and compare out-of-distribution as
well as in-distribution accuracy of RISK with other
debiasing methods to demonstrate its strength.

4.1 Tasks and Biased Datasets

We evaluate our approach on three NLU tasks:
natural language inference (NLI), fact verification,
and paraphrase identification.

Natural Language Inference aims to determine
whether a premise sentence entails a hypothesis
sentence. We use the MNLI dataset (Williams et al.,
2018) for training, nevertheless, recent studies
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indicate that models trained on these NLI datasets
tend to adopt shallow heuristics(e.g., lexical
overlap, hypothesis-only) to predict (Gururangan
et al., 2018; Poliak et al., 2018). Based on
the findings, HANS(Heuristic Analysis for NLI
Systems, McCoy et al. (2019)) is designed to
contain many examples where the heuristics fail,
and we condider it as the challenging set for
evaluation.

Fact Verification requires models to validate a
claim in the context of evidence. For this task, we
use the training dataset provided by the FEVER
challenge (Thorne et al., 2018). Studies show
that models ignoring evidence can still achieve
high accuracy on FEVER, accordingly, Fever-
Symmetric dataset (Schuster et al., 2019) is used
as the test sets for evaluation.

Paraphrase Identification is designed to iden-
tify whether a pair of sentences have the same thing.
We train the models on QQP (Iyer and Csernai,
2017), a widely used dataset for the task. Similarly
to MNLI, models trained on QQP are inclined to
mark any sentence pairs with high word overlap as
paraphrases despite clear clashes in meaning. As
for the balance with respect to the lexical overlap
heuristic in PAWS(Paraphrase Adversaries from
Word Scrambling, Zhang et al. (2019b)) , we use it
as our out-of-distribution set.

4.2 Baseline Methods

We compare RISK against seven debiasing models
either with bias known or unknown. As for the
bias-known models, supervision on bias is mainly
the bias type, and for the bias-unknown models,
supervision comes from a shallow model. For all
these baseline methods, we adopt the BERT-base
model (Devlin et al., 2019) as the main model.

Bias-known-prior Models. i). Reweight-
ing (Clark et al., 2019) trains on a weighted
version of the data to encourage the main model
to focus on examples the bias-only model gets
wrong. ii). Product-of-Experts (Clark et al., 2019)
forces the main model to focus on learning from
examples that are not predicted well by the bias-
only model via logit ensembling. iii). Learned-
Mixin (Clark et al., 2019) further improves this
ensemble-based method by parameterizing the
ensembling operation, allowing the main model
to learn when to incorporate the output from the
bias-only model for the ensembled prediction. iv).
Conf-reg (Utama et al., 2020a) presents a novel

confidence regularization method that encourage
the main model to make predictions with lower
confidence on examples that contained biased
features.

Bias-known-free Models. For this line of
research, models can bypass the need of hand-
engineered bias-specific structures since a shallow
model is utilized to identify biased examples
automatically. v). Self-debiasing (Utama et al.,
2020b) observe that BERT-base trained on a
small subset of the training dataset can grasp
the distribution of biased examples. vi). Weak
Learner (Sanh et al., 2021) view models with
limited capacity, i.e. Tiny-BERT (Turc et al.,
2020), as the shallow one to obtain biased features.
vii). BERT+FBILSTM (Yaghoobzadeh et al.,
2021) employ example forgettting to find minority
examples, and robustify the model by fine-tuning
twice, first on the full training data and second on
the minorities only.

4.3 Implementation Details
For each task, we utilize the training configurations
that have been proven to work well in previous
studies, that is, a learning rate of 5e−5 for MNLI
and 2e−5 for FEVER and QQP, and choose
AdamW as optimizer with a weight decay of 0.01.
For fair comparison, we keep the same bias-only
model for all the ensemble-based baselines. To
tackle the high performance variance on test sets
as observed by Clark et al. (2019), we run each
experiment five times and report the mean accuracy
scores.

As for the autoencoder, our multiple experiments
reveal that when make sure the bottleneck architec-
ture, the detailed dimension of each layer makes
few differences. More implementation details such
as λ, d selection can be found in Section 5.1.

4.4 Experimental Results
The extensive results of all the above mentioned
methods are summarized in Table 1. The results
on the original development and test sets of each
task represent the in-distribution performance.
Obviously, for all three tasks, RISK improves
BERT-base by a large margin on the challenging
test set. Moreover, it surpasses other baselines not
only for the out-of-distribution test set, but also the
in-distribution ones.

Out-of-distribution generalization and biases
mitigation. The absence of explicit knowledge
on bias attributes seemingly create a gap between
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Model MNLI FEVER QQP
ID HANS ∆ ID Symm. ∆ ID PAWS ∆

BERT-base 84.5 61.2 - 85.6 55.1 - 90.8 36.1 -
Reweighting 83.5 69.2 +8.0 84.6 61.7 +6.6 89.5 48.6 +12.5
Product-of-Experts 84.1 66.3 +5.1 82.3 62.0 +6.9 86.9 56.5 +20.4
Learned-Mixin 84.2 64.0 +2.8 83.3 60.4 +5.3 87.6 55.7 +19.6
Conf-reg 83.4 69.1 +7.9 86.4 60.5 +5.4 89.1 40.0 +3.9
Conf-regself−debias ♠ 84.3 67.1 +5.9 87.6 60.2 +5.1 89.0 43.0 +6.9
Weak Learner 83.3 67.9 +6.7 85.3 58.5 +3.4 - - -
BERT+FBILSTM 82.9 70.4 +9.2 86.5 61.7 +6.6 88.0 47.6 +11.5
RISK 84.5 71.3 +10.1 88.3 63.9 +8.8 90.1 56.5 +20.4

w/o Reconstruction Loss 84.2 69.2 +8.0 87.6 60.1 +5.0 90.5 50.6 +14.5
w/o Projection Loss 83.9 64.6 +3.4 86.5 57.7 +2.6 90.4 42.1 +6.0

Table 1: Model performance(accu.(%)) on in-distribution and corresponding challenge test set. ♠: Self-debiasing
framework is implemented in conjunction with the bias-known-prior models, we select the version that achieves
the best performance in the original paper, i.e., Confidence Regularization with annealing mechanism. "w/o
Reconstruction Loss" represents RISK is trained without the regularization of reconstruction loss, and "w/o
Projection Loss" represents RISK is trained without the regularization of projection loss.

the generalization ability of bias-known models
and bias-unknown models. Though RISK furthur
eliminate any supervision of specific bias signal, it
still generalize well to the out-of-the distribution.
To validate the effectiveness of RISK in mitigating
bias, in Figure 3, we break down the results on
HANS into three different heuristics that the dataset
was built upon. The increase of the accuracy in
comparison with BERT-base on the non-entailment
category can reflect the degree to which this bais
is removed. Although the overall accuracy of
Conf-regself−debias on HANS is higher than that
of Product-of-experts, as shown in Figure 3, it’s
debiasing capacity is actually the worst. However,
RISK can do well in mitigating the three known
biases, and is on par with Product-of-Experts,
outperforming other baselines.

In-distribution performance retention. The
mitigation of dataset bias often suffers from the
trade-off between removing shortcut features and
sacrificing in-distribution performance. Especially,
on PAWS dataset, this trade-off becomes more
pronounced. We can observe that previous methods
all have a drop in in-distribution test set for
MNLI and QQP, which can be attributable to their
explicit omission of biased examples. In contrast,
our method finds a balance point via intended-
feature subspace, where the out-of-distribution
performance is improved and the in-distribution
is almost retained. For Fever, the in-distribution
accuracy of RISK even increases compared to that
of BERT-base.

Figure 3: Performance of RISK and other baselines
on the entailment and non-entailment categories for
each heuristic(i.e., lexical overlap, subsequence and
constituent) that HANS was designed to capture.

Ablation Studies. We assumed the reconstruc-
tion loss and projection loss are integral parts
of RISK as they ensured the intended-feature
subspace is informative and shared. To have an
understanding of their impacts on the final per-
formance respectively, we do the ablation studies,
and results are shown in Table 1. Comparing the
performance degradation, we can conclude that
the projection loss plays a key role in helping
mitigating dataset bias, and reconstruction loss can
be viewed as a regularization that further bound
the subspace to be more task-relevant to enhance
the accuracy. As can be seen that faced with the
removal of reconstruction loss or projection loss, in-
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distribution performances of the three tasks remain
little affected.

5 Analysis and Discussion

In this section, we construct supplementary experi-
ments to further analyze RISK’s effectiveness. Free
of supervision on bias, we reveal that RISK can
deal with more challenging scenarios.

5.1 Hyper-parameter Exploration

To recover the intended feature, we introduce
two hyperparameters, the weight λ of projection
loss and the subspace dimension d. During the
grid search for a fine-grained tuning, we find the
values of this two hyperparameters have a close
connection with intrinsic properties of dataset.

(1). λ reflects the hardness of challenging set.
In the process of optimizing λ, we observe that
for the three tasks, RISK achieves best out-of-
distribution performance with different value of λ.
For the sake of having a qualitative understanding
on the three out-of-distribution test set, we compare
the average of sentence length and constituency
parse tree height of example in HANS, Fever-
Symmetric and PAWS respectively.

Figure 4: Bar chart represents average sentence length
and constituent parse tree height of three out-of-
distribution set. Line graph plots model performance
with different λ.

As shown in Figure 4, we can observe that
PAWS contains longer and syntactically more
complex sentences. In contrast, HANS appears
to be more easier for model to learn. Accordingly,
easier HANS dataset requires a smaller weight of
projection loss to obtain the best performance while
PAWS requires a larger λ of 0.025. What’s more,
as for the harder patterns in PAWS for model to
generalize, model performance on this task is more
sensitive to the change of λ in a small range.

Figure 5: Model performance on HANS, Fever-Symm
and PAWS with different subspace dimension d.

(2). d reflects the degree of distribution shift.
To quantitatively describe the distribution shift,

we propose bias skewness as an indicator of how
biased a dataset is:

bias skewness =
# biased examples

# bias− free examples

Thus, the ratio r of bias skewness between ID
and OOD can mirror the distribution shift, the
larger r, the greater distribution discrepancies.
As shown in Figure 5, denote dp as the optimal
subspace dimension original training data set
recovered to peak performance on the out-of-
distribution set, and it turns out that PAWSdp <
HANSdp < Fever-Symmdp . However, the ratio
r reflects that rQQP−PAWS > rMNLI−HANS >
rFever−Symm .

We can conclude that when faced with a larger
distribution shift, the subspace dimension d on
in-distribution training set should be smaller. In
essence, d can be established a close connection
with intrinsic dimension (Ansuini et al., 2019),
i.e., the minimal number of parameters needed to
represent a dataset. As our experiments reveal that
a 16-dimensional subspace with intended-features
can represent the highly biased QQP training
dataset well.

5.2 Transferability Analysis

We further examine the robustness of our approach
along with other baselines by transferring to a more
challenging scenario, training on MNLI but testing
on Adversarial NLI. In our setting, Adversarial
NLI contains not only human-crafted adversarial
examples (Nie et al., 2020) but also those generated
by textual adversarial attacks (TextFooler, Jin et al.
(2020)). In general, models utilizing bias patterns
that lack the ability to understand the underlying
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semantics are vulnerable to be attacked. Results
are summarized in Table 2 as follows.

Model R1 R2 R3 ANLI-m
BERT-base 0 28.9 28.8 33.0

Product-of-Experts 25.2 27.5 31.3 53.8
Learned-Mixin 23.6 28.0 30.9 54.9

Conf-regself−debias 21.8 27.4 31.0 48.5
RISK 25.1 31.2 31.9 57.1

Table 2: Model performance(accu.(%)) on adversarial
MNLI. ANLI R1-R3 are challenging instances designed
by human edition on input text. ANLI-m is adversarial
MNLI-matched dataset generated by TextFooler based
on blackbox BERT.

We can observe that vanilla BERT-base model
trained on MNLI are vulnerable to those adversarial
examples, especially ones generated by human edi-
tion, suggesting BERT relies overly on bias features
to make predictions. On the other hand, either
bias-known or bias-unknown models can more or
less defend against these attacks. Compared to
these baselines, RISK can consistently improve
performance on all the adversarial test sets. This
indicates the intended subspace has the power to
robustify NLU models to various distribution shifts.

6 Related Work

We categorize the multiple lines of research
devoted to mitigating dataset bias into three
paradigms, in accordance with how the supervision
is applied for bias mitigation.

6.1 Supervision from Bias Annotations
Concerns on robustness give rise to the discovery
of a wide variety of biases in existing popular
datasets, e.g., models make predictions only rely
on the hypothesis in NLI datasets (Gururangan
et al., 2018). Belinkov et al. (2019) utilize ad-
versarial training to remove the known hypothesis-
only features from model internal representations.
Moreover, the understanding of specific dataset
bias motivates the emergence of ensemble-based
debiasing methods (Clark et al., 2019; He et al.,
2019; Utama et al., 2020a) , which have shown
promising improvements on the out-of-distribution
performance. Generally, they view the known
dataset biases as prior knowledge and design a
simple bias-tailored model, namely the bias-only
model and factor bias out of the main model
through ensemble-based training. However, Xiong
et al. (2021) theoretically prove that the inaccurate
uncertainty estimations of the bias-only model can

hurt the debiasing performance, and they propose
to conduct calibration on the bias-only model.

6.2 Supervision from Model and Training

The excessive reliance on the assumption that
specific types of biased features are known a-prior
limits model’s transferability. Correspondingly,
this line of work seeks for the automatic identi-
fication of potentially biased examples, as their
empirical results manifest that models with limited
capacity (Clark et al., 2020; Sanh et al., 2021) or
training on a fewer thousand examples (Utama
et al., 2020b) exhibit different learning dynamics,
and thus can be used to capture relatively shallow
correlations.

Meanwhile, other observations have been made
that a better use of minority examples(e.g., ex-
amples that are under-represented in the training
distribution, or examples that are harder to learn)
can play role in models’ generalization as well.
As Sagawa et al. (2020) point out, the fundamental
reason leading to poor generalization lies in models’
behaviour of memorizing the minority samples.
Particularly, Tu et al. (2020) leverage the auxiliary
tasks to help improve the generalization capability
of pre-trained models on the minority groups.
Yaghoobzadeh et al. (2021) propose to use example
forgetting to find minority examples and make a
second fine-tuning on those minorities.

6.3 Supervision from Augmentated Data

Data augmentation techniques have shown to be
effective in regularizing models from overfitting
to the training data(Novak et al., 2018). In this
sense, when distribution shifts, the model will rely
little on spurious correlations as a wider variety of
predictive features are captured. This has attracted
interest as a way to remove biases by explicitly
modifying the dataset distribution(Min et al., 2020).
Kaushik et al. (2020) and Srivastava et al. (2020)
draw upon human-in-the-loop to augment existing
training set with diverse and rich examples of
potential unmeasured variables. Wang and Culotta
(2021) further propose to automatically generate
such counterfactual samples via a closet opposite
matching strategy. Different from the augmentation
of causal associations between features and classes,
Wang et al. (2021) apply a cross-data analysis and
knowledge-aware perturbations to identify spurious
tokens on the stability of model predictions.
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7 Conclusion

In this work, we shed light into feature subspace
with the aim to create an underlying pathway —
from the biased input examples to robust output
prediction. Viewing shortcut features as redun-
dancy, we construct a simple but effective Recovery
Layer within the autoencoder structure for bias
mitigation. Extensive experiments demonstrate
the strengths of our model: better generalization,
dataset-agnostic transferability and the robustness
to more challenging scenarios. We believe this
feature-based debiasing framework opens up new
directions for establishing a trustworthy NLU
model. Meanwhile, our concise motivation and
implementation throw out a thought-provoking
question, that is for model, for feature, sometimes
less can be better.
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