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Abstract

An extractive rationale explains a language
model’s (LM’s) prediction on a given task in-
stance by highlighting the text inputs that most
influenced the prediction. Ideally, rationale ex-
traction should be faithful (reflective of LM’s
actual behavior) and plausible (convincing to
humans), without compromising the LM’s (i.e.,
task model’s) task performance. Although attri-
bution algorithms and select-predict pipelines
are commonly used in rationale extraction, they
both rely on certain heuristics that hinder them
from satisfying all three desiderata. In light of
this, we propose UNIREX, a flexible learning
framework which generalizes rationale extrac-
tor optimization as follows: (1) specify archi-
tecture for a learned rationale extractor; (2) se-
lect explainability objectives (i.e., faithfulness
and plausibility criteria); and (3) jointly train
the task model and rationale extractor on the
task using selected objectives. UNIREX en-
ables replacing prior works’ heuristic design
choices with a generic learned rationale ex-
tractor in (1) and optimizing it for all three
desiderata in (2)-(3). To facilitate comparison
between methods w.r.t. multiple desiderata, we
introduce the Normalized Relative Gain (NRG)
metric. Across five English text classification
datasets, our best UNIREX configuration out-
performs the strongest baselines by an average
of 32.9% NRG. Plus, we find that UNIREX-
trained rationale extractors’ faithfulness can
even generalize to unseen datasets and tasks.

1 Introduction

Large neural language models (LMs) have yielded
state-of-the-art performance on various natural lan-
guage processing (NLP) tasks (Devlin et al., 2018;
Liu et al., 2019). However, LMs’ complex rea-
soning processes are notoriously opaque (Rudin,
2019), posing concerns about the societal implica-
tions of using LMs for high-stakes decision-making

∗Work done while AC was a research intern at Meta AI.

Figure 1: Desiderata of Rationale Extraction. Unlike prior
works, UNIREX enables optimizing for all three desiderata.

(Bender et al., 2021). Thus, explaining LMs’ behav-
ior is crucial for promoting trust, ethics, and safety
in NLP systems (Doshi-Velez and Kim, 2017; Lip-
ton, 2018). Given a LM’s (i.e., task model’s) pre-
dicted label on a text classification instance, an ex-
tractive rationale is a type of explanation that high-
lights the tokens that most influenced the model
to predict that label (Luo et al., 2021). Ideally, ra-
tionale extraction should be faithful (Ismail et al.,
2021; Jain et al., 2020) and plausible (DeYoung
et al., 2019), without hurting the LM’s task perfor-
mance (DeYoung et al., 2019) (Fig. 1).

Configuring the rationale extractor and its train-
ing can greatly impact these desiderata, yet prior
works have commonly adopted two suboptimal
heuristics. First, many works rely in some way on
attribution algorithms (AAs), which extract ratio-
nales via handcrafted functions (Sundararajan et al.,
2017; Ismail et al., 2021; Situ et al., 2021). AAs
cannot be directly trained and tend to be compute-
intensive (Bastings and Filippova, 2020). Also,
AAs can be a bottleneck for plausibility, as pro-
ducing human-like rationales is a complex objec-
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tive requiring high capacity rationale extractors
(Narang et al., 2020; DeYoung et al., 2019). Sec-
ond, many works use a specialized select-predict
pipeline (SPP), where a predictor module is trained
to solve the task using only tokens chosen by a
selector module (Jain et al., 2020; Yu et al., 2021;
Paranjape et al., 2020). Instead of faithfulness opti-
mization, SPPs heuristically aim for “faithfulness
by construction" by treating the selected tokens as a
rationale for the predictor’s output (which depends
only on those tokens). Still, SPPs typically have
worse task performance than vanilla LMs since
SPPs hide the full input from the predictor.

To tackle this challenge, we propose the UNIfied
Learning Framework for Rationale EXtraction
(UNIREX), which generalizes rationale extractor
optimization as follows: (1) specify architecture
for a learned rationale extractor; (2) select explain-
ability objectives (i.e., faithfulness and plausibil-
ity criteria); and (3) jointly train the task model
and rationale extractor on the task using selected
objectives (Sec. 3). UNIREX enables replacing
prior works’ heuristic design choices in (1) with a
generic learned rationale extractor and optimizing
it for all three desiderata in (2)-(3).

UNIREX provides significant flexibility in per-
forming (1)-(3). For (1), any model architecture is
applicable, but we study Transformer LM based ra-
tionale extractors in this work (Zaheer et al., 2020;
DeYoung et al., 2019). We focus on two archi-
tectures: (A) Dual LM, where task model and ra-
tionale extractor are separate and (B) Shared LM,
where task model and rationale extractor share pa-
rameters. For (2), any faithfulness and plausibility
criteria can be used. Following DeYoung et al.
(2019), we focus on comprehensiveness and suffi-
ciency as faithfulness criteria, while using similar-
ity to gold rationales as plausibility criteria. For (3),
trade-offs between the three desiderata can be eas-
ily managed during rationale extractor optimization
by setting arbitrary loss weights for the faithfulness
and plausibility objectives. Plus, though comput-
ing the faithfulness criteria involves discrete (non-
differentiable) token selection, using Shared LM
can approximate end-to-end training and enable
both task model and rationale extractor to be opti-
mized w.r.t. all three desiderata (Sec. 3.3).

To evaluate all three desiderata in aggregate, we
introduce the Normalized Relative Gain (NRG)
metric. Across five English text classification
datasets – SST, Movies, CoS-E, MultiRC, and e-

SNLI (Carton et al., 2020; DeYoung et al., 2019) –
our best UNIREX configuration outperforms the
strongest baselines by an average of 32.9% NRG
(Sec. 4.2), showing that UNIREX can optimize
rationale extractors for all three desiderata. In ad-
dition, we verify our UNIREX design choices via
extensive ablation studies (Sec. 4.3). Furthermore,
UNIREX-trained extractors have high generaliza-
tion power, yielding high plausiblity with minimal
gold rationale supervision (Sec. 4.4) and high faith-
fulness on unseen datasets and tasks (Sec. 4.5).
Finally, our user study shows that humans judge
UNIREX rationales as more plausible than ratio-
nales extracted using other methods (Sec. 4.6).

2 Problem Formulation

Rationale Extraction Let Ftask = ftask(fenc(·))
be a task model for M -class text classification
(Sec. A.1), where fenc is the text encoder and
ftask is the task output head. Typically, Ftask has
a BERT-style architecture (Devlin et al., 2018), in
which fenc is a Transformer (Vaswani et al., 2017)
while ftask is a linear layer with softmax classi-
fier. Let xi = [xti]

n
t=1 be the n-token input se-

quence (e.g., a sentence) for task instance i, and
Ftask(xi) ∈ RM be the logit vector for the output
of the task model. Let ŷi = argmax j Ftask(xi)j
be the class predicted by Ftask. Given Ftask, xi,
and ŷi, the goal of rationale extraction is to output
vector si = [sti]

n
t=1 ∈ Rn, such that each sti ∈ R is

an importance score indicating how much token xti
influenced Ftask to predict class ŷi. Let Fext be a ra-
tionale extractor, such that si = Fext(Ftask,xi, ŷi).
Fext can be a learned or heuristic function. In prac-
tice, the final rationale is often obtained by bina-
rizing si as ri ∈ {0, 1}n, via the top-k% strategy:
rti = 1 if sti is one of the top-k% scores in si; oth-
erwise, rti = 0 (DeYoung et al., 2019; Jain et al.,
2020; Pruthi et al., 2020; Chan et al., 2021). For
top-k%, let r(k)i be the “important" (i.e., ones) to-
kens in ri, when using 0 ≤ k ≤ 100.

Faithfulness means how well a rationale re-
flects Ftask’s true reasoning process for predict-
ing ŷi (Jacovi and Goldberg, 2020). Hence, faith-
fulness metrics measure how much the r

(k)
i to-

kens impact pŷi(xi), which denotes Ftask’s confi-
dence probability for ŷi when using xi as input
(DeYoung et al., 2019; Shrikumar et al., 2017;
Hooker et al., 2018; Pruthi et al., 2020). Recently,
comprehensiveness and sufficiency have emerged
as popular faithfulness metrics (DeYoung et al.,
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2019). Comprehensiveness (comp) measures the
change in pŷi when r

(k)
i is removed from the in-

put: comp = pŷi(xi) − pŷi(xi\r(k)i ). Sufficiency
(suff) measures the change in pŷi when only r

(k)
i is

kept in the input: suff = pŷi(xi)− pŷi(r
(k)
i ). High

faithfulness is signaled by high comp and low suff.
Plausibility means how convincing a rationale

is to humans (Jacovi and Goldberg, 2020). This
can be measured by automatically computing the
similarity between Fext’s rationales (either si or ri)
and human-annotated gold rationales (DeYoung
et al., 2019), or by asking human annotators to rate
whether Fext’s rationales make sense for predict-
ing ŷi (Strout et al., 2019; Doshi-Velez and Kim,
2017). Typically, a gold rationale is a binary vector
r∗i ∈ {0, 1}n, where ones/zeros indicate impor-
tant/unimportant tokens (Lei et al., 2016).

Task Performance, w.r.t. rationale extraction,
concerns how much Ftask’s task performance (on
test set) drops when Ftask is trained with explain-
ability objectives (i.e., faithfulness, plausibility)
for Fext. As long as Ftask is trained with non-task
losses, Ftask’s task performance can be affected.

3 UNIREX
Given task model Ftask, UNIREX generalizes
rationale extractor optimization as follows: (1)
choose architecture for a learned rationale extrac-
tor Fext; (2) select explainability objectives (i.e.,
faithfulness loss Lfaith and plausibility loss Lplaus);
and (3) jointly train Ftask and Fext using Ltask (task
loss), Lfaith, and Lplaus. UNIREX training consists
of two backpropagation paths (Fig. 2). The first
path is used to update Ftask w.r.t. Ltask and Lfaith.
Whereas Ltask is computed w.r.t. the task target
yi, Lfaith is computed only using the task input xi

and the top-k% important tokens r(k)i (obtained via
Fext), based on some combination of comp and
suff (Sec. 2). The second path is used to update
Fext w.r.t. Lplaus, which encourages importance
scores si to approximate gold rationale r∗i . Thus,
UNIREX frames rationale extraction as the follow-
ing optimization problem:

min
Ftask,Fext

Ltask(xi, yi;Ftask)

+ αfLfaith(xi, r
(k)
i ;Ftask)

+ αpLplaus(xi, r
∗
i ;Fext),

(1)

where αf and αp are loss weights. If Ftask and
Fext share parameters, then the shared parameters
will be optimized w.r.t. all losses. During inference,

for task input xi, we first use Ftask to predict yi,
then use Fext to output a rationale ri for Ftask’s
prediction ŷi. Below, we discuss options for the
rationale extractor and explainability objectives.

3.1 Rationale Extractor
In UNIREX, Fext is a learned function by default.
Learned Fext can be any model that transforms xti
into sti. Given their success in NLP explainability
(DeYoung et al., 2019), we focus on pre-trained
Transformer LMs and highlight two architectures:
Dual LM (DLM) and Shared LM (SLM) (Fig. 3).
For DLM, Ftask and Fext are two separate Trans-
former LMs. DLM provides more dedicated capac-
ity for Fext, which can help Fext output plausible
rationales. For SLM, Ftask and Fext are two Trans-
former LMs sharing encoder fenc, while Fext has
its own output head fext. SLM leverages multitask
learning between Ftask and Fext, which can im-
prove faithfulness since Fext gets more information
about Ftask’s reasoning process. Unlike heuristic
Fext (Sec. A.2), learned Fext can be optimized for
faithfulness/plausibility, but cannot be used out of
the box without training. Learned Fext is preferred
if: (A) optimizing for both faithfulness and plau-
sibility, and (B) gold rationales are available for
plausibility optimization (Sec. A.3).

3.2 Explainability Objectives
After selecting Fext, we specify the explainabil-
ity objectives, which can be any combination of
faithfulness and plausibility criteria. In prior ap-
proaches (e.g., AA, SPPs), the rationale extractor is
not optimized for both faithfulness and plausibility,
but UNIREX makes this possible. For any choice
of learned Fext, UNIREX lets us easily “plug and
play" different criteria and loss weights, based on
our needs and domain knowledge, to find those that
best balance the rationale extraction desiderata.

Faithfulness Evaluating rationale faithfulness
is still an open problem with many existing metrics,
and UNIREX is not tailored for any specific metric.
Still, given the prevalence of comp/suff (Sec. 2),
we focus on comp/suff based objectives.

Recall that comp measures the importance of to-
kens in r

(k)
i as how pŷi(x̂i), Ftask’s predicted prob-

ability for class ŷi, changes when those tokens are
removed from xi. Intuitively, we want pŷi(x̂i) to be
higher than pŷi(xi\r(k)i ), so higher comp is better.
Since comp is defined for a single class’ probability
rather than the label distribution, we can define the
comp loss Lcomp via cross-entropy loss LCE, as in
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Figure 2: UNIREX Framework. UNIREX enables jointly optimizing the task model (Ftask) and rationale extractor (Fext),
w.r.t. faithfulness (Lfaith), plausibility (Lplaus), and task performance (Ltask).

Figure 3: Rationale Extractor Types.

the following difference criterion for Lcomp:

Lcomp-diff = LCE(Ftask(xi), yi)

− LCE(Ftask(xi\r(k)i ), yi))
(2)

LCE(Ftask(xi), yi) = −yi log(Ftask(xi)) (3)

For training stability, we compute comp loss
for target class yi here instead of Ftask’s pre-
dicted class ŷi, since ŷi is a moving target dur-
ing training. Using Lcomp-diff, it is possible for
LCE(Ftask(xi\r(k)i ), yi)) to become much larger
than LCE(Ftask(xi), yi), leading to arbitrarily neg-
ative losses. To avoid this, we can add margin mc

to the loss function, giving the margin criterion:

Lcomp-margin = max(−mc,LCE(Ftask(xi), yi)

− LCE(Ftask(xi\r(k)i ), yi)) +mc

(4)

Recall that suff measures the importance of to-
kens in r

(k)
i as how pŷi(x̂i), Ftask’s predicted prob-

ability for class ŷi, changes when they are the only
tokens kept in xi. Based on suff’s definition, we

want pŷi(r
(k)
i ) to be higher than pŷi(x̂i), so lower

suff is better. For suff loss Lsuff, we define the
difference and margin criteria analogously with
margin ms but the opposite sign (since lower suff
is better):

Lsuff-diff = LCE(Ftask(r
(k)
i ), yi)

− LCE(Ftask(xi), yi)
(5)

Lsuff-margin = max(−ms,LCE(Ftask(r
(k)
i ), yi)

− LCE(Ftask(xi), yi)) +ms

(6)

In our experiments, we find that the margin-
based comp/suff criteria are effective (Sec. 4.3),
though others (e.g., KL Div, MAE) can be used
too (Sec. A.4.1). Note that r(k)i is computed via
top-k% thresholding (Sec. 2), so we also need to
specify a set K of threshold values. We separately
compute the comp/suff losses for each k ∈ K, then
obtain the final comp/suff losses by averaging over
all k values via area-over-precision-curve (AOPC)
(DeYoung et al., 2019). To reflect this, we denote
the comp and suff losses as Lcomp,K and Lsuff,K , re-
spectively. Let αfLfaith = αcLcomp,K + αsLsuff,K ,
where αc and αs are loss weights.

Plausibility Plausibility is defined as how con-
vincing a rationale is to humans (Jacovi and Gold-
berg, 2020), i.e., whether humans would agree the
rationale supports the model’s prediction. While
optimizing for plausibility should ideally involve
human-in-the-loop feedback, this is prohibitive. In-
stead, many works consider gold rationales as a
cheaper form of plausibility annotation (DeYoung
et al., 2019; Narang et al., 2020; Jain et al., 2020).
Thus, if gold rationale supervision is available, then
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we can optimize for plausibility. With gold ratio-
nale r∗i for input xi, plausibility optimization en-
tails training Fext to predict binary importance la-
bel r∗,ti for each token xti. This is essentially token
classification, so one natural choice for Lplaus is the
token-level binary cross-entropy (BCE) criterion:

Lplaus-BCE = −
∑

t

r∗,ti log(Fext(x
t
i)) (7)

Besides BCE loss, we can also consider other
criteria like sequence-level KL divergence and L1
loss. See Sec. A.4.2 for discussion of these and
other plausibility criteria.

3.3 Training and Inference
After setting Fext, Lfaith, and Lplaus, we can move
on to training Ftask and Fext. Since top-k% ratio-
nale binarization (Sec. 3.2) is not differentiable,
by default, we cannot backpropagate Lfaith through
all of Fext’s parameters. Thus, Ftask is trained via
Ltask and Lfaith, while Fext is only trained via Lplaus.
This means Fext’s rationales ri are indirectly opti-
mized for faithfulness by regularizing Ftask such
that its behavior aligns with ri. The exception is if
we are using the SLM variant, where encoder fenc
is shared by Ftask and Fext. In this case, fenc is opti-
mized w.r.t. all losses, ftask is optimized w.r.t. Ltask
and Lfaith, and fext is optimized w.r.t. Lplaus. SLM
is a simple way to approximate end-to-end training
of Ftask and Fext. In contrast, past SPPs have used
more complex methods like reinforcement learning
(Lei et al., 2016) and the reparameterization trick
(Bastings et al., 2019), whose training instability
can hurt task performance (Jain et al., 2020).

Now, we summarize the full learning objec-
tive. Given that cross-entropy loss Ltask =
LCE(Ftask(xi), yi) is used to train Ftask to predict
yi, the full learning objective is:

L = Ltask + αfLfaith + αpLplaus

= Ltask + αcLcomp,K + αsLsuff,K + αpLplaus.
(8)

During inference, we use Ftask to predict yi, then
use Fext to output ri for Ftask’s predicted label ŷi.

4 Experiments
We present empirical results demonstrating
UNIREX’s effectiveness in managing trade-offs
between faithfulness, plausibility, and task per-
formance during rationale extractor optimization.
First, our main experiments compare methods w.r.t.
faithfulness, plausibility, and task performance
(Sec. 4.2). Second, we perform various ablation

studies to verify our design choices for UNIREX
(Sec. 4.3). Third, we present experiments high-
lighting UNIREX’s generalization ability, both in
terms of limited gold rationale supervision (Sec.
4.4) and zero-shot transfer (Sec. 4.5). Fourth, we
conduct a user study to further evaluate UNIREX
rationales’ plausibility, relative to those generated
by other methods (Sec. 4.6). See Sec. A.5 for im-
plementation details (LM architecture, AA settings,
training).

4.1 Experiment Setup
Datasets We primarily use SST (Socher et al.,
2013; Carton et al., 2020), Movies (Zaidan and
Eisner, 2008), CoS-E (Rajani et al., 2019), Mul-
tiRC (Khashabi et al., 2018), and e-SNLI (Camburu
et al., 2018), all of which have gold rationale an-
notations. The latter four datasets were taken from
the ERASER benchmark (DeYoung et al., 2019).

Metrics We use the metrics from the
ERASER explainability benchmark (DeYoung
et al., 2019). For faithfulness, we use compre-
hensiveness (Comp) and sufficiency (Suff), for
k = [1, 5, 10, 20, 50] (DeYoung et al., 2019). For
plausibility, we use area under precision-recall
curve (AUPRC) and token F1 (TF1) to measure
similarity to gold rationales (DeYoung et al., 2019;
Narang et al., 2020). For task performance, we
follow (DeYoung et al., 2019) and (Carton et al.,
2020) in using accuracy (SST, CoS-E) and macro
F1 (Movies, MultiRC, e-SNLI).

To aggregately evaluate multiple desiderata, we
introduce the Normalized Relative Gain (NRG)
metric, which is based on the ARG metric from
Ye et al. (2021). NRG normalizes raw metrics
(e.g., F1, sufficiency) to scores between 0 and
1 (higher is better). Given a set of raw met-
ric scores Z = {z1, z2, ...} (each from a differ-
ent method), NRG(zi) captures zi’s value rela-
tive to min(Z) and max(Z). If higher values
are better for the given metric (e.g., F1), then we
have: NRG(zi) = zi−min(Z)

max(Z)−min(Z) . If lower val-
ues are better (e.g., sufficiency), then we have:
NRG(zi) =

max(Z)−zi
max(Z)−min(Z) . After computing NRG

for multiple raw metrics, we can aggregate them
w.r.t. desiderata via averaging. Let FNRG, PNRG,
and TNRG be the NRG values for faithfulness,
plausibility, and task performance, respectively. Fi-
nally, we compute the composite NRG as: CNRG =
FNRG+PNRG+TNRG

3 .
Results Reporting For all results, we report

average over three seeds and the five k values. We

55



Figure 4: Composite NRG Comparison (w/o Plausibility Optimization). Composite NRG (CNRG) is the mean of the three
desiderata NRG scores. For each dataset, we use CNRG to compare methods that do not optimize for plausibility.

Figure 5: Composite NRG Comparison (w/ Plausibility Optimization). Composite NRG (CNRG) is the mean of the three
desiderata NRG scores. For each dataset, we use CNRG to compare methods that do optimize for plausibility.

denote each UNIREX configuration with “([ratio-
nale extractor]-[explainability objectives])”. F, P,
and FP denote faithfulness, plausibility, and faith-
fulness+plausibility, respectively.

Baselines The first category is AAs, which are
not trained: AA (Grad) (Simonyan et al., 2013), AA
(Input*Grad) (Denil et al., 2014), AA (DeepLIFT)
(Lundberg and Lee, 2017), AA (IG) (Sundarara-
jan et al., 2017). We also experiment with IG for
L2E (Situ et al., 2021), which distills knowledge
from an AA to an LM. The second category is
SPPs: FRESH (Jain et al., 2020) and A2R (Yu
et al., 2021). For FRESH, we use a strong vari-
ant where IG rationales are directly given to the
predictor, rather than output by a trained selector.
A2R aims to improve SPP task performance by
regularizing the predictor with an attention-based

predictor that uses the full input. In addition, we
introduce FRESH+P and A2R+P, which augment
FRESH and A2R, respectively, with plausibility
optimization. The third category is AA-based reg-
ularization: SGT (Ismail et al., 2021), which uses
a sufficiency-based criterion to optimize for faith-
fulness. We also consider SGT+P, which augments
SGT with plausibility optimization.

4.2 Main Results

Fig. 4-6 display the main results. In Fig. 4/5, we
compare the CNRG for all methods and datasets,
without/with gold rationales. In both plots, we see
that UNIREX variants achieve the best CNRG
across all datasets, indicating that they are effec-
tive in balancing the three desiderata. In partic-
ular, UNIREX (DLM-FP) and UNIREX (SLM-
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Figure 6: NRG Comparison by Desiderata. We show FNRG, PNRG, and TNRG for all methods, averaged over all datasets.

FP) have very high CNRG scores, both yielding
more than 30% improvement over the strongest
baselines. Fig. 6 compares methods w.r.t. desider-
ata NRG (i.e., FNRG, PNRG, TNRG). Here, the
left/right plots show methods without/with gold
rationales. Again, we see that UNIREX variants
achieve a good NRG balance of faithfulness, plau-
sibility, and task performance. Meanwhile, many
baselines (e.g., AA (IG), A2R, SGT+P) do well on
some desiderata but very poorly on others.

4.3 Ablation Studies
We present five ablation studies to validate the ef-
fectiveness of our UNIREX design choices. The
ablation results are displayed in Table 1. In this
table, each of the five sections shows results for
a different ablation. Thus, all numbers within the
same section and column are comparable.

Extractor Type In the Ext Type (F) section, we
compare four heuristic rationale extractors, using
AA-F. Rand uses random importance scores, Gold
directly uses the gold rationales, Inv uses the in-
verse of the gold rationales, and IG uses IG. All
heuristics yield similar task performance, but IG
dominates on all faithfulness metrics. This makes
sense because IG is computed using Ftask’s in-
puts/parameters/outputs, while the others do not
have this information. For plausibility, Gold is the
best, Inv is the worst, and Rand and IG are about
the same, as none of the heuristics are optimized
for plausibility. In the Ext Type (FP) section, we
compare four learned rationale extractors. By de-
fault, attribution algorithms’ dimension scores are
pooled into token scores via sum pooling. AA-FP
(Sum) uses IG with sum pooling, while AA-FP

Ablation UNIREX Config Faithfulness Plausibility Performance

Comp (↑) Suff (↓) AUPRC (↑) Acc (↑)

Ext Type (F)

AA-F (Rand) 0.171 (±0.040) 0.327 (±0.050) 44.92 (±0.00) 94.05 (±0.35)
AA-F (Gold) 0.232 (±0.088) 0.249 (±0.021) 100.00 (±0.00) 93.81 (±0.54)
AA-F (Inv) 0.242 (±0.010) 0.357 (±0.019) 20.49 (±0.00) 93.47 (±1.81)
AA-F (IG) 0.292 (±0.051) 0.171 (±0.038) 48.13 (±1.14) 92.97 (±0.44)

Ext Type (FP)

AA-FP (Sum) 0.296 (±0.067) 0.185 (±0.048) 47.60 (±2.44) 93.25 (±0.45)
AA-FP (MLP) 0.285 (±0.051) 0.197 (±0.100) 54.82 (±1.97) 93.23 (±0.92)

DLM-FP 0.319 (±0.090) 0.167 (±0.036) 85.80 (±0.74) 93.81 (±0.18)
SLM-FP 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

Comp/Suff Loss
SLM-FP (Comp) 0.350 (±0.048) 0.310 (±0.049) 82.79 (±0.62) 93.59 (±0.11)
SLM-FP (Suff) 0.166 (±0.003) 0.152 (±0.012) 83.74 (±0.84) 94.16 (±0.39)

SLM-FP (Comp+Suff) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

Suff Criterion
SLM-FP (KL Div) 0.306 (±0.098) 0.131 (±0.005) 82.62 (±0.88) 93.06 (±0.25)
SLM-FP (MAE) 0.278 (±0.058) 0.143 (±0.008) 82.66 (±0.61) 93.78 (±0.13)

SLM-FP (Margin) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

SLM Ext Head
SLM-FP (Linear) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

SLM-FP (MLP-2048-2) 0.323 (±0.071) 0.144 (±0.012) 83.82 (±0.77) 93.67 (±0.18)
SLM-FP (MLP-4096-3) 0.295 (±0.057) 0.154 (±0.027) 84.53 (±0.61) 93.19 (±0.79)

Table 1: UNIREX Ablation Studies on SST.

(MLP) replaces the sum pooler with a MLP-based
pooler to increase capacity for plausibility opti-
mization. Task performance for all four methods is
similar, AA-FP (Sum) dominates on faithfulness,
and DLM-FP and SLM-FP dominate on plausibil-
ity. AA-FP (MLP) does not perform as well on
faithfulness but slightly improves on plausibility
compared to AA-FP (Sum).

Comp/Suff Losses The Comp/Suff Loss sec-
tion compares different combinations of Comp
and Suff losses, using SLM-FP. Note that SLM-
FP (Comp+Suff) is equivalent to SLM-FP shown
in other tables/sections. As expected, SLM-
FP (Comp) does best on Comp, but SLM-FP
(Comp+Suff) actually does best on Suff. Mean-
while, SLM-FP, (Suff) does second-best on Suff
but is much worse on Comp. This shows that Comp
and Suff are complementary for optimization.

Suff Criterion The Suff Criterion section com-
pares different Suff criteria, using SLM-FP. SLM-
FP (KLDiv) uses the KL divergence criterion,
SLM-FP (MAE) uses the MAE criterion, and SLM-
FP (Margin) uses the margin criterion. SLM-FP
(Margin) is equivalent to SLM-FP in other ta-
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Figure 7: Gold Rationale Data Efficiency on SST.

bles/sections. All criteria yield similar performance
and plausibility, while Margin is slightly better on
faithfulness.

SLM Extractor Head The SLM Ext Head
section compares different extractor heads, using
SLM-FP. Linear is the default choice and uses a
linear layer. MLP-2048-2 uses a MLP with two
2048-dim hidden layers. MLP-4096-3 uses a MLP
with three 4096-dim hidden layers. All three out-
put head types yield similar performance, but de-
creasing head capacity yields better faithfulness,
while increasing head capacity heads yields bet-
ter plausibility. This trades off faithfulness and
plausibility, although larger heads will be more
compute-intensive.

4.4 Gold Rationale Data Efficiency

UNIREX supports arbitrary amounts of gold ratio-
nale supervision and allows us to account for data
efficiency. In Fig. 7, we compare plausibility (in
AUPRC) for γ = [0.5, 1, 5, 10, 20, 100] (i.e., % of
train instances with gold rationales). We compare
AA (IG) and four UNIREX variants (AA-F, AA-
FP, DLM-FP, SLM-FP). AA (IG) and AA-F do not
use gold rationales and thus have the same AUPRC
for all γ. Standard deviation is shown by the error
bands. UNIREX (DLM-FP) and UNIREX (SLM-
FP) dominate across all γ values, with AUPRC
slowly decreasing as γ decreases. Even at γ = 0.5,
they can still achieve high AUPRC. This suggests
that UNIREX’s gold rationale batching procedure
(Sec. A.3) is effective for learning from minimal
gold rationale supervision and demonstrates how
UNIREX enables us to manage this trade-off. See
Sec. A.6 for similar results on CoS-E.

Task Dataset Method Faithfulness Task Performance

Comp (↑) Suff (↓) Perf (↑)

SA

SST
AA (IG) 0.119 (±0.009) 0.258 (±0.031) 93.81 (±0.55)

UNIREX (AA-F) 0.292 (±0.051) 0.171 (±0.038) 92.97 (±0.44)
UNIREX (DLM-FP) 0.319 (±0.090) 0.167 (±0.036) 93.81 (±0.54)

Yelp
AA (IG) 0.069 (±0.004) 0.219 (±0.028) 92.50 (±2.07)

UNIREX (AA-F) 0.138 (±0.078) 0.126 (±0.059) 83.93 (±13.20)
UNIREX (DLM-FP) 0.265 (±0.094) 0.097 (±0.033) 92.37 (±0.46)

Amazon
AA (IG) 0.076 (±0.010) 0.224 (±0.037) 91.13 (±0.28)

UNIREX (AA-F) 0.130 (±0.077) 0.073 (±0.039) 77.90 (±13.12)
UNIREX (DLM-FP) 0.232 (±0.072) 0.098 (±0.033) 89.35 (±2.22)

HSD Stormfront
AA (IG) 0.135 (±0.010) 0.245 (±0.059) 10.48 (±1.66)

UNIREX (AA-F) 0.219 (±0.009) 0.092 (±0.025) 10.36 (±1.94)
UNIREX (DLM-FP) 0.167 (±0.084) 0.115 (±0.059) 10.37 (±2.66)

OSD OffenseEval
AA (IG) 0.097 (±0.009) 0.244 (±0.052) 33.51 (±0.99)

UNIREX (AA-F) 0.074 (±0.040) 0.102 (±0.024) 32.62 (±4.85)
UNIREX (DLM-FP) 0.140 (±0.049) 0.087 (±0.045) 35.52 (±1.26)

ID SemEval2018
AA (IG) 0.128 (±0.014) 0.248 (±0.064) 29.63 (±4.72)

UNIREX (AA-F) 0.069 (±0.041) 0.096 (±0.011) 49.95 (±8.31)
UNIREX (DLM-FP) 0.149 (±0.052) 0.102 (±0.053) 31.97 (±2.80)

Table 2: Zero-Shot Faithfulness Transfer from SST.

4.5 Zero-Shot Faithfulness Transfer

In Table 2, we investigate if Fext’s faithfulness, via
UNIREX training on some source dataset, can gen-
eralize to unseen target datasets/tasks in a zero-shot
setting (i.e., no fine-tuning on target datasets). Plau-
sibility is not evaluated here, since these unseen
datasets do not have gold rationales. As the source
model, we compare various SST-trained models:
AA (IG) and UNIREX (AA-F, DLM-FP). First, we
evaluate on unseen datasets for a seen task (senti-
ment analysis (SA)): Yelp (Zhang et al., 2015) and
Amazon (McAuley and Leskovec, 2013). Second,
we evaluate on unseen datasets for unseen tasks:
Stormfront (hate speech detection (HSD), binary
F1) (de Gibert et al., 2018), OffenseEval (offen-
sive speech detection (OSD), macro F1) (Zampieri
et al., 2019), and SemEval2018 (irony detection
(ID), binary F1) (Van Hee et al., 2018).

We want to show that, even if Ftask yields poor
task performance on unseen datasets, Fext’s ratio-
nales can still be faithful. As expected, all meth-
ods achieve much lower task performance in the
third setting than in the first two settings. How-
ever, faithfulness does not appear to be strongly
correlated with task performance, as unseen tasks’
comp/suff scores are similar to seen tasks’. Across
all datasets, DLM-FP has the best faithfulness and
is the only method whose comp is always higher
than suff. AA-F is not as consistently strong as
DLM-FP, but almost always beats AA (IG) on
comp and suff. Meanwhile, AA (IG) has the worst
comp and suff overall. Ultimately, these results
suggest that UNIREX-trained models’ faithfulness
(i.e., alignment between Ftask’s and Fext’s outputs)
is a dataset/task agnostic property (i.e., can gen-
eralize across datasets/tasks), further establishing
UNIREX’s utility in low-resource settings.
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Method Forward Simulation Subjective Rating

Accuracy (%) Confidence (1-4) Alignment (1-5)

No Rationale 92.00 (±3.35) 3.02 (±0.39) -

SGT+P 80.80 (±9.73) 2.34 (±0.31) 3.64 (±0.28)
A2R+P 41.20 (±4.71) 2.83 (±0.28) 2.97 (±0.12)

UNIREX (AA-FP) 72.00 (±7.78) 2.00 (±0.31) 3.26 (±0.31)
UNIREX (DLM-FP) 83.60 (±5.41) 2.77 (±0.28) 3.96 (±0.22)

Gold 81.20 (±3.03) 2.88 (±0.30) 4.00 (±0.20)

Table 3: Plausibility User Study on SST.

4.6 User Study on Plausibility

Gold rationale based plausibility evaluation is noisy
because gold rationales are for the target label, not
a model’s predicted label. Thus, we conduct two
five-annotator user studies (Table 3) to get a better
plausibility measurement. Given 50 random test in-
stances from SST, we get the rationales for SGT+P,
A2R+P, UNIREX (AA-FP), and UNIREX (DLM-
FP), plus the gold rationales. For each instance, we
threshold all rationales to have the same number
of positive tokens as the gold rationale. The first
user study is forward simulation (Hase and Bansal,
2020; Jain et al., 2020). Here, the annotator is given
an input and a rationale for some model’s predic-
tion, then asked what (binary) sentiment label the
model most likely predicted. For forward simu-
lation, we also consider a No Rationale baseline,
where no tokens are highlighted. For No Rationale
and Gold, the target label is the correct choice. An-
notators are also asked to rate their confidence (4-
point Likert scale) in their answer to this question.
The second user study involves giving a subjective
rating of how plausible the rationale is (Hase and
Bansal, 2020). Here, the annotator is given the
input, rationale, and model’s predicted label, then
asked to rate (5-point Likert scale) how aligned the
rationale is with the prediction.

In both forward simulation and subjective rat-
ing, we find that DLM-FP performs best among all
non-oracle methods and even beats Gold on accu-
racy, further supporting that DLM-FP rationales are
plausible. As expected, the fact that Gold does not
achieve near-100% accuracy shows the discrepancy
between evaluating plausibility based on the tar-
get label (i.e., gold rationale similarity) and Ftask’s
predicted label (forward simulation). Meanwhile,
SGT+P and AA-FP, which had lower AUPRC/TF1
in our automatic evaluation, also do worse in accu-
racy/alignment. Also, users found SGT+P and AA-
FP rationales harder to understand, as shown by
their lower confidence scores. Meanwhile, A2R+P
had high AUPRC/TF1, but gets very low accu-
racy/alignment because A2R+P’s predicted label

often not the target label, leading to misalignment
with its gold-like rationale. A2R+P is a great ex-
ample of how automatic plausibility evaluation can
be misleading. For the accuracy, confidence, and
alignment questions, we achieved Fleiss’ Kappa
(Fleiss, 1971) inter-annotator agreement scores of
0.2456 (fair), 0.1282 (slight), and, 0.1561 (slight),
respectively. This lack of agreement shows the
difficulty of measuring plausibility.

5 Related Work

Faithfulness Many prior works have tried to
improve the faithfulness of extractive rationales
through the use of AAs (Bastings and Filippova,
2020). Typically, this involves designing gradient-
based (Sundararajan et al., 2017; Denil et al.,
2014; Lundberg and Lee, 2017; Li et al., 2015) or
perturbation-based (Li et al., 2016; Poerner et al.,
2018; Kádár et al., 2017) AAs. However, attribu-
tion algorithms cannot be optimized and tend to
be compute-intensive (often requiring multiple LM
forward/backward passes). Recently, Ismail et al.
(2021) addressed the optimization issue by regu-
larizing the task model to yield faithful rationales
via the AA, while other works (Situ et al., 2021;
Schwarzenberg et al., 2021) addressed the compute
cost issue by training an LM (requiring only one
forward pass) to mimic an AA’s behavior. Another
line of work aims to produce faithful rationales
by construction, via SPPs (Jain et al., 2020; Yu
et al., 2021; Paranjape et al., 2020; Bastings et al.,
2019; Yu et al., 2019; Lei et al., 2016). Still, SPPs’
faithfulness can only guarantee sufficiency – not
comprehensiveness (DeYoung et al., 2019). Also,
SPPs generally perform worse than vanilla LMs
because they hide much of the original text input
from the predictor and are hard to train end-to-end.

Plausibility Existing approaches for improving
extractive rationale plausibility typically involve su-
pervising LM-based extractors (Bhat et al., 2021)
or SPPs (Jain et al., 2020; Paranjape et al., 2020;
DeYoung et al., 2019) with gold rationales. How-
ever, existing LM-based extractors have not been
trained for faithfulness, while SPPs’ faithfulness
by construction comes at the great cost of task per-
formance. Meanwhile, more existing works focus
on improving the plausibility of free-text rationales
(Narang et al., 2020; Lakhotia et al., 2020; Cam-
buru et al., 2018), often with task-specific pipelines
(Rajani et al., 2019; Kumar and Talukdar, 2020).

Connection to UNIREX Unlike prior works,
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UNIREX enables both the task model and ratio-
nale extractor to be jointly optimized for faithful-
ness, plausibility, and task performance. As a result,
UNIREX-trained rationale extractors achieve a
better balance of faithfulness and plausibility, with-
out compromising the task model’s performance.
Also, by using a learned rationale extractor, which
generally only requires one model forward pass,
UNIREX does not have the computational ex-
penses that limit many AAs.
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A Appendix

A.1 Text Classification

Here, we formalize the text classification prob-
lem in more detail. Let D = {X ,Y}Ni=1 be a
dataset, where X = {xi}Ni=1 are the text inputs,
Y = {y∗i }Ni=1 are the labels, and N is the number
of instances (xi, y

∗
i ) in D. We also assume D can

be partitioned into train set Dtrain, dev set Ddev, and
test set Dtest. Let Ftask = ftask(fenc(·)) be a task
LM, where fenc is the text encoder, and ftask is the
task output head. Typically, Ftask has a BERT-style
architecture (Devlin et al., 2018), in which fenc is
a Transformer (Vaswani et al., 2017) while ftask
is a linear layer. Below, we define the sequence
classification (SST, Movies, MultiRC, e-SNLI) and
multi-choice QA (CoS-E) tasks, which are different
types of text classification.

Sequence Classification In sequence classifica-
tion, xi is a token sequence (e.g., a single sen-
tence, a pair of sentences), while y∗i is the target
class for xi. Here, we assume a fixed label space
Y = {1, ...,M} of size M , where y∗i ∈ Y for all
i. Thus, ftask outputs a vector of size M , such that
Ftask(xi) = ftask(fenc(xi)) = ŷi ∈ RM is the logit
vector used to classify xi. Given ŷi = [ŷi,j ]

M
j=1, let

yi = argmax j ŷi,j be the class predicted by Ftask.
The goal of sequence classification is to learn Ftask
such that y∗i = yi, for all (xi, y

∗
i ) (Minaee et al.,

2021).

Multi-Choice QA Instead of a fixed label space,
multi-choice QA has a different (but fixed-size)
set of answer choices per instance. For instance
i, let qi be the question (e.g., “A friend is greet-
ing me, what would they say?”) and Ai =
{ai,j}Mj=1 be the corresponding answer choices
(e.g., {“say hello”, “greet”, “associate”, “social-
ize”, “smile”}), where M is now the number of
answer choices. Define xi,j = qi ⊕ ai,j , where
⊕ denotes concatenation. In multi-choice QA, we
have xi = {xi,j}Mj=1, while y∗i ∈ Ai is the correct
answer for xi. Thus, ftask outputs a scalar, such
that Ftask(xi,j) = ftask(fenc(xi,j)) = ŷi,j ∈ R
is the logit for xi,j . Given ŷi = [ŷi,j ]

M
j=1, let

j′ = argmax j ŷi,j , where yi = ai,j′ is the answer
predicted by Ftask. The goal of multi-choice QA
is to learn Ftask such that y∗i = yi, for all (xi, y

∗
i )

(Talmor et al., 2018).
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A.2 Heuristic Rationale Extractors

A heuristic Ftask is an AA, which can be any hand-
crafted function that calculates an importance score
sti for each input token xti (Bastings and Filippova,
2020). AAs are typically gradient-based (Sun-
dararajan et al., 2017; Denil et al., 2014; Lundberg
and Lee, 2017; Li et al., 2015) or perturbation-
based (Li et al., 2016; Poerner et al., 2018; Kádár
et al., 2017) methods. Gradient-based methods
compute sti via the gradient of Ftask’s output ŷi

w.r.t. xti, via one or more Ftask backward passes.
Perturbation-based methods measure sti as ŷi’s
change when perturbing (e.g., removing) xti, via
multiple Ftask forward passes.

AAs can be used out of the box without train-
ing and are designed to satisfy certain faithfulness-
related axiomatic properties (Sundararajan et al.,
2017; Lundberg and Lee, 2017). However, AAs’
lack of learnable parameters means they cannot
be optimized for faithfulness/plausibility. Thus, if
Ftask is trained for explainability using AA-based
rationales, then only Ftask is optimized. Also, faith-
ful AAs tend to be compute-intensive, requiring
many Ftask backward/forward passes per instance
(Sundararajan et al., 2017; Lundberg and Lee, 2017;
Li et al., 2016).

A.3 Gold Rationale Supervision

If a learned rationale extractor is chosen, UNIREX
enables users to specify how much gold rationale
supervision to use. Ideally, each train instance
would be annotated with a gold rationale. In this
case, we could directly minimize the plausibility
loss for each train instance. However, since gold
rationales can be expensive to annotate, UNIREX
provides a special batching procedure for training
with limited gold rationale supervision.

Given Ntrain = |Dtrain| train instances, let 0 <
γ < 100 be the percentage of train instances with
gold rationales, Ngold = ⌈ γ

100Ntrain⌉ ≥ 1 be the
number of train instances with gold rationales, b be
the desired train batch size, and β > 1 be a scaling
factor. Define Dgold ⊆ Dtrain as the set of train
instances with gold rationales, where |Dgold| =
Ngold. Note that, if all train instances have gold
rationales, then Dgold = Dtrain and γ = 100.

Each batch is constructed as follows: (1) ran-
domly sample bgold = max(1, b

β ) instances from
Dgold without replacement, then (2) randomly sam-
ple b − bgold instances from Dtrain\Dgold without
replacement. This results in a batch with b total

train instances, bgold with gold rationales and the
rest without. Since Ngold is generally small, we
only sample from Dgold without replacement for a
given batch, but not a given epoch. Thus, instances
from Dgold may appear more than once in the same
epoch. However, we do sample from Dtrain\Dgold
without replacement for each batch and epoch, so
every instance in Dtrain\Dgold appears exactly once
per epoch.

After constructing the batch, we compute
the plausibility loss for the batch as fol-
lows:

∑b
i=1 1(xi,y∗i )∈Dgold Lplaus(Fext(xi), r∗i ),

where Lplaus is the plausibility loss for train in-
stance (xi, y∗i ). This function zeroes out the plau-
sibility loss for instances without gold rationales,
so that plausibility is only being optimized with
respect to instances with gold rationales. However,
in Sec. ??, we show that it is possible to achieve
high plausibility via rationale extractors trained on
minimal gold rationale supervision.

A.4 Explainability Objectives

A.4.1 Faithfulness
Sufficiency In addition, to the criteria presented
in Sec. 3.2, we consider two other sufficiency loss
functions. The first is the KL divergence criterion
used in (Ismail et al., 2021), which considers the
entire label distribution and is defined as Lsuff-KL =
KL(Ftask(r

(k)
i )) || Ftask(xi)). The second is the

mean absolute error (MAE) criterion, which is
defined as Lsuff-MAE = |LCE(Ftask(r

(k)
i )), y∗i ) −

LCE(Ftask(xi), y∗i )|. Unlike the difference criterion
Lsuff-diff and margin criterion Lsuff-margin (Sec. 3.2),
the MAE criterion assumes that using r

(k)
i as input

should not yield better task performance than us-
ing xi as input. In our experiments, we find that
Lsuff-margin is effective, though others (e.g., KL di-
vergence, MAE) can be used too.

A.4.2 Plausibility
Similar to faithfulness, UNIREX places no re-
strictions on the choice of plausibility objective.
As described in Sec. 3.2, given gold rationale r∗i
for input xi, plausibility optimization entails train-
ing Fext to predict binary importance label r∗,ti for
each token xti. This is essentially binary token
classification, so one natural choice for Lplaus is
the token-level binary cross-entropy (BCE) crite-
rion: Lplaus-BCE = −∑

t r
∗,t
i log(Fext(x

t
i)) (Sec.

3.2). Another option is the sequence-level KL di-
vergence criterion, which is defined as: Lplaus-KL =
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KL(Fext(xi) || r∗i ).
Additionally, we can directly penalize Fext(xi)

in the logit space via a linear loss, defined as:
Lplaus-linear = Φ(r∗i ) Fext(xi), where Φ(u) =
−2u + 1 maps positive and negative tokens to
−1 and +1, respectively. The linear loss directly
pushes the logits corresponding to positive/negative
tokens to be higher/lower and increase the mar-
gin between them. To prevent linear loss values
from becoming arbitrarily negative, we can also
lower bound the loss with a margin mp, yielding:
Lplaus-linear-margin = max(−mp,Lplaus-linear) +mp.

A.5 Implementation Details

LM Architecture While many prior works use
BERT (Devlin et al., 2018) Transformer LMs,
BERT is limited to having sequences with up
to 512 tokens, which is problematic since many
datasets (e.g., Movies) contain much longer se-
quences. Meanwhile, BigBird (Zaheer et al., 2020)
is a state-of-the-art Transformer LM designed to
handle long input sequences with up to 4096 tokens.
Thus, we use BigBird-Base, which is initialized
with RoBERTa-Base (Liu et al., 2019), in all of our
experiments (i.e., both baselines and UNIREX).
We obtain the pre-trained BigBird-Base model
from the Hugging Face Transformers library (Wolf
et al., 2019). Note that UNIREX is agnostic to
the choice of LM architecture, so RNNs, CNNs,
and other Transformer LMs are also supported by
UNIREX. However, we leave exploration of other
LM architectures for future work.

Training Building upon Sec. ??, we discuss ad-
ditional training details here. We find that αc = 0.5
and αs = 0.5 are usually best. For the batching
factor β (Sec. A.3), we use 2. For model selec-
tion, we choose the model with the best dev per-
formance averaged over three seeds. We can also
perform model selection based on dev explainabil-
ity metrics, but we leave this extended tuning for
future work. All experiments are implemented us-
ing PyTorch-Lightning (Paszke et al., 2019; Falcon
and The PyTorch Lightning team, 2019).

A.6 Gold Rationale Data Efficiency

Fig. ?? shows the gold rationale data efficiency
results for CoS-E, using the same setup as Sec.
??. Overall, we see that the CoS-E results are quite
similar to the SST results. Again, UNIREX (DLM-
FP) and UNIREX (SLM-FP) dominate across all
γ values, with AUPRC slowly decreasing as γ de-

creases. Interestingly, UNIREX (AA-FP) yields a
noticeable dip in AUPRC for lower γ values. Since
AA-FP has limited capacity (via the task model)
for plausibility optimization, it is possible that this
fluctuation is due to random noise. We leave further
analysis of this for future work.

Figure 8: Gold Rationale Data Efficiency on CoS-E.

A.7 Additional Empirical Results
In this subsection, we present additional results
from our experiments. Besides the aggregated re-
sults shown in Sec. 4 of the main text, Tables 4-10
contain more detailed results, using both raw and
NRG metrics. Specifically, Tables 4-8 show all
raw/NRG results for each dataset, Table 9 shows
the ablation results for all raw metrics, and Table 10
includes the zero-shot explainability transfer results
for UNIREX (SLM-FP). Generally, the computa-
tion of NRG should involve globally aggregating
the raw metrics for all available methods, as done
in the main results. However, for a number of more
focused experiments (Tables 9-10), only a subset
of the available methods are considered. Thus, to
make the faithfulness results in Tables 9-10 easier
to digest, we introduce a metric called Comp-Suff
Difference (CSD), which locally aggregates comp
and suff as: CSD = comp − suff. Therefore, since
higher/lower comp/suff signal higher faithfulness,
then higher CSD signals higher faithfulness.
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Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) Acc (↑)

AA (Grad) 0.488 0.337 0.142 (±0.010) 0.256 (±0.006) 0.192 58.86 (±3.65) 27.40 (±0.00) 0.935 93.81 (±0.55)
AA (Input*Grad) 0.420 0.107 0.078 (±0.013) 0.342 (±0.014) 0.218 44.16 (±1.43) 45.02 (±0.39) 0.935 93.81 (±0.55)
AA (DeepLIFT) 0.453 0.122 0.085 (±0.006) 0.340 (±0.018) 0.302 46.50 (±1.32) 50.18 (±0.32) 0.935 93.81 (±0.55)

AA (IG) 0.526 0.297 0.119 (±0.009) 0.258 (±0.031) 0.347 49.94 (±1.77) 50.75 (±0.54) 0.935 93.81 (±0.55)
L2E 0.557 0.487 0.012 (±0.004) 0.009 (±0.024) 0.250 44.84 (±0.32) 47.24 (±0.87) 0.935 93.81 (±0.55)
SGT 0.632 0.555 0.147 (±0.024) 0.113 (±0.031) 0.371 51.38 (±2.47) 51.35 (±1.64) 0.971 94.40 (±0.57)

FRESH 0.330 0.837 0.219 (±0.057) 0.000 (±0.000) 0.152 42.06 (±8.84) 41.19 (±4.01) 0.000 78.78 (±6.48)
A2R 0.479 0.941 0.283 (±0.104) 0.000 (±0.000) 0.457 63.36 (±6.01) 46.74 (±6.65) 0.038 79.39 (±11.67)

UNIREX (AA-F) 0.639 0.706 0.292 (±0.051) 0.171 (±0.038) 0.329 48.13 (±1.14) 50.96 (±0.93) 0.882 92.97 (±0.44)

SGT+P 0.596 0.507 0.139 (±0.032) 0.137 (±0.026) 0.355 50.38 (±1.45) 50.98 (±0.46) 0.928 93.70 (±0.88)
FRESH+P 0.426 0.765 0.175 (±0.043) 0.000 (±0.000) 0.503 60.87 (±9.83) 53.55 (±8.27) 0.011 78.95 (±5.18)

A2R+P 0.695 0.953 0.290 (±0.016) 0.000 (±0.000) 0.978 85.56 (±1.01) 70.97 (±1.03) 0.154 81.26 (±0.52)
UNIREX (DLM-P) 0.770 0.339 0.142 (±0.008) 0.255 (±0.007) 0.970 84.35 (±0.87) 71.54 (±0.53) 1.000 94.86 (±0.41)
UNIREX (AA-FP) 0.636 0.339 0.296 (±0.067) 0.185 (±0.048) 0.315 47.60 (±2.44) 50.23 (±2.26) 0.900 93.25 (±0.45)

UNIREX (DLM-FP) 0.897 0.756 0.319 (±0.090) 0.167 (±0.036) 1.000 85.80 (±0.74) 72.76 (±0.19) 0.935 93.81 (±0.54)
UNIREX (SLM-FP) 0.891 0.807 0.302 (±0.039) 0.113 (±0.013) 0.940 82.55 (±0.84) 70.65 (±0.44) 0.927 93.68 (±0.67)

Table 4: Main Results on SST.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)

AA (Grad) 0.481 0.457 0.184 (±0.023) 0.107 (±0.017) 0.028 13.31 (±0.91) 5.02 (±0.00) 0.957 95.33 (±0.65)
AA (Input*Grad) 0.503 0.359 0.148 (±0.031) 0.137 (±0.019) 0.194 8.68 (±0.37) 37.58 (±0.55) 0.957 95.33 (±0.65)
AA (DeepLIFT) 0.468 0.259 0.122 (±0.029) 0.172 (±0.022) 0.187 9.00 (±0.16) 36.15 (±1.45) 0.957 95.33 (±0.65)

AA (IG) 0.439 0.173 0.134 (±0.016) 0.219 (±0.044) 0.188 8.88 (±0.21) 36.39 (±1.29) 0.957 95.33 (±0.65)
L2E 0.550 0.445 0.000 (±0.007) 0.026 (±0.015) 0.248 16.68 (±10.20) 38.92 (±4.07) 0.957 95.33 (±0.65)
SGT 0.553 0.474 0.124 (±0.053) 0.071 (±0.064) 0.184 10.05 (±1.23) 34.64 (±1.67) 1.000 96.33 (±0.76)

FRESH 0.645 0.732 0.234 (±0.034) 0.000 (±0.000) 0.305 17.02 (±6.22) 48.26 (±5.87) 0.899 94.00 (±1.44)
A2R 0.431 0.764 0.267 (±0.050) 0.000 (±0.000) 0.244 35.44 (±21.69) 19.78 (±25.56) 0.284 79.78 (±7.14)

UNIREX (AA-F) 0.601 0.744 0.505 (±0.134) 0.122 (±0.100) 0.189 9.14 (±2.51) 36.28 (±1.84) 0.870 93.33 (±1.61)

SGT+P 0.586 0.604 0.152 (±0.013) 0.022 (±0.004) 0.183 9.16 (±1.59) 35.33 (±0.41) 0.971 95.66 (±1.16)
FRESH+P 0.491 0.691 0.193 (±0.062) 0.000 (±0.000) 0.710 65.78 (±11.16) 68.70 (±15.78) 0.070 74.84 (±12.22)

A2R+P 0.585 0.764 0.267 (±0.076) 0.000 (±0.000) 0.991 93.53 (±0.93) 88.77 (±1.22) 0.000 73.22 (±0.75)
UNIREX (DLM-P) 0.667 0.024 0.024 (±0.003) 0.238 (±0.004) 1.000 94.32 (±0.12) 89.53 (±1.63) 0.978 95.83 (±0.29)
UNIREX (AA-FP) 0.543 0.514 0.428 (±0.174) 0.195 (±0.105) 0.193 8.53 (±0.46) 37.71 (±3.12) 0.921 94.50 (±1.00)

UNIREX (DLM-FP) 0.744 0.326 0.283 (±0.217) 0.216 (±0.005) 0.991 93.65 (±0.36) 88.68 (±2.29) 0.913 94.33 (±1.61)
UNIREX (SLM-FP) 0.754 0.362 0.313 (±0.059) 0.213 (±0.014) 0.965 91.70 (±1.84) 86.17 (±1.20) 0.935 94.83 (±0.76)

Table 5: Main Results on Movies.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) Acc (↑)

AA (Grad) 0.537 0.504 0.331 (±0.012) 0.352 (±0.007) 0.130 37.33 (±0.62) 22.65 (±0.00) 0.977 63.56 (±1.27)
AA (Input*Grad) 0.573 0.361 0.249 (±0.018) 0.385 (±0.008) 0.383 39.56 (±0.54) 44.43 (±0.40) 0.977 63.56 (±1.27)
AA (DeepLIFT) 0.605 0.346 0.254 (±0.035) 0.403 (±0.042) 0.491 42.82 (±1.83) 51.72 (±1.26) 0.977 63.56 (±1.27)

AA (IG) 0.578 0.327 0.216 (±0.007) 0.378 (±0.010) 0.429 40.07 (±5.47) 48.34 (±3.16) 0.977 63.56 (±1.27)
L2E 0.544 0.493 0.005 (±0.003) 0.010 (±0.008) 0.161 23.56 (±1.09) 37.80 (±1.10) 0.977 63.56 (±1.27)
SGT 0.618 0.367 0.197 (±0.040) 0.324 (±0.015) 0.491 43.68 (±4.68) 51.00 (±3.05) 0.995 64.35 (±0.46)

FRESH 0.302 0.546 0.037 (±0.036) 0.000 (±0.000) 0.261 32.35 (±7.66) 39.37 (±0.70) 0.101 24.81 (±3.46)
A2R 0.277 0.516 0.014 (±0.021) 0.000 (±0.000) 0.282 41.61 (±3.85) 33.12 (±9.06) 0.032 21.77 (±1.31)

UNIREX (AA-F) 0.690 0.538 0.297 (±0.141) 0.286 (±0.084) 0.554 46.97 (±3.41) 53.99 (±1.66) 0.978 63.58 (±0.61)

SGT+P 0.601 0.367 0.201 (±0.032) 0.328 (±0.022) 0.436 41.30 (±6.70) 47.95 (±1.65) 1.000 64.57 (±0.33)
FRESH+P 0.374 0.515 0.013 (±0.021) 0.013 (±0.021) 0.606 53.40 (±12.87) 53.17 (±7.83) 0.000 20.36 (±0.66)

A2R+P 0.488 0.500 0.001 (±0.001) 0.000 (±0.000) 0.951 73.59 (±0.81) 67.63 (±1.54) 0.012 20.91 (±0.48)
UNIREX (DLM-P) 0.751 0.267 0.180 (±0.016) 0.390 (±0.035) 0.997 76.07 (±1.63) 69.76 (±0.27) 0.990 64.13 (±0.46)
UNIREX (AA-FP) 0.685 0.551 0.395 (±0.109) 0.381 (±0.101) 0.537 45.21 (±4.46) 53.91 (±3.23) 0.968 63.14 (±0.33)

UNIREX (DLM-FP) 0.814 0.492 0.293 (±0.043) 0.321 (±0.070) 0.997 76.38 (±0.57) 69.52 (±0.24) 0.953 62.50 (±1.34)
UNIREX (SLM-FP) 0.807 0.494 0.390 (±0.087) 0.424 (±0.110) 0.983 75.12 (±0.41) 69.25 (±0.41) 0.944 62.09 (±2.12)

Table 6: Main Results on CoS-E.
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Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)

AA (Grad) 0.498 0.462 0.222 (±0.028) 0.120 (±0.018) 0.035 22.27 (±0.17) 13.81 (±0.00) 0.997 69.80 (±0.60)
AA (Input*Grad) 0.506 0.289 0.225 (±0.048) 0.260 (±0.059) 0.231 18.51 (±0.23) 43.45 (±0.05) 0.997 69.80 (±0.60)
AA (DeepLIFT) 0.493 0.249 0.225 (±0.012) 0.292 (±0.014) 0.234 18.80 (±0.19) 43.51 (±0.04) 0.997 69.80 (±0.60)

AA (IG) 0.499 0.280 0.162 (±0.086) 0.222 (±0.086) 0.220 18.71 (±0.40) 41.79 (±1.33) 0.997 69.80 (±0.60)
L2E 0.522 0.366 0.007 (±0.006) 0.042 (±0.024) 0.205 24.48 (±2.71) 32.63 (±6.12) 0.997 69.80 (±0.60)
SGT 0.594 0.564 0.214 (±0.105) 0.033 (±0.077) 0.224 18.60 (±0.42) 42.42 (±0.51) 0.995 69.73 (±0.13)

FRESH 0.675 0.571 0.176 (±0.029) 0.000 (±0.000) 0.617 24.68 (±7.98) 48.02 (±3.04) 0.838 64.47 (±3.41)
A2R 0.217 0.404 -0.010 (±0.029) 0.000 (±0.000) 0.249 18.72 (±0.67) 45.45 (±0.02) 0.000 36.39 (±0.00)

UNIREX (AA-F) 0.711 0.956 0.505 (±0.050) -0.071 (±0.020) 0.236 18.82 (±0.40) 43.68 (±0.38) 0.939 66.17 (±4.58)

SGT+P 0.630 0.665 0.280 (±0.029) 0.283 (±0.039) 0.226 18.63 (±0.52) 42.71 (±0.39) 1.000 69.91 (±0.81)
FRESH+P 0.404 0.413 0.000 (±0.013) 0.000 (±0.000) 0.739 55.87 (±10.13) 63.70 (±9.58) 0.060 38.41 (±5.34)

A2R+P 0.516 0.422 0.011 (±0.024) 0.000 (±0.000) 0.977 70.86 (±1.30) 76.21 (±1.68) 0.150 41.42 (±8.73)
UNIREX (DLM-P) 0.708 0.123 0.127 (±0.010) 0.322 (±0.017) 0.999 71.80 (±0.27) 77.94 (±0.57) 1.000 69.91 (±0.76)
UNIREX (AA-FP) 0.706 1.000 0.545 (±0.045) -0.077 (±0.099) 0.231 19.13 (±0.71) 42.66 (±1.18) 0.888 66.17 (±4.58)

UNIREX (DLM-FP) 0.751 0.327 0.135 (±0.072) 0.165 (±0.029) 0.998 71.89 (±0.41) 77.63 (±0.62) 0.929 67.53 (±1.06)
UNIREX (SLM-FP) 0.784 0.377 0.198 (±0.038) 0.171 (±0.027) 0.997 71.69 (±0.21) 77.79 (±0.09) 0.979 69.20 (±1.58)

Table 7: Main Results on MultiRC.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)

AA (Grad) 0.587 0.518 0.313 (±0.009) 0.380 (±0.025) 0.244 59.80 (±1.32) 15.27 (±0.00) 0.999 90.78 (±0.27)
AA (Input*Grad) 0.503 0.287 0.205 (±0.005) 0.446 (±0.020) 0.223 32.98 (±1.37) 43.13 (±0.86) 0.999 90.78 (±0.27)
AA (DeepLIFT) 0.508 0.270 0.195 (±0.012) 0.448 (±0.014) 0.254 33.47 (±1.31) 46.44 (±0.04) 0.999 90.78 (±0.27)

AA (IG) 0.596 0.473 0.308 (±0.011) 0.414 (±0.020) 0.317 47.83 (±1.04) 37.87 (±1.39) 0.999 90.78 (±0.27)
L2E 0.606 0.460 0.009 (±0.015) 0.036 (±0.022) 0.358 58.11 (±0.97) 31.35 (±0.27) 0.999 90.78 (±0.27)
SGT 0.595 0.503 0.288 (±0.025) 0.361 (±0.038) 0.298 42.46 (±3.03) 41.70 (±1.78) 0.985 90.23 (±0.16)

FRESH 0.518 0.661 0.120 (±0.075) 0.000 (±0.000) 0.361 38.77 (±6.82) 53.71 (±3.30) 0.530 72.92 (±8.71)
A2R 0.273 0.564 0.053 (±0.048) 0.000 (±0.000) 0.256 48.48 (±11.14) 29.54 (±24.72) 0.000 52.72 (±14.08)

UNIREX (AA-F) 0.622 0.539 0.330 (±0.018) 0.383 (±0.055) 0.340 45.29 (±3.02) 43.69 (±1.98) 0.987 90.31 (±0.19)

SGT+P 0.608 0.524 0.286 (±0.034) 0.339 (±0.032) 0.311 43.03 (±1.69) 42.59 (±1.63) 0.988 90.36 (±0.08)
FRESH+P 0.614 0.695 0.143 (±0.072) 0.000 (±0.000) 0.603 56.21 (±10.47) 64.09 (±5.59) 0.544 73.44 (±12.88)

A2R+P 0.800 0.751 0.182 (±0.097) 0.000 (±0.000) 0.992 87.30 (±0.44) 77.31 (±0.72) 0.656 77.31 (±0.72)
UNIREX (DLM-P) 0.842 0.525 0.311 (±0.011) 0.371 (±0.032) 1.000 87.85 (±0.13) 77.63 (±0.35) 1.000 90.80 (±0.33)
UNIREX (AA-FP) 0.626 0.529 0.341 (±0.008) 0.406 (±0.046) 0.363 44.79 (±0.81) 47.18 (±0.83) 0.985 90.21 (±0.08)

UNIREX (DLM-FP) 0.857 0.588 0.335 (±0.018) 0.346 (±0.023) 0.991 86.99 (±0.40) 77.53 (±0.15) 0.992 90.51 (±0.12)
UNIREX (SLM-FP) 0.864 0.603 0.353 (±0.017) 0.356 (±0.015) 0.994 87.58 (±0.14) 77.22 (±0.28) 0.994 90.59 (±0.09)

Table 8: Main Results on e-SNLI.

Ablation Method Performance Faithfulness Plausibility

Acc (↑) CSD (↑) Comp (↑) Suff (↓) AUPRC (↑) TF1 (↑)

Ext Type (F)

UNIREX (AA-F, Rand) 94.05 (±0.35) -0.156 (±-0.156) 0.171 (±0.040) 0.327 (±0.050) 44.92 (±0.00) 46.15 (±0.00)
UNIREX (AA-F, Gold) 93.81 (±0.54) -0.017 (±0.070) 0.232 (±0.088) 0.249 (±0.021) 100.00 (±0.00) 100.00 (±0.00)
UNIREX (AA-F, Inv) 93.47 (±1.81) -0.115 (±0.018) 0.242 (±0.010) 0.357 (±0.019) 20.49 (±0.00) 0.00 (±0.00)
UNIREX (AA-F, IG) 93.81 (±0.55) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 49.94 (±1.77) 50.75 (±0.54)

Ext Type (FP)

UNIREX (AA-FP, Sum) 93.81 (±0.55) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 49.94 (±1.77) 50.75 (±0.54)
UNIREX (AA-FP, MLP) 93.23 (±0.92) 0.087 (±0.134) 0.285 (±0.051) 0.197 (±0.100) 54.82 (±1.97) 49.62 (±0.65)

UNIREX (DLM-FP) 93.81 (±0.18) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036) 85.80 (±0.74) 72.76 (±0.19)
UNIREX (SLM-FP) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

Comp/Suff Loss
UNIREX (SLM-FP, Comp) 93.59 (±0.11) 0.040 (±0.096) 0.350 (±0.048) 0.310 (±0.049) 82.79 (±0.62) 70.74 (±0.81)
UNIREX (SLM-FP, Suff) 94.16 (±0.39) 0.014 (±0.010) 0.166 (±0.003) 0.152 (±0.012) 83.74 (±0.84) 70.94 (±0.86)

UNIREX (SLM-FP, Comp+Suff) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

Suff Criterion
UNIREX (SLM-FP, KL Div) 93.06 (±0.25) 0.174 (±0.100) 0.306 (±0.098) 0.131 (±0.005) 82.62 (±0.88) 70.43 (±0.65)
UNIREX (SLM-FP, MAE) 93.78 (±0.13) 0.135 (±0.053) 0.278 (±0.058) 0.143 (±0.008) 82.66 (±0.61) 70.25 (±0.45)

UNIREX (SLM-FP, Margin) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

SLM Ext Head
UNIREX (SLM-FP, Linear) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

UNIREX (SLM-FP, MLP-2048-2) 93.67 (±0.18) 0.179 (±0.060) 0.323 (±0.071) 0.144 (±0.012) 83.82 (±0.77) 70.93 (±0.87)
UNIREX (SLM-FP, MLP-4096-3) 93.19 (±0.79) 0.141 (±0.030) 0.295 (±0.057) 0.154 (±0.027) 84.53 (±0.61) 71.41 (±0.91)

Table 9: UNIREX Ablation Studies on SST.
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Task Dataset Method Performance Faithfulness

Perf (↑) CSD (↑) Comp (↑) Suff (↓)

Sentiment Analysis

SST

Vanilla 93.81 (±0.74) -0.070 (±0.061) 0.145 (±0.023) 0.215 (±0.038)
UNIREX (AA-F) 93.19 (±0.40) 0.360 (±0.055) 0.405 (±0.031) 0.045 (±0.024)

UNIREX (DLM-FP) 93.81 (±0.18) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036)
UNIREX (SLM-FP) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013)

Yelp

Vanilla 92.50 (±2.07) -0.156 (±0.028) 0.067 (±0.004) 0.222 (±0.031)
UNIREX (AA-F) 90.75 (±1.30) -0.138 (±0.120) 0.096 (±0.026) 0.233 (±0.096)

UNIREX (DLM-FP) 92.37 (±0.46) 0.169 (±0.060) 0.265 (±0.094) 0.097 (±0.033)
UNIREX (SLM-FP) 86.60 (±1.57) 0.114 (±0.056) 0.175 (±0.055) 0.060 (±0.001)

Amazon

Vanilla 91.13 (±0.28) -0.120 (±0.038) 0.096 (±0.008) 0.217 (±0.033)
UNIREX (AA-F) 86.60 (±0.95) -0.111 (±0.161) 0.100 (±0.042) 0.210 (±0.122)

UNIREX (DLM-FP) 89.35 (±2.22) 0.133 (±0.039) 0.232 (±0.072) 0.098 (±0.033)
UNIREX (SLM-FP) 81.82 (±7.62) 0.097 (±0.027) 0.147 (±0.012) 0.050 (±0.017)

Hate Speech Detection Stormfront

Vanilla 10.48 (±1.66) -0.066 (±0.072) 0.153 (±0.002) 0.219 (±0.071)
UNIREX (AA-F) 9.43 (±1.45) 0.329 (±0.104) 0.337 (±0.073) 0.008 (±0.031)

UNIREX (DLM-FP) 10.37 (±2.66) 0.052 (±0.027) 0.167 (±0.084) 0.115 (±0.059)
UNIREX (SLM-FP) 4.51 (±1.87) 0.049 (±0.041) 0.110 (±0.039) 0.062 (±0.043)

Offensive Speech Detection OffenseEval

Vanilla 33.51 (±0.99) -0.125 (±0.068) 0.104 (±0.007) 0.229 (±0.064)
UNIREX (AA-F) 35.69 (±2.30) -0.028 (±0.084) 0.076 (±0.008) 0.104 (±0.076)

UNIREX (DLM-FP) 35.52 (±1.26) 0.053 (±0.012) 0.140 (±0.049) 0.087 (±0.045)
UNIREX (SLM-FP) 38.17 (±0.96) 0.039 (±0.031) 0.087 (±0.016) 0.048 (±0.024)

Irony Detection SemEval2018-Irony

Vanilla 29.63 (±4.72) -0.058 (±0.075) 0.154 (±0.001) 0.212 (±0.074)
UNIREX (AA-F) 47.99 (±6.33) 0.026 (±0.080) 0.087 (±0.022) 0.061 (±0.071)

UNIREX (DLM-FP) 31.97 (±2.80) 0.047 (±0.017) 0.149 (±0.052) 0.102 (±0.053)
UNIREX (SLM-FP) 17.42 (±4.04) 0.027 (±0.047) 0.091 (±0.027) 0.064 (±0.033)

Table 10: Zero-Shot Explainability Transfer from SST to Unseen Datasets/Tasks.
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