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Abstract

Identifying complex words in texts is an
important first step in text simplification (TS)
systems. In this paper, we investigate the
performance of binary comparative Lexical
Complexity Prediction (LCP) models applied
to a popular benchmark dataset — the
CompLex 2.0 dataset used in SemEval-2021
Task 1. With the data from CompLex 2.0, we
create a new dataset contain 1,940 sentences
referred to as CompLex-BC. Using CompLex-
BC, we train multiple models to differentiate
which of two target words is more or less
complex in the same sentence. A linear SVM
model achieved the best performance in our
experiments with an F1-score of 0.86.

1 Introduction

Children, second language learners, or individuals
suffering from a reading disability, such as dyslexia
or aphasia, can find certain words hard to read,
interpret, or learn (Devlin and Tait, 1998; Carroll
et al., 1998; Kajiwara et al., 2013; Rello et al.,
2013; Malmasi et al., 2016). In readability and
text simplification (TS) literature, these words are
known as complex words.

Complex and non-complex words are
distinguishable. Statistical, morphological,
and psycholinguistic features are indicative of
lexical complexity (Shardlow et al., 2022; Desai
et al., 2021). Complex words are on average
longer, morphologically more unique, and less
frequent in general corpora, than non-complex
words (Paetzold and Specia, 2016; Yimam et al.,
2018; Shardlow et al., 2021).

With the growing popularity of distance learning
platforms, the demand for new technologies that
make texts more accessible for independent and
remote learning has seen an exponential increase
(Morris et al., 2020). Among these technologies,
are TS systems that automatically simplify texts
for various target populations. The first step in

TS is generally referred to as lexical complexity
prediction (LCP). LCP aims to identify which
words in a text are complex and therefore are in
need of simplification. It has been modeled as
a binary classification task (Paetzold and Specia,
2016), as a regression task (Yimam et al., 2018),
and more recently as a multi-class classification
task (Shardlow et al., 2020).

In this paper, we explore binary comparative
LCP where the goal is to determine when one
target word is more or less complex than another.
This new type of LCP is motivated by the need
for comparative prediction methods that allow for
the pairwise ranking of target words based on
newly available data assigned with continuous
complexity values (Shardlow et al., 2020). Binary
comparative LCP aims to aid TS by improving
the selection and ranking of substitute candidates
for a particular complex word. It achieves this by
allowing for more data to be generated from a finite
dataset. For instance, a dataset consisting of 10,000
complex words assigned with complexity values
can be converted into 100 million comparative
instances, since every complex word can be
compared to every other complex word. A binary
comparative LCP classifier trained on this dataset
can then make binary comparative judgements as
part of a sorting algorithm. This lets a lexical
simplification (LS) system effectively find the most
appropriate simplification for any given complex
word improving the efficiency of TS and other
down-stream applications.

We aim to determine whether binary
comparative LCP is possible when attempting
to differentiate the complexities of two different
target words in the same sentence (Table 3). We
have accomplished this by adapting a recent
baseline LCP dataset: CompLex 2.0 (Shardlow
et al., 2020), and by asking the following research
question: can LCP be modeled as a binary
comparative classification task?
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The main contributions of this paper are:

1. CompLex-BC, the first binary comparative
LCP dataset built from continuous data
obtained through 5-point likert-scale
annotation.

2. An evaluation of SVM, BERT, and BERT +
MLP models for binary comparative LCP.

2 Related Work

Traditionally, LCP comes in two forms, it is either:
a). a binary classification task, known as complex
word identification (CWI) (Paetzold and Specia,
2016; Zampieri et al., 2017; Yimam et al., 2018), or
b). a linear regression based task, simply referred
to as LCP (Shardlow et al., 2021). Both CWI and
LCP datasets contain target words labeled with a
complexity value. This complexity value is used by
a machine learning (ML) model to determine the
complexity of a target word. CWI assigns a binary
complexity value of either 1 (complex), or 0 (non-
complex). LCP alternatively assigns a complexity
value on a continuum, ranging from 0 to 1. This
continuum contains multiple labels with differing
complexity thresholds: very easy (0), easy (0.25),
neutral (0.5), difficult (0.75), to very difficult (1)
(Shardlow et al., 2020). An example is shown in
Table 1.

Folly is set in great dignity
BC 1 is 0 in 0 0
CC 0.57 is 0.18 in 0.15 0.42

Table 1: Example of a sentence annotated with both
binary complexity (BC) and continuous complexity
(CC) values from CWI and LCP systems respectively.
Target words are in bold.

Other approaches have attempted to model LCP
as a multi-class classification task. Pintard and
François (2020) assigned six readability levels,
belonging to the Common European Framework
of Reference for languages (CEFR), to target
words as a means of rating their complexity for
second language learners. Alfter (2021) trained a
variety of models, including a convolutional neural
network (CNN) and a recurrent convolutional
neural network (RCNN), to predict the correct
CEFR labels of target words taken from a multitude
of CERF vocabulary lists.

LCP research has also included the ranking
of complex words (Paetzold and Specia, 2017;

Maddela and Xu, 2018). Neural regressors have
been trained to identify which of two target words
is more or less complex by predicting a continuous
positive or negative value belonging to an inputted
word pair. A positive value indicates that the
first target word is more complex than the second,
whereas a negative value dictates that the second
target word is more complex than the first. The
magnitude of the returned value also represents
the degree of difference between the two target
words. Positive and negative values closer to +1 or
-1 respectively, show that the difference between
the target words’ complexities is more extreme
compared to those values closer to 0 (Table 2).

Word Pair CC Values Label
{set, great} {0.18, 0.15} +0.03

{set, dignity} {0.18, 0.42} -0.24

Table 2: Example of two word pairs annotated with
continuous comparative complexity labels. The first
word pair have a similar level of complexity, whereas
the second word pair have a greater disparity between
their complexities.

Binary comparative LCP provides a binary
complexity label that defines when the first target
word is more complex (1) or less complex (0) than
a second target word, be it either the same or a
different target word in the same or a variety of
contexts. Examples of two different target words in
the same context, in this case sentence, are shown
in Table 3.

Binary comparative LCP is now only recently
possible due to the release of the Complex
2.0 dataset that provides a more fine-grained
representation of target word complexity (Shardlow
et al., 2020). This is since CompLex 2.0 is the
first of its kind to contain continuous complexity
values obtained through the use of a 5-point rather
than a 6-point likert-scale annotation scheme that
does not account for neutral labeling (Maddela
and Xu, 2018), or through the use of binary
annotation. Binary comparative LCP is thus a
new form of complexity prediction that differs
from the complexity ranking previously attempted
by Paetzold and Specia (2017) and Maddela and
Xu (2018), as it uses new and more fine-grained
continuous complexity values to make binary
comparative predictions.
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Target Word 1 Target Word 2 Context L
wood hyssop ...he shall take it, and the cedar wood, and the scarlet, and the hyssop... 0
sequencing fly ...the sequencing projects of human, mouse, rat, fruit fly and... 1
fish invertebrates ...such as mammals, fish, and amphibians, but not in invertebrates... 0
Nehemiah district ...Nehemiah the son of Azbuk, the ruler of half the district of Beth... 1
example avoidance ...for example, a QTL for PROP avoidance has been suggested on... 0

Table 3: Example of the Complex-BC dataset. Target words are in bold. Only snapshots of context are shown. Label
(L) 0 refers to when target word 1’s complexity < target word 2’s complexity, and label 1 refers to when target word
1’s complexity > target word 2’s complexity.

No. Input Type Encoding Strategies
a Target Word only <CLS>set<SEP>dignity<SEP>
b Single Context <CLS>Folly is <B>set<E> in great <B>dignity<E><SEP>
c Two Contexts - TW <CLS>Folly is in great dignity<SEP>Folly is set in great<SEP>

Table 4: Examples of input types and encoding strategies used.

3 Data

CompLex 2.0 The CompLex 2.0 dataset contains
9,000 instances of individual words in context.
Each of its extracts were taken from the
Bible (Christodouloupoulos and Steedman, 2015),
biomedical articles (Koehn, 2005), and EuroParl
(Bada et al., 2012). Its annotators were crowd-
sourced from "the UK, USA, and Australia"
(Shardlow et al., 2020).

CompLex-BC We created a new dataset
containing binary comparative labels (Table 3).
Complex-BC consists of 1,940 sentences that
house two differing target words identified as
being complex within the CompLex 2.0 dataset
and that also belonged to the same sentence. Each
entry comprises of a target word, a second target
word, and a label. For example, given the sentence
"he shall take it, and the cedar wood, and the
scarlet, and the hyssop" from the CompLex 2.0
dataset, our new dataset adapts this sentence and
provides "wood" as target word 1, "hyssop" as
target word 2, and a new binary comparative label
of "0" that indicates that in this sentence, target
word 1: "wood", was rated as being less complex
than target word 2: "hyssop" by the annotators of
the CompLex 2.0 dataset (Table 3).

4 Models

We trained a SVM model given its high
performance at binary CWI (Zampieri et al.,
2016; Choubey and Pateria, 2016; Sanjay et al.,
2016; Kuru, 2016), a BERT model (Devlin et al.,
2019) per its competitive performance at LCP-
2021 (Shardlow et al., 2021; Yaseen et al., 2021;

Pan et al., 2021; Rao et al., 2021), and a BERT
+ multi-layer perceptron (MLP) model (Gu and
Budhkar, 2021) to take full advantage of BERT
inferred contextual features as well as the word-
level features fed into our SVM model. Two
naive baseline models were used to evaluate the
performances of our SVM, BERT, and BERT +
MLP models: a random classifier (RC) and a
majority classifier (MC).

We used an integrated Intel UHD Graphics 620
GPU to train each model. Our SVM and BERT
models were trained over 5 epochs. The train
and test split of our dataset was set to 70:30%
respectively. No target words were shared between
the train and test sets.

SVM Our SVM model used a Radial Basis
Function (RBF) kernel and was trained on a set
of well established statistical and psycholinguistic
features for LCP as these have been previously
found to achieve the best results (Shardlow et al.,
2022; Desai et al., 2021). These features were word
length, word frequency, syllable count, average age
of acquisition (AoA), and prevalence (familiarity).
Word frequency being calculated in accordance to
the target word’s frequency in the British National
Corpus (BNC) (Consortium, 2007), average AoA
being calculated by averaging the AoAs within an
updated version of the Living Word Vocabulary
Dataset (Dale and O’Rourke, 1981; Brysbaert and
Biemiller, 2017), and prevalence being calculated
in accordance to the percentage of people who
knew the target word as shown in the dataset
provided by Brysbaert et al. (2019). These features
were obtained in regards to the target word only
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and were not applied to any of the target word’s
neighbouring words.

BERT After experimenting with different
hyperparameters, our BERT model (bert-base-
uncased) was set to have a softmax activation
layer, a batch size of 200, and a learning rate of
1e-5. Several inputs were also experimented with
that took into consideration the target word along
with varying degrees of contextual information.
Encoding strategies adopted by the leading
systems of LCP–2021 (Rao et al., 2021; Shardlow
et al., 2021) and suggested by Hettiarachchi and
Ranasinghe (2021), were then applied to these
inputs and fed into our model.

We encoded each input into sub-word units,
otherwise known as WordPiece tokens (Devlin
et al., 2019). We then used the class identifier
special token: <CLS>, the separator special token:
<SEP>, and two custom special tokens: <B> and
<E>, to distinguish between two differing target
words. We referred to these as (a) the target
word only, (b) single context, and (c) two contexts
- TW encoding strategies respectively (Table 4).
Encoding strategies (a) and (b) included the target
word.

BERT + MLP As BERT assumes full sentences
to encode the correct contextual information, we
use a second BERT-based architecture for a fairer
evaluation with the SVM model. We built a
BERT + MLP model by feeding encoding strategies
(a), (b), and (c) into our BERT model and then
concatenate the outputted contextual features with
those features used by our SVM model per Gu and
Budhkar (2021). Our final BERT + MLP model
then utilizes both set of contextual and word-level
features for binary comparative LCP.

Weighted Average
Model P R F1 A
SVM 0.85 0.86 0.86 0.86
BERT + MLP 0.74 0.88 0.80 0.81
BERT 0.49 0.48 0.44 0.48
MC 0.30 0.55 0.39 0.55
RC 0.50 0.50 0.50 0.50

Table 5: Best performances ranked in order of highest
to least accuracy and split between test and baseline
models.

5 Results

Table 5 shows the best performances of our SVM,
BERT, and BERT + MLP models. Performances
were measured in terms of weighted average
precision (P), recall (R), and F1-score (F1). Our
models’ accuracies (A) were also reported.

Our SVM model achieved a F1-score of 0.86,
whereas our BERT model attained a noticeably
worst score of 0.44. Both models also produced
drastically different accuracies of 0.86 for our SVM
model and 0.48 for our BERT model with our
BERT model attaining an accuracy on par with
our naive MC and RC baseline classifiers. This
suggests that there was not enough information
for our BERT model to converge and therefore its
final output labels were likely chosen at random.
These performances were achieved by taking into
consideration only the target words (a) and not
any of their surrounding contexts (Table 4). Other
encoding strategies (b) and (c) failed to surpass
these performances for our BERT model.

Our BERT + MLP model achieved a greater
performance compared to that attained by our
standalone BERT model. It was found that by
concatenating the contextual features outputted by
our BERT model from single context input (b)
with those features used for our SVM model, our
BERT + MLP model achieved a precision, recall,
f1-score, and accuracy of 0.74, 0.88, 0.80 and 0.81
respectively. Additional encoding strategies (a) and
(c) attained lower performances, with an F1-score
of 0.56 being returned by the former and 0.64 being
achieved by the latter.

6 Analysis and Discussion

Comparing the complexities of two target words
in the same sentence allowed us to fully utilize
the CompLex 2.0 dataset that contained multiple
instances of target words in the same context.
It allowed us to generate binary comparative
predictions that can be used to aid substitute
selection and ranking (Sections 1 and 3).

Binary comparative LCP also allowed us to
identify which words within a sentence contributed
the most or the least to a context’s overall
complexity. Therefore, by comparing the
complexities of two target words in the same
sentence, we were able to identify which part of
a sentence is in need of priority simplification.
However, modeling binary comparative LCP in this
way is not without its challenges. This is reflected
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in our models’ performance.
Two factors are responsible for the superior

performance of our SVM model in comparison
to our standalone BERT model: 1). contextual
similarity between the two target words, and 2).
small dataset size.

One of the main advantages of transformer-based
models, such as BERT, is their ability to infer
bi-directional contextual relationships between a
target word and its surrounding words and then
use this contextual information to make accurate
predictions (Devlin et al., 2019). However, since
the two target words we are trying to compare are
in the same sentence, BERT’s inferred contextual
features in relation to target word 1 were extremely
similar to those inferred for target word 2, when
given encoding strategy (c) (Table 4). This
confused our BERT model, by making classes 0
(target word 1 is less complex) and 1 (target word
1 is more complex) hard to distinguish.

Our SVM model’s word-level features of word
length, word frequency, syllable count, average
age of acquisition, and prevalence (familiarity)
alternatively do not utilize contextual information.
Instead, they rely purely on the characteristics of
each target word and therefore resulted in feature
representations that were more dissimilar. This
had the effect of making classes 0 and 1 easier
to differentiate for our SVM model and thus
explaining its superior performance.

The superiority of word-level features is further
demonstrated by the performance of our BERT +
MLP model. Encoding strategy (b) returns from
our BERT model contextual information related to
the shared context (Table 4). Encoding strategy
(c), however, attempts to encode contextual
information belonging to each target word minus
the target word.

Our BERT + MLP model performed poorly
on encoding strategy (c) as it was presented
from BERT two inferred contextual feature
representations which were near identical.
Encoding strategy (c) alternatively supplied only
one inferred contextual feature representation from
BERT, which allowed our BERT + MLP model
to rely more heavily on its engineered word-level
features. Nevertheless, encoding strategy (b)
still failed to surpass our BERT + MLP model’s
performance beyond that of our SVM model. This
indicates that the utilization of BERT’s inferred
contextual feature representation from encoding

strategy (b), is still inferior to an SVM model using
word-level features.

Another explanation for our models’
performance is our dataset’s size. The CompLex-
BC dataset contains 1,940 instances with binary
labels. Transformer-based models require large
amounts of data to infer meaningful feature
representations (Devlin et al., 2019), whereas an
SVM model when trained on a set of relevant
features requires less data and is also well suited
for binary classification (Cortes and Vapnik, 1995).

7 Conclusion and Future Work

This paper sought to determine whether binary
comparative LCP was possible when attempting
to differentiate the complexities of two different
target words in the same sentence. Only our
SVM and BERT + MLP models were found to be
successful having achieved F1-scores of 0.86 and
0.81 respectively. This led to the conclusion that
our SVM and BERT + MLP models benefited from
more varied word-level feature representations of
target word only input than in comparison to less
varied contextual input. We also believe that more
data is required to conduct further experimentation
and achieve greater performances, especially with
transformer-based models. The CompLex-BC
dataset will be made freely available to the research
community after the publication of this manuscript.

We are currently working on exploring different
variables that may impact the modeling of binary
comparative LCP. This includes evaluating the
performance of models on target words in different
contexts as well as exploring a “neutral” class with
words with similar complexity scores.

Finally, we are interested in investigating the
feasibility of binary comparative LCP on languages
other than English. At this point, the 5-point
likert-scale annotation introduced by CompLex 2.0
is only available in English, however, we expect
multilingual versions of CompLex 2.0 to become
available soon enabling us to work on languages
other than English.
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