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As more users across the world are interacting with dialog agents in their daily life, there is a
need for better speech understanding that calls for renewed attention to the dynamics between
research in automatic speech recognition (ASR) and natural language understanding (NLU).
We briefly review these research areas and lay out the current relationship between them. In
light of the observations we make in this article, we argue that (1) NLU should be cognizant of
the presence of ASR models being used upstream in a dialog system’s pipeline, (2) ASR should be
able to learn from errors found in NLU, (3) there is a need for end-to-end data sets that provide
semantic annotations on spoken input, (4) there should be stronger collaboration between ASR
and NLU research communities.

1. Introduction

More and more users every day are communicating with conversational dialog systems
present around them like Apple Siri, Amazon Alexa, and Google Assistant. As of
2019, 31% of the broadband households in the United States have a digital assistant.1

Henceforth, we refer to these systems as dialog agents or simply agents. A majority of
queries issued to these dialog agents are in the form of speech as the users are directly
talking to these agents hands-free.

This is in contrast to a few years ago, when most of the traffic to search engines like
Google Search, Yahoo!, or Microsoft Bing was in the form of text queries. The natural
language understanding (NLU) models that underlie these search engines were tuned

1 https://www.statista.com/statistics/791575/us-smart-speaker-household-ownership/.
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Figure 1
The number of submitted papers in the speech processing (+ multimodal) track vs. total in ACL
conference from 2018–2020.

to handle textual queries typed by users. However, with the changing nature of query
stream from text to speech, these NLU models also need to adapt in order to better
understand the user.

This is an opportune moment to bring our attention to the current state of automatic
speech recognition (ASR) and NLU, and the interface between them. Traditionally, the
ASR and NLU research communities have operated independently, with little cross-
pollination. Although there is a long history of efforts to get ASR and NLU researchers
to collaborate, for example, through conferences like HLT and DARPA programs (Liu
et al. 2006; Ostendorf et al. 2008), the two communities are diverging again. This is
reflected in their disjoint set of conference publication venues: ICASSP, ASRU/SLT, and
Interspeech are the major conferences for speech processing, whereas ACL, NAACL,
and EMNLP are the major venues for NLU. Figure 1 shows the total number of
submitted papers to the ACL conference, and in the speech processing track from
2018–2020 at the same conference.2 The number of submitted speech-related papers at
the conference constitute only 54 (3.3%), 80 (2.7%), and 62 (1.8%) in 2018, 2019, and 2020,
respectively, showing the limited amount of interaction between these fields.

In this article, we analyze the current state of ASR, NLU, and the relationship be-
tween these two large research areas. We classify the different paradigms in which ASR
and NLU operate currently and present some ideas on how these two fields can benefit
from transfer of signals across their boundaries. We argue that a closer collaboration and
re-imagining of the boundary between speech and language processing is critical for the
development of next generation dialog agents, and for the advancement of research in
these areas.

Our call is specially aimed at the computational linguistics community to consider
peculiarities of spoken language, such as disfluencies and prosody that may carry
additional information for NLU, and errors associated with speech recognition as a core
part of the language understanding problem. This change of perspective can lead to the

2 The speech processing area also included papers from other related areas like multimodal processing, so
the numbers presented here are an upper bound on speech processing papers.
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creation of data sets that span across the ASR/NLU boundary, which in turn will bring
the NLU systems closer to real-world settings as well as increase collaboration between
industry and academia.

2. Changing Nature of Queries

As users move from typing their queries to conversing with their agent through dialog,
there are a few subtle phenomena that differ in the nature of these queries. We briefly
discuss these in the following section.

2.1 Structure of the Query

User-typed queries aren’t always well-formed nor do they always follow the syntactic
and semantic rules of a language (Bergsma and Wang 2007; Barr, Jones, and Regelson
2008; Manshadi and Li 2009; Mishra et al. 2011). This is not surprising because users
often want to invest as little effort as they can in typing a query. They provide the
minimum required amount of information in the form of words that they think can
return the desired result, and, hence, typed search queries are mostly a bag of keywords
(Baeza-Yates, Calderón-Benavides, and González-Caro 2006; Zenz et al. 2009).

On the other hand, spoken utterances addressed to dialog agents are closer to
natural language, contain well-formed sequence of words that form grammatical
natural language sentences (though spoken language can also be ungrammatical, cf.
§2.2), and are more complex and interactive (Trippas et al. 2017, 2018). For example,
sometimes a user utterance might need to be segmented into multiple parts:

Agent: “What movie genre do you like?”
User: “I don’t know <pause> anime”

Here, if we don’t explicitly use the <pause> marker to segment the user utterance, we
might understand the user intent as “I don’t know anime” instead of the selected genre
being “anime”. Thus, traditional techniques of information retrieval are not effective
in understanding such conversational utterances which need deeper understanding.
Table 1 shows how the same intent is surfaced in typed vs. spoken utterances.

Another common phenomenon in spoken utterances is disfluencies. When a user
stammers, repeats, corrects themselves, or changes their mind in between the utterance,
they introduce disfluency in the utterance (Schriberg 1994). For example, as shown in

Table 1
Examples of typed and spoken queries that have the same user intent. Spoken queries have
phenomenon like disfluencies which are not part of typed queries.

Typed Spoken

barack obama age what is the age of barack obama

boston denver flight book a flight from london to umm no from boston to denver

scooby doo breed tell me what’s the breed of scooby doo
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Table 1, “book a flight from london to umm no from boston to denver” is a disfluent query.
There has been limited NLU research done on correcting speech recognition errors or
handling disfluencies. For example, in the last 27 years there has been only one major
data set available containing annotated disfluencies in user utterances (Godfrey and
Holliman 1993; Schriberg 1994).

2.2 Errors in the Query

Not only do spoken vs. typed queries differ in structure and style, they also vary in
the kind of noise or anomalies in the input. Whereas typed queries can contain spelling
errors, spoken queries can contain speech recognition errors, and endpointing issues,
which we discuss below.

While there has been extensive research on correcting spelling errors (Hládek, Staš,
and Pleva 2020) including state-of-the-art neural machine translation models being
launched in products (Lichtarge et al. 2019),3 there has been limited NLU research done
on correcting speech recognition errors.

Handling speech recognition errors is crucial for downstream NLU models to work
effectively because an error in the transcription of a single word can entirely change
the meaning of a query. For example, a user utterance: “stair light on” is transcribed
by the cloud Google Speech Recognizer4 as: “sterilite on”. In this example, if the NLU
model is given the query “sterilite on”, it is very hard for it to uncover the original intent
of the user, which was to turn on the stair lights, unless we force the NLU model to
learn to correct/handle such systematic ASR errors. Such error analysis is often done for
industrial query logs (Shokouhi et al. 2014) but these data sets are not publicly available
for academic research purposes.

Another common error that affects NLU is speech endpointing. If a user utterance
is pre-planned (such as, “play music”), the user does not hesitate, but if the utterance is
complex or the user is responding to a request from the agents, such as, “do you prefer 5
or 7?”), the user may hesitate when responding and pause, saying “oh <long pause> 7”
causing the ASR model to assume that the user stopped after saying “oh” which leads
to incomplete queries being transmitted to NLU. On the other hand, if we can learn to
provide a signal to endpointing from the dialog manager that the recognized utterance
is missing a value (in this case, probably an integer) according to the conversation
context, we can improve endpointing, and hence recognition and downstream NLU.
Data sets pertaining to endpointing phenomenon are currently available in very limited
domains (Raux and Eskenazi 2008) and there is a need for such experimentation in
broader domains and the impact analysis of such errors on overall user experience.

Thus, it is imperative for NLU models to be aware of the fact that there could be
speech recognition errors in the input that might need to be corrected.

3. Current State of Research

We now describe the current core areas of research related to understanding the mean-
ing of a written piece of text or spoken utterance. Figure 2 shows a general spoken
language understanding pipeline.

3 https://cloud.google.com/blog/products/productivity-collaboration/using-neural-machine
-translation-to-correct-grammatical-in-google-docs.

4 https://cloud.google.com/speech-to-text.
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Figure 2
The current focus of speech and NLU research community (dark lines) and preferred focus of
speech and NLU community (dotted lines) in future.

Figure 3
SLU annotation (top) and NLU semantic role labeling annotation (bottom) on a sentence from
the English ATIS corpus (Price 1990), a popular SLU benchmark.

3.1 Natural Language Understanding

Natural language understanding refers to the process of understanding the semantic
meaning of a piece of text. More concretely, understanding the semantic meaning often
implies semantic parsing in NLP academic research and industry. Semantic parsing
is the task of converting a natural language utterance to a logical form: a machine-
understandable representation of its meaning. Semantic parsing is a heavily studied
research area in NLP (Kamath and Das 2019).

In its simplest form, a semantic parse of a given query can contain a label identi-
fying the desired intent of the query and the arguments that are required to fulfill the
given intent. However, a more informative semantic parse can contain edges describing
relations between the arguments, as in the case of abstract meaning representations
(AMR) (Banarescu et al. 2013), or a graph describing how different words join together
to construct the meaning of a sentence, as in the case of combinatory categorial grammar
(CCG) (Steedman 1987).5 Figure 3 shows a parse containing semantic role labels of a
given query obtained using the AllenNLP tool (Gardner et al. 2018).

5 Reviewing all different semantic parsing formulations is beyond the scope of this paper.
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In general, all the semantic parsing research done in NLU assumes the input to the
parser as a piece of text (and available world context). Thus, the training/evaluation
data set of all available semantic parsing data sets are devoid of any speech phe-
nomenon like the presence of speech recognition errors, annotation of pauses, or
disfluencies.

3.2 Spoken Language Understanding

Spoken language understanding (SLU) refers to the process of identifying the meaning
behind a spoken utterance (De Mori et al. 2008; Tur and De Mori 2011). In that regard,
the end goal of NLU and SLU is the same but the input to NLU and SLU components are
different: text in the former, and speech input in the latter. The most common SLU task
is intent prediction and slot-filling, which involves classifying the intent of the utterance
and identifying any required arguments to fulfill that intent (Price 1990). Figure 3 shows
the SLU annotation for a slot-filling task. We now review the main approaches used to
solve SLU.

3.2.1 Speech → Text → Semantic Parse. The traditional way of performing speech under-
standing is to use a pipeline approach: First use an ASR system to transcribe the speech
into text and then run NLU on the transcribed text to result into a semantic parse. Using
a pipeline approach has its own set of pros and cons. Using a 2-step pipeline approach
is modular. The first component is an ASR system and the second component is an
NLU system. The errors of each module can be independently analyzed and corrected
(Fazel-Zarandi et al. 2019; Wang et al. 2020). The training of both models is also inde-
pendent, which makes it easier to use off-the-shelf start-of-the-art ASR and NLU models
during inference.

The obvious disadvantage of this method is that the NLU and ASR models are
unaware of each other. Because the models are not trained jointly, the ASR model cannot
learn from the fact that the downstream NLU model could have failed on an erroneous
ASR prediction. Similarly, at inference time the NLU model relies only on the best pre-
diction of the ASR model and cannot exploit the uncertainty in ASR’s prediction. How-
ever, this can be fixed to a good extent by forcing the ASR model to propagate the n-best
list of speech transcript hypotheses to the NLU system and letting the NLU model use
all the hypotheses together to make the semantic parse prediction (Hakkani-Tür et al.
2006; Deoras et al. 2012; Weng et al. 2020; Li et al. 2020b) or using a lattice or word-
confusion network as input (Tür, Deoras, and Hakkani-Tür 2013; Ladhak et al. 2016).

3.2.2 Speech → Semantic Parse. There is a renewed focus of attention on approaches to
directly parse the spoken utterance to derive the semantics by making a deep neural
network consume the speech input and output the semantic parse (Haghani et al. 2018;
Chen, Price, and Bangalore 2018; Serdyuk et al. 2018; Kuo et al. 2020). This is an end-to-
end approach that does not rely on the intermediate textual representation of the spoken
utterance produced by an ASR system. Thus, this system can be trained end-to-end
with direct loss being optimized on the semantic parse prediction. However, such end-
to-end models are data-hungry and suffer from lack of training data (Lugosch et al. 2019;
Li et al. 2020a). Even though such models often have better performance on benchmark
data sets, deploying such models in a user-facing product is difficult because of the lack
of ease of debugging and fixing errors in output (Glasmachers 2017).
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4. Reimagining the ASR–NLU Boundary

In Section 3 we saw that parsing the user query is a step in SLU. And thus SLU is a
large umbrella utilizing NLU techniques to parse spoken language. Even though both
SLU and NLU at some level are solving the same problem, there is a clear disconnect
between the way problems are formulated and the way solutions are devised for these
problems. On one hand, in NLU, a lot of emphasis is laid on understanding deep
semantic structures in text formulated in the tasks of semantic parsing, dependency
parsing, language inference, question answering, coreference resolution, and so forth.
On the other hand, SLU is mainly concerned with information extraction on the spoken
input formulated in the tasks of slot filling, dialog state modeling , and so on.

Even though there are academic benchmarks available for SLU that aim to extract
information from the spoken input, there is an informal understanding between the
ASR and NLU communities that assumes that as long as the ASR component can
transcribe the spoken text correctly, the majority of the language understanding burden
can be taken up by the NLU community. Similarly, there is an implicit assumption in
the NLU community that ASR will provide correct transcription of the spoken input
and hence NLU does not need to account for the fact that there can be errors in the ASR
prediction. We consider the absence of an explicit two-way communication between the
two communities problematic.

Figure 2 shows how the NLU research community can expand its domain to also
consider spoken language as input to the NLU models instead of pure text. Similarly,
the ASR community can also account for whether the text they produced can result in a
semantically coherent piece of text or not by explicitly trying to parse the output. That
said, there are already a few efforts which have tried blurring the boundary between
ASR and NLU. We will first give some examples of how ASR and NLU can learn from
each other and then review some existing initial work in this domain aimed at enriching
existing academic benchmark data sets.

4.1 ASR → NLU Transfer

A significantly large missing portion of information in understanding a spoken input
is the nature of speech, which we often refer to as prosody. Whether the user was
angry, happy, in a rush, frustrated, and so on, can help us better understand what the
user’s real intent was. For example, “no. . . don’t stop” and “no don’t. . . stop” have exactly
opposite meanings depending on whether the user paused between first and second
words or the second and third words. This information can only be transferred from
speech to NLU. Amazon Alexa already has such a tone-detection feature deployed in
production.6 There are academic data sets that map speech to emotion (Livingstone and
Russo 2018), but academic benchmarks containing examples of intonation affecting the
NLU output do not exist.

An ASR system can provide more information than its best guess to the NLU model
by providing a list of n-best speech hypotheses. Unfortunately, most of the state-of-
the-art NLU models are trained to only accept a single string of text as input, be it
parsing, machine translation, or any other established NLU task. To some extent, SLU
has enlarged the domain for understanding tasks by creating benchmark data sets that

6 https://onezero.medium.com/heres-how-amazon-alexa-will-recognize-when-you-re-frustrated
-a9e31751daf7.
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contain n-best speech hypotheses lists—for example, the dialog state tracking challenge
data set DSTC-2 (Henderson, Thomson, and Williams 2014). This allows the language
understanding model to make use of all the n-best instead of just relying on the top ASR
output.7

4.2 NLU → ASR Transfer

Making sure that the output produced by an ASR model can be understood by an NLU
model can help improve transcription quality (Velikovich et al. 2018). For example,
trying to boost paths in the ASR lattice that contain named entities as predicted by a
named entity recognition (NER) model can help overcome recognition errors related to
out-of-vocabulary words (Serrino et al. 2019).

ASR models can also learn from the errors produced in the NLU model. If a
downstream NLU model in a conversational agent cannot reliably parse a given ASR
output, this might indicate the presence of speech recognition errors. If there is a reliable
way to identify the cause for NLU failure as a speech error, then such examples can
be provided back to the ASR module to improve itself. In Google Home, Faruqui and
Christensen (2020) propose a method for picking out the correct transcription from the
n-best hypotheses if the top hypothesis does not parse, and explicitly confirm the new
hypothesis with the user in a dialog. If the user accepts the selected speech hypothesis,
this correction is provided as a training example to the ASR system. In general, if the
ASR models start computing error based on whether or not the produced text can be
semantically parsed, the performance metric will be more representative of the real-
world setting instead of the currently widely used word-error-rate (WER) metric (He,
Deng, and Acero 2011).

4.3 Spoken NLU Data Sets

There has already been some progress on the front of enriching existing NLU bench-
marks with speech. We would now briefly review these efforts.

4.3.1 Data Sets with Speech Input

Synthesized Speech. Li et al. (2018) presented a new data set called Spoken-SQuAD,
which takes the existing NLU data set SQuAD (Rajpurkar et al. 2016) containing textual
questions and textual documents. The Spoken-SQuAD data set contains the audio form
of the document that has been artificially constructed by using Google text-to-speech
system, and then the textual form of the document was generated using the CMU
Sphinx speech recognizer (Walker et al. 2004). You et al. (2021) have created the Spoken-
CoQA data set from the CoQA data set (Reddy, Chen, and Manning 2019) using the
same technique. Both of these systems have shown that the presence of ASR errors has
a devastating effect on the quality of the QA system. However, it is worth noting that
this speech still does not reflect what people do in spontaneous interactions.

Natural Speech. The above data sets contain artifically synthesized speech. The OSDQA
data set (Lee et al. 2018), on the other hand, was constructed by recruiting 20 speakers

7 Note that lack of diversity in the n-best speech hypotheses could be an issue and directly using the
recognition lattice produced by ASR might be more informative.
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for speaking out the documents from the original QA data set (Shao et al. 2018). This
data set is for Chinese QA and contains spoken Chinese documents as audio. In order
to accurately model the real-world setting of SLU, we need to construct a data set
containing real spoken utterances similar to the approach used in OSDQA.

There are certain drawbacks with both the artificial and natural-speech style data
sets. While artificially generated speech suffers from lack of sufficient speech style
variability and the absence of natural speech cues, naturally generated speech comes
with strict privacy and scalability concerns, preventing a large-scale collection of human
speech. This privacy concern is even more pressing when dealing with utterances that
humans issue to dialog agents at home that contain personal information.

4.3.2 Data Sets with Speech Errors. Instead of providing audio input in the data set, an-
other line of effort is about adding speech recognition errors in the transcribed text. For
example, RADDLE (Peng et al. 2021) is a benchmark data set and an evaluation platform
for dialog modeling where the input text can contain speech phenomena like verbosity,
and speech recognition errors. Similarly, the LAUG toolkit (Liu et al. 2021) provides
options to evaluate dialog systems against noise perturbations, speech characteristics
like repetitions, corrections, and language variety. NoiseQA (Ravichander et al. 2021)
contains ASR errors in the questions of the QA data set introduced both using synthetic
speech and natural speech.

5. Conclusion

In this article we have argued that there is a need for revisiting the boundary between
ASR and NLU systems in the research community. We are calling for stronger collabo-
ration between the ASR and NLU communities given the advent of spoken dialog agent
systems that need to understand spoken content. In particular, we are calling for NLU
benchmark data sets to revisit the assumption of starting from text, and instead move
toward a more end-to-end setting where the input to the models is in the form of speech
as is the case in real-world dialog settings.
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Hládek, Daniel, Ján Staš, and Matúš Pleva.
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