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Abstract

Medical document coding is the process of as-
signing labels from a structured label space
(ontology – e.g., ICD-9) to medical documents.
This process is laborious, costly, and error-
prone. In recent years, efforts have been made
to automate this process with neural models.
The label spaces are large (in the order of thou-
sands of labels) and follow a big-head long-tail
label distribution, giving rise to few-shot and
zero-shot scenarios. Previous efforts tried to
address these scenarios within the model, lead-
ing to improvements on rare labels, but worse
results on frequent ones. We propose data aug-
mentation and synthesis techniques in order to
address these scenarios. We further introduce
an analysis technique for this setting inspired
by confusion matrices. This analysis technique
points to the positive impact of data augmen-
tation and synthesis, but also highlights more
general issues of confusion within families of
codes, and underprediction.

1 Introduction

Large-Scale Multi-Labelled Text Classification
(LMTC) tasks, such as automated ICD-9 coding
of MIMIC-III discharge summaries, suffer from
a big-head long-tail distribution of classes. This
phenomenon naturally arises due to some labels
being more frequent than others. This can further
be affected by the source of the data – in the case of
clinical Natural Language Processing (NLP), this
is often a single institution. For instance, hospitals
in Switzerland are unlikely to have cases of injuries
caused by shark bites (code W56.41XD in ICD-10).
Hence, depending on the data source, some labels
will have a very small population – Few-Shot (FS),
or even no population at all – Zero-Shot (ZS) sce-
nario. Furthermore, adding new labels into a stan-
dard by splitting/fusing/altering existing concepts,
or introducing new concepts also creates a ZS sce-
nario. Medical coding methods need to be able to
adapt to these scenarios.

Medical coding methods can be broadly di-
vided on the task (document-level/entity-level) and
the approaches (rule-based/machine learning) they
use. Methods like Apache cTAKES (Savova et al.,
2010), MedCAT (Kraljevic et al., 2019), or Se-
mEHR (Wu et al., 2018) perform Named Entity
Recognition and Linking (NER+L), identifying spe-
cific spans of text within the document and asso-
ciating them with concepts in a knowledge base,
such as UMLS (Bodenreider, 2004). They primar-
ily use rule-based methods, with some inclusion
of machine learning – e.g., MedCAT uses contex-
tual word embeddings for disambiguating homo-
graphic strings, such as context-sensitive abbrevi-
ations (e.g., the string “HR” can mean “hour” or
“heart rate”). Neural LMTC models, such as CAML
(Mullenbach et al., 2018), predict labels on the doc-
ument level. Labels are not associated with any
particular string in the text, but rather appear as
document-level sets.

Rule-based NER+L methods, assuming machine
learning is not used, are not affected by the FS/ZS
scenarios. There either is a suitable rule designed
for a given situation, or not. If a new code is in-
troduced into the label space, the rules need to be
adjusted to reflect this.

Neural learning approaches are data-driven. The
populations of labels available during training and
the variety in the inputs to which they are associ-
ated affect the model’s generalisability, especially
if the model is not designed with the few-shot/zero-
shot scenario in mind. Previous work has tried
to address this with setting non-trainable parame-
ters within the network as representations of ICD-9
codes enriched with knowledge from the ontolo-
gies (Rios and Kavuluru, 2018). While the few-
shot/zero-shot performance improved, the overall
performance deteriorated.

An alternative to model adjustments is to avoid
the FS/ZS scenarios by supplying more data, i.e.,
through data augmentation or synthesis. Aug-
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mentation through synonym replacement has been
previously done using WordNet (Ollagnier and
Williams, 2020), with improvements coming from
the use of a medical knowledge base (UMLS)
(Kang et al., 2021). Simple natural language gen-
eration techniques were also employed (Ollagnier
and Williams, 2020). These techniques, while ex-
panding the vocabulary, are only capable of pro-
ducing synthetic documents with labels present in
the original training data. Synthesising new docu-
ments with alternative labels has been done based
on document templates in the scope of radiology
reports – however, human experts were involved in
the process (Schrempf et al., 2020).

We propose a novel type of data synthesis for
ICD-9 coding, and medical LMTC tasks in general
with the aim to replace concepts of underspecified
codes with more specific, and often less frequent,
alternatives. Similar to Schrempf et al. (2020) we
recognise the value of augmenting concepts of inter-
est. Rather than using templating in order to deter-
mine concept location, we use pre-existing NER+L
techniques (MedCAT and SemEHR) to identify
spans relevant to the gold standard labelling.

Furthermore, we introduce an error analysis tech-
nique for this setting inspired by confusion matri-
ces. This technique associates codes within the
prediction set with codes in the gold standard set ac-
cording to the ontological structure allowing us to
track mispredictions co-occurring with unmatched
gold-standard codes indicating confusion – which
codes tend to be mispredicted as others.

Our work provides the following contributions:

• Applying Ontology-Guided Synonym Replace-
ment to ICD-9 coding, where multiple on-
tologies are used to determine candidate syn-
onyms for a given concept found by an
NER+L method akin to the work of (Kang
et al., 2021). This augmentation method leads
to improved model performance.

• Sibling-Code Replacement, where the surface
form of a concept reported by an NER+L
method is replaced with one of a semanti-
cally similar code according to the ontology,
with the change being reflected in the docu-
ment’s updated silver standard. This synthe-
sis method leads to improved model perfor-
mance.

• The Weak Hierarchical Confusion Matrix
(WHCM) – an analysis tool for the LMTC
(weakly-labelled) scenario inspired by the con-

cept of confusion matrix allowing more in-
depth error analysis facilitating further devel-
opment of LMTC systems. The output of this
tool can be further used as an evaluation met-
ric describing error types.

• The source code for augmentation and synthe-
sis1, and WHCM2 will be made available via
GitHub.

Our augmentation and synthesis methods both
separately and combined lead to improved micro-
F1 scores. The also improve g FS and ZS perfor-
mance – although are surpassed by the baseline
setup with more training. Our analysis tool high-
lights the error types in prediction – some errors
are due to confusion within the code family, but
most are due to underprediction.

2 Background

In this section we will introduce medical ontolo-
gies, both as a label set, and source of external
knowledge. We will describe Named Entity Recog-
nition and Linking used for determining relevant
spans of text, introduce LMTC as our task, dis-
cuss previous data augmentation techniques in clin-
ical NLP, and finally comment on the current ap-
proaches to evaluation and analysis of LMTC mod-
els.

2.1 Medical Ontologies
The International Classification of Diseases 9th
Edition, Clinical Modification3 (ICD-9-CM, here
refereed to as ICD-9 despite nuances) is a medical
ontology of diseases and procedures represented
by two tree-structured label-spaces. The higher the
depth of a node within the label space, the more
specific a concept it describes, with lower depths
representing aggregation on e.g., disease type or
general anatomy. Such aggregation is represented
via subtrees (or families) of codes. Coding is done
primarily with leaf nodes, representing the highest
degree of specification within the ontology. We
use ICD-9 as a basis for our research due to the
availability of data labelled with this ontology –
MIMIC-III. Newer revisions of the ICD (ICD-104,
ICD-115) differ in size, organisation of the tree

1https://github.com/modr00cka/
Ontology-Guided-Augmentation-and-Synthesis

2https://github.com/modr00cka/weak_
hierarchical_confusion

3https://www.cdc.gov/nchs/icd/icd9cm.
htm

4https://icd.who.int/browse10/2019/en
5https://icd.who.int/browse11/l-m/en

https://github.com/modr00cka/Ontology-Guided-Augmentation-and-Synthesis
https://github.com/modr00cka/Ontology-Guided-Augmentation-and-Synthesis
https://github.com/modr00cka/weak_hierarchical_confusion
https://github.com/modr00cka/weak_hierarchical_confusion
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://icd.who.int/browse10/2019/en
https://icd.who.int/browse11/l-m/en
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structure, and naming conventions, but generally
follow the same structural design principles. Hence
our research can be re-used for newer standards.

An ICD-9 code (e.g., 250.01) consists of a cate-
gory (part of the code appearing prior to the deci-
mal point, e.g., 250) and etiology (appearing after
the decimal point, e.g., 01). The etiology can be
represented by up to two digits. A longer etiology
implies a more specific concept.

Dedicated leaf-level codes exist to describe an
“unspecified” version of a parent concept (e.g.,
hypertension with unspecified malignancy status
would be coded as 401.9 Unspecified Essential
Hypertension, rather than 401 Essential Hyperten-
sion). Such “unspecified” concepts may appear on
different depths representing different parts of the
concept being unspecified. This phenomenon can
appear within the same family of codes, indicating
different levels of specificity – e.g., the single-digit-
etiology leaf code 365.9 Unspecified Glaucoma
versus the double-digit-etiology leaf code 365.60
Glaucoma associated with unspecified ocular dis-
order. While not a general rule, some etiology
patterns tend to be associated with unspecified con-
cepts – .9, .?0, and sometimes .?1 (where ? can be
any digit.)

The Unified Medical Language Sys-
tem (UMLS)6 (Bodenreider, 2004) is a project of
medical terminology originally released in 1990.
The core components of UMLS are the Metathe-
saurus containing various medical vocabularies,
a Semantic Network representing the connections
between the terms, and an Information Sources
Map. The concepts within the Metathesaurus are
each assigned an identification code known as the
Concept Unique Identifier (CUI).

Furthermore, the Information Sources Map com-
ponent enables mapping of concepts between on-
tologies through the concepts’ CUI. An examples
of such a mapping is the SNOMED CT7 to ICD-9
map curated by UMLS.

2.2 Named Entity Recognition and Linking
The task of identifying relevant concepts within
free text is known as Named Entity Recognition
(NER). It can be extended to NER+L by linking
them to entities in an ontology (e.g., UMLS). The
standard labelling in NER+L tasks consist of two
pieces of data – the indices identifying the span of

6https://www.nlm.nih.gov/research/
umls/index.html

7https://www.snomed.org/

text constituting an entity, and the assigned class
(e.g., CUI). NER+L serves as the first step in our
augmentation and synthesis methods.

In the medical domain, notable early NER+L
(predominantly rule-based) systems include
MetaMap (Aronson, 2001) and Apache cTAKES
(Savova et al., 2010). These systems struggle with
ambiguities and spelling mistakes. BioYODIE
(Gorrell et al., 2018), a more recent approach,
addresses some of these ambiguity issues through
corpus-based statistics, e.g., co-occurrence graph.
SemEHR (Wu et al., 2018) improves upon the
output of BioYODIE with manually-derived rules.
Certain types of ambiguity still pose issues to
these systems, e.g., expansion of context-sensitive
abbreviations and variety of concept names.
MedCAT (Kraljevic et al., 2019) employs unsuper-
vised training and vocabulary building to further
address ambiguity through context-sensitive
disambiguation.

2.3 Large-Scale Multi-Label Text
Classification (LMTC)

Large-Scale Multi-Label Text Classification
(LMTC) is the task of assigning multiple weak
labels to text documents. The labels come from
a large label-space (in the order of thousands
of labels), which can be structured, e.g., ICD-9.
LMTC tasks appear in several domains, including
medical, legal, and commercial. The most notable
early model in LMTC is CAML introduced by
Mullenbach et al. (2018) for ICD-9 coding of
medical documents.

Given an input document the model identifies the
set of labels to be assigned. The input tokens are
converted into word embeddings using word2vec
(Mikolov et al., 2013). Convolutional filters are
applied on these embeddings for short-range inter-
action. These phrase embeddings are fed into a
label-specific attention mechanism – for each la-
bel an attention mechanism is applied identifying
tokens contributing towards the respective code’s
prediction. The attention is multiplied with the
the phrase embeddings resulting in label-specific
document embeddings upon which classification
is performed. Mullenbach et al. (2018) used spans
around high-attention tokens (keywords) for quali-
tative evaluation of predictions. Falis et al. (2019)
with the use of a hierarchical ensemble showed
that tokens relevant for a family of codes can be
captured with the attention mechanisms of ancestor

https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
https://www.snomed.org/
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codes and propagated to descendants.
LMTC models are data-driven neural approaches

requiring large amounts of data. Due to the big-
head long-tail label space, the performance of these
models varies between codes, with frequent codes
performing better. For this reason FS and ZS spe-
cific techniques were developed, such as that of
Rios and Kavuluru (2018); Lu et al. (2020).

2.4 Data Augmentation

Data Augmentation (DA) in machine learning is
a method for artificially increasing the amount of
training data by label-preserving alterations of the
input. This technique can be used either to make
the models more resilient to noise in the data, intro-
duce variety, or enrich with additional information
addressing model limitations.

One of the most representative DA techniques in
NLP is synonym replacement (Feng et al., 2021).
This technique replaces tokens within the text with
synonymous words or phrases, with the aid of a
knowledge base, such as WordNet8. Assuming
the synonym does not change the semantics of
the text, the synthetic document’s labels should
be the same. Synonym replacement with Word-
Net has been previously employed by Ollagnier
and Williams (2020) in medical document classi-
fication. Their method randomly replaces a set
number of non-stopwords per document with their
synonyms. The relatively unrestricted choice of
words, however, means the synonym replacement
may not be applied to concepts of high interest –
medical vocabulary. Schrempf et al. (2020) apply
a focused form of document synthesis through the
use of templates in radiology reports. These tem-
plates are used for augmenting concepts of interest,
or replacing them with similar ones. UMLS-based
synonym replacement has previously been used for
DA in NER+L and sentence classification by Kang
et al. (2021), employing random insertion, random
swap, and random deletion, and UMLS-synonym
replacement guided by the output of MetaMap.

We employ UMLS-synonym replacement DA
similar to Kang et al. (2021) for the task of LMTC
guided by more recent biomedical NER+L meth-
ods. We further propose a novel ontology-guided
document synthesis turning relevant concepts into
semantically adjacent concepts based on the ICD-9,
with the expected label set being adjusted accord-
ingly. The aim of this synthesis technique is to

8https://wordnet.princeton.edu/

provide further training data specifically to few-
shot and zero-shot labels.

2.5 Evaluation and Analysis for LMTC

LMTC tasks are evaluated using precision, recall
and F1 score with micro and macro averaging,
where macro-level metrics place equal weight on
the performance on each label, disregarding the
class imbalance. For the FS and ZS scenario pre-
cision and recall of the k highest predictions (@k),
regardless of passing a fixed threshold tend to be
employed. These measures compare exact match
(intersection) between the prediction and gold stan-
dard sets ignoring the rich ontological structure and
consider all errors equivalent. Count-Preserving
Hierarchical Evaluation (CoPHE) (Falis et al.,
2021) is a recently proposed evaluation metric in-
volving the ontological structure to award partial
credit to mispredictions occurring within the family
of codes to which a gold-standard label belongs.
Through the preservation of counts this method also
considers over-/under-prediction within families of
codes.

Beyond aggregate measures, to the best of our
knowledge, label-specific analysis tools do not ex-
ist. Due to the weakly-labelled nature of LMTC
tasks, confusion matrices are not a viable option.
We introduce an analysis method akin to the confu-
sion matrix suitable for LMTC.

3 Data

We employ the discharge summaries of MIMIC-III
(Johnson et al., 2016) due to their common use in
medical LMTC tasks. MIMIC-III is a multimodal
medical dataset acquired from the intensive care
units of the Beth Israel Deaconess Medical Cen-
ter in Boston, Massachusetts between years 2001
and 2012. Access of the data was granted through
PhysioNet9 after completing the ethical training by
the Collaborative Institutional Training Initiative
program. The dataset is coded with ICD-9 codes
on the document level. These labels do not per-
fectly represent the content of the text – MIMIC-III
is significantly under-coded for specific conditions
(Searle et al., 2020), and sometimes incorrect codes
are assigned – e.g., in the case of smoking status
(Falis et al., 2019).

The data has been pre-processed and split fol-
lowing Mullenbach et al. (2018)’s procedures. The

9https://physionet.org/content/
mimiciii/1.4/

https://wordnet.princeton.edu/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
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label distribution within the dataset follows a big-
head long-tail distribution. We divide the labels,
similar to Rios and Kavuluru (2018), into three sub-
sets according to their population size: Of the total
8,929 unique labels 4,351 appear in more than 5
documents within the training set; 4,341 at least
once but at most 5 times (few-shot); and 237 labels
do not appear in the training set, while existing in
the development or test set (zero-shot). The train-
ing set consists of 47,719 documents.

4 Methods

Our methods include data augmentation and syn-
thesis strategies based on the synonyms and ad-
jacent concepts respectively, and an analytic tool
for LMTC based on a set of assumptions to adapt
confusion matrices with ontological structure.

4.1 Data Augmentation and Synthesis
Strategies

We have attempted to enhance the training data
with variety in the vocabulary and introduction
of new codes in synthetic data. We applied two
NER+L systems – SemEHR and MedCAT – to
the training set. Unlike Searle et al. (2020) who
sought to produce a silver standard by reconcil-
ing the output of NER+L methods with the gold
standard, for the purpose of determining candidate
codes for DA we chose to filter the NER+L outputs
by intersecting them with the gold standard. While
the gold standard may not capture all mentioned
concepts, it may reflect local coding guidelines. As
the NER+L systems label their outputs with CUIs,
we translated these into ICD-9 using PyMedTer-
mino.10

It should be noted that LMTC models, such
as CAML, rely on pre-trained word2vec features
with a static vocabulary – words unseen during
pre-training will be considered out-of-vocabulary
(OOV). This affects concepts that are unseen dur-
ing training, such as rare diseases named after a
person – e.g., Munchausen’s Syndrome (301.51 in
ICD-9). By introducing alternative names (aug-
mentation) or new concepts (synthesis) we can also
expand the relevant vocabulary, mitigating OOV.

4.1.1 Identity-Code Augmentation
We first created a synonym-replacement DA
method in order to make the models more robust to

10https://pythonhosted.org/
PyMedTermino/

variety. A medical concept can have several alterna-
tive names or surface forms including abbreviations
– e.g., an “acute myocardial infarction” can be re-
ferred to as “heart attack” or the abbreviation “MI”.
Through augmenting the text with synonyms we
expose the model to alternative keywords represent-
ing existing concepts (already within the corpus
or previously unseen), while leaving non-keyword
context tokens untouched.

If an input document has any NER+L pre-
dictions matching the gold standard, their spans
are identified. A synonym from PyMedTermino
(derived from the UMLS, ICD-9, ICD-10, and
SNOMED CT) is chosen at random, and replaced
within the input text for each span. The augmented
text is then added to the training set with the same
gold standard labels as the original.

4.1.2 Adjacent-Code Synthesis
An additional form of Document Synthesis (DS),
aimed at introducing new labels, can be produced
by replacing mentions of a concept with an adjacent
concept, rather than a synonym – e.g., “stage 2 glau-
coma” with “stage 3 glaucoma” – and updating the
gold standard for the synthetic document accord-
ingly. Where Identity-Code Augmentation aims to
expose the model to alternative keywords to con-
cepts pre-existing in the corpus without changing
the code, the Adjacent-Code Synthesis replaces the
code, exposing the model to the keyword of a dif-
ferent code – potentially one that is rare within the
original training set (FS), or not appearing in it at
all (ZS). This replacement leads to these keywords
appearing in new contexts (those of the concepts
they replace).

We chose to focus on “unspecified” codes assum-
ing an “unspecified” label means all its mentions
within are non-specific, while a single specified
mention warrants a more specific version of the
code in the new silver standard. This choice was
made to address imperfections in the NER+L pre-
dictions – replacing a specified code would require
replacement of all its mentions, some of which may
not be identified by the NER+L method.

The outputs of SemEHR and MedCAT are pro-
cessed as in the synonym-replacement DA. We
considered a code to be unspecified if its descrip-
tion contained the string “unspecified” or “not oth-
erwise specified”, and with with “9” as the first
or “0”/“1” as the second digit of the etiology. Of
the 8,692 unique codes appearing in the training
set 1,188 remained as viable “unspecified codes”.

https://pythonhosted.org/PyMedTermino/
https://pythonhosted.org/PyMedTermino/
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This represents 14.74% of the total code population
within the training set.

Replacement codes were identified depending
on the etiology – double-digit unspecified codes
can only be replaced by codes differing only in
the final digit, while single-digit unspecified codes
can be replaced with codes of the same category
with any other etiology. Replacement codes were
divided into three sets – frequent (>5), few-shot (at
least one but up to 5), zero-shot (unseen) – based
on their population in the training set. Only labels
known to be within the MIMIC-III dataset were
considered.

For a given document each viable unspecified
code is first randomly converted into a specified
candidate (with ZS and FS candidates being pre-
ferred). The mentions of the unspecified code are
randomly replaced with mentions of the specified
candidate. The resulting synthetic discharge sum-
mary is then added into the training set with the
original gold standard code replaced with the can-
didate code. The pipeline for this DS procedure is
presented in Figure 1.

4.1.3 Enriched Training Sets
We applied the synonym DA method in a single
pass on the original training set for each NER+L
method explored, resulting in the sets SemEHR-DA
and MedCAT-DA. The adjacent label DS method
was applied in two passes for each NER+L method.
This was done to allow for multiple adjacent-code-
synthetic alternatives per document. The resulting
datasets are called SemEHR-DS and MedCAT-DS.
SemEHR-Both and MedCAT-Both are the combi-
nations of DA and DS datasets. All DA and DS
datasets were combined with the Baseline, and de-
duplicated. The final sizes of the different training
sets are presented in Table 1, including the number
of unique codes within the frequent, few-shot, and
zero-shot subsets. DA strategies increase popula-
tions of frequent and few-shot codes, leading to
some few-shot codes becoming frequent (>5 occur-
rences in the training set). DS expands on this by
also increasing populations of 13 zero-shot codes.
The development set and test set were left unmodi-
fied.

4.2 Hierarchical Confusion Matrix

Confusion matrices are useful evaluation analysis
tools in strongly-labelled scenarios (where individ-
ual predictions are associated with gold labels)(Tan
et al., 2019, p. 138). A high misclassification be-

Dataset Size Frequent Few Zero
Baseline 47,719 4,351 4,341 237
SemEHR-DA 66,559 4,818 3,874 237
MedCAT-DA 71,295 4,998 3,694 237
SemEHR-DS 74,851 5,167 3,538 224
MedCAT-DS 74,830 5,164 3,541 224
SemEHR-Both 93,690 5,446 3,259 224
MedCAT-Both 98,402 5,565 3,140 224

Table 1: Training set sizes (number of documents) and
populations (number of unique codes) of the frequent,
few-shot, and zero-shot subsets.

tween two classes indicates that, with respect to the
model’s parameters and the data, members of these
classes are similar and difficult to distinguish.

Confusion matrices can also support labels with-
out a valid association, e.g., a prediction on a span
not present in the gold standard, by associating
them with a special label indicating absence of the
counterpart. This scenario represents over/under
prediction.

The confusion matrix enables high-level error
analysis beyond tracking precision and recall of the
model. Such error analysis can be used in further
model design, or serve as supplementary informa-
tion for a deployed model.

In the weakly-labeled scenario, such as ICD-9
coding, both predictions and gold labels are pre-
sented on the document level as sets without as-
sociations between individual labels. If there is a
mismatch between a predicted label and the gold
standard, we cannot state with certainty that a pre-
dicted label, say, A.4 (e.g., Alcohol abuse, con-
tinuous) was misclassified as gold standard label
A.2 (e.g., Alcohol abuse, episodic) or B.1 (e.g.,
Chronic bronchitis), or whether the model overpre-
dicted A.4, while underpredicting B.1 and A.2. We
can, however, make assumptions based on the onto-
logical structure associating mispredictions within
code families – relating the A.4 prediction to the
gold label A.2 rather than B.1.

The problem of analysing multi-label classifica-
tion tasks and hierarchical label spaces with confu-
sion matrices has attracted recent attention within
the visualisation community (Görtler et al., 2021;
Heydarian et al., 2022). Heydarian et al. (2022) pro-
pose an extension to the standard confusion matrix
for multi-label classification in a non-hierarchical
setting. Görtler et al. (2021) propose a method
of analysis in a hierarchical multi-output setting,
approaching high-dimensional confusion as a dis-
tribution.
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Figure 1: Ontology-Aided Document Synthesis pipeline. Yellow elements indicate data from human experts (input
document, gold standard labels, ontology), gray elements indicate data which have machine learning somewhere in
the creation process. The green element indicates pre-existing software, blue elements indicates software custom
written for this method.

A co-occurrence matrix between predictions and
gold labels indicates which predicted labels co-
occur with particular gold standard labels, but is
not fine-grained enough for error analysis. We pro-
pose the use of ontological structure to reduce the
co-occurrence matrix into a simple weak hierar-
chical confusion matrix analysis method designed
with the LMTC scenario in mind and apply it to
ICD-9 coding. We further aggregate its results into
performance metrics exploring proportion of errors
based on their type.

4.2.1 Assumptions

Starting from a co-occurrence matrix between the
predicted and gold standard sets of labels we apply
three assumptions:

• 1-to-1 True Positive Correspondence: If a la-
bel is present both in the prediction and gold-
standard for a document, this is a True Positive
(TP), and not considered for confusion.

• Within-Family Confusion: non-TP codes in
the prediction are matched with non-TP codes
in the gold standard within their respective
code families (black cells in Figure 2 are ig-
nored).

• Out-Of-Family Scenario: If in confusion
matching a code from prediction/gold cannot
be matched (no code from its family left to
match), the code is associated with a special
OOF code (see red the cell in Figure 2).

4.2.2 Use

While we are capable of visualising WHCMs (Ap-
pendix A.1) for each family, for the purposes of this
publication we opt for aggregating results for all
codes. In particular, we reduce the matrices into the
following data given gold standard code: What pro-
portion of the gold standard is correctly matched to
its prediction, is confused within its family, and is
in the OOF scenario. These three percentages sum
up to 1. Furthermore, for each code we also track
which code within its family (including OOF) is the
most likely to be predicted, given the gold standard
label. This information is used to determine if this
most likely code matches the gold standard code.
An example of this analysis can be found in Table
A1 in the Appendix. We macro-average the correct-
match/within-family confusion/OOF statistics and
then provide the percentage of matches between
preferred prediction given the gold standard. Note
further analyses can be drawn conditioning on the
predicted codes by applying the same procedures
to the transpose of the original WHCM.

5 Experiments

We have applied MedCAT and SemEHR to the
training set, producing candidate spans associated
with CUIs. Post CUI-to-ICD-9 conversion, we
have removed all candidates not matching the gold
standard of their source discharge summary. We
have produced augmented and synthetic data ac-
cording to our description in sections 4.1.1 and
4.1.2 and combined them with the original train-
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Figure 2: Left: A simple co-occurrence matrix between the prediction and gold standard labels for two label
families for a single document. Labels A.1, A.3, and A.4 are predicted, while codes A.1, A.2, A.3, and B.1 are in
the gold standard. Green cells indicate a match between the prediction and gold standard, yellow cells indicate a
mismatch. Right: A weak hierarchical confusion matrix constructed from the co-occurrence matrix with the use
of the three assumptions – Gray cells were eliminated via 1-to-1 correspondence, black cells were eliminated via
within-family-confusion, red cells indicate the OOF scenario. The resulting confusion matrix indicates A.1 and
A.3 being correctly predicted (green), B.1 being a false negative – an OOF (red), and the predicted code A.4 being
confused with expected code A.2 (yellow).

ing set (dropping any duplicates) to produce en-
riched training sets as presented in section 4.1.3.
We have further created a Baseline-like dataset of
a similar size to our largest datasets – SemEHR-
Both and MedCAT-Both – as a controlled experi-
ment. This was done by concatenating two Base-
line datasets (2xBaseline). Assuming a constant
number of epochs, training on 2xBaseline corre-
sponds to training on the Baseline for double the
number of epochs.

We train CAML models based on the implemen-
tation of Chalkidis et al. (2019)11 for 15 epochs on
the training sets (Table 1). No few-shot/zero-shot
model-side solution (such as the use of label embed-
dings as parameters) was applied. Each experiment
used word embeddings of size 100 pre-trained on
its respective training set according to Mullenbach
et al. (2018)’s procedure. The development and
test sets were the same across all experiments. The
model weights with the best end-of-epoch valida-
tion F1 score were evaluated on the test set.

6 Results

For each experiment we report results averaged
across 5 runs (Table 2), except the three largest

11https://github.com/iliaschalkidis/
lmtc-emnlp2020

(2xBaseline, SemEHR-Both, MedCAT-Both) for
which a single run was conducted. We compare the
performance on previously used metrics: Micro-F1
for all codes, and R@10 for few-shot and zero-
shot codes. The codeset for few-shot and zero-shot
codes is derived from the Baseline, and hence in-
cludes codes whose populations have increased in
the DA, DS, and Both datasets. We further report hi-
erarchical results (Mic-F1H ) according to CoPHE.
Furthermore, we present macro-averaged aggre-
gate measures conditioned on the gold-standard
labels for all labels coming from WHCM – percent-
ages of gold labels being being predicted correctly
(Mac-Cor), being confused with a code within the
same family (Mac-Conf), and being confused as
OOF (underprediction – Mac-OOF). Finally, we
track whether the prediction most often matched
with the gold standard code, is the identity code
itself (rather than a sibling or OOF) – if a correct
prediction is more likely than any kind of mispre-
diction. On a code level this is represented as a
binary value (match or mismatch), and then can
be macro-averaged to the metric Match. For our
WHCM families we have used the ICD-9 tree as
implemented in CoPHE aggregating on its parent
level (code category). It should be noted, that our
CAML baseline results underperform with respect

https://github.com/iliaschalkidis/lmtc-emnlp2020
https://github.com/iliaschalkidis/lmtc-emnlp2020
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Dataset Mic-F1 Mic-F1H R@10-Few R@10-Zero Mac-Cor Mac-Conf Mac-OOF Match
Baseline 0.441 0.487 0.034 0.035 0.043 0.055 0.902 0.044
2xBaseline* 0.477 0.521 0.093 0.075 0.073 0.066 0.861 0.077
SemEHR-DA 0.469 0.514 0.055 0.034 0.062 0.062 0.876 0.063
MedCAT-DA 0.468 0.514 0.064 0.048 0.062 0.065 0.873 0.065
SemEHR-DS 0.471 0.518 0.051 0.055 0.067 0.065 0.869 0.069
MedCAT-DS 0.474 0.520 0.059 0.054 0.068 0.065 0.866 0.071
SemEHR-Both* 0.483 0.528 0.066 0.051 0.079 0.066 0.855 0.081
MedCAT-Both* 0.486 0.532 0.071 0.057 0.079 0.068 0.853 0.083

Table 2: Test-set performance of CAML models trained on the original training set (Baseline) versus training sets
with synonym augmentation (SemEHR-DA, MeCAT-DA), and adjacent-code synthesis (SemEHR-DS, MedCAT-
DS) averaged across 5 runs. Experiments on datasets marked with an asterisk (2xBaseline, SemEHR-Both and
MedCAT-Both) have, due to time constraints, been conducted a single run each. Best performance for each metric
is marked bold. Results are reported on the original test set. Zero and Few-shot codesets are based on the Baseline.
The original development set is used for validation in all experiments.

to the official results of Mullenbach et al. (2018)
(Micro-F1 of 0.53), due to our limited number of
training epochs (while Mullenbach et al. (2018)
ceases training after the precision@8 does not im-
prove for 10 epochs).

All the proposed methods improve on the Base-
line with regard to standard and hierarchical Micro-
F1. Augmentation (DA) sets, while comparatively
worse than Synthetic (DS) on R@10-Zero and stan-
dard and hierarchical Micro-F1, perform better on
R@10-Few. This was to be expected as the DA
methods provide little for the Zero codeset, while
producing more of the labels in the Freq and Few
codesets. Interestingly, SemEHR-DA performs on
par with MedCAT-DA despite having a smaller
training set. The combination of DA and DS meth-
ods (Both) report the best F1 results, with MedCAT-
Both performing best in 5 our of the 8 reported met-
rics (including Mac-Cor, Mac-OOF and Match).
Both of these methods’ results are at least as good
as those of 2xBaseline, which is of comparable size.
The best R@10-Few and R@10-Zero performance
was achieved by 2xBaseline, which corresponds
to training the Baseline for twice as many epochs.
While the different improvement of DA and DS
in R@10-Few and R@10-zero implies our meth-
ods enhance these subsets, 2xBaseline dominating
these metrics suggests that a better performance
FS/ZS can be achieved with more training epochs.
The difference between the standard and hierarchi-
cal (CoPHE) F1 scores remained largely the same,
which implies partial errors were not addressed
by these methods – this is further supported by
the changes in Mac-OOF dominating compared
to those of Mac-Conf. The lowest Mac-Conf was
achieved by the original Baseline, but was coupled
with a high OOF implying that this low confusion

is mostly due to a higher proportion of codes not
being predicted at all.

7 Conclusion and Discussion

The data enrichment methods have improved on the
baseline showing potential in approaching the few-
shot/zero-shot scenario through data, rather than
the model. However, our approach relied on the use
of external NER+L tools, whose predictions are im-
perfect, and may not be available for all domains of
interest. Other avenues of finding relevant entities,
e.g., the attention outputs of LMTC models, should
be explored in future work. While the data enrich-
ment results are encouraging, further analysis on
fully trained LMTC models is desirable. WHCM
results point to a major issue with most false neg-
atives coming from underprediction of a family,
rather than within-family confusion. Further anal-
ysis should be conducted on false positives. The
analysis from the WHCM tool can provide possible
explanation of the errors of a model and may shed
light on the design of more accurate models for
LMTC.
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Figure A.1: An example of a WHCM for the code family 427 (Cardiac dysrhythmias). Codes that are predicted, are
mostly predicted correctly (high-precision). Codes 427.31 (Atrial fibrillation) and 427.1 (Paroxysmal ventricular
tachycardia) notably get confused with several of their siblings. While the model experienced some over-prediction,
it suffered far more from under-prediction (low-recall).
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