
MEKER: Memory Efficient Knowledge Embedding Representation for
Link Prediction and Question Answering

Viktoriia Chekalina1, Anton Razzhigaev1,2, Albert Sayapin1, Evgeny Frolov1, and
Alexander Panchenko1

1Skolkovo Institute of Science and Technology, 2Artificial Intelligence Research Insitute (AIRI)

Abstract

Knowledge Graphs (KGs) are symbolically
structured storages of facts. The KG em-
bedding contains concise data used in NLP
tasks requiring implicit information about the
real world. Furthermore, the size of KGs
that may be useful in actual NLP assignments
is enormous, and creating embedding over it
has memory cost issues. We represent KG
as a 3rd-order binary tensor and move be-
yond the standard CP decomposition (Hitch-
cock, 1927) by using a data-specific general-
ized version of it (Hong et al., 2020). The
generalization of the standard CP-ALS algo-
rithm allows obtaining optimization gradients
without a backpropagation mechanism. It re-
duces the memory needed in training while
providing computational benefits. We propose
a MEKER, a memory-efficient KG embedding
model, which yields SOTA-comparable per-
formance on link prediction tasks and KG-
based Question Answering.

1 Introduction

Natural Language Processing (NLP) models have
taken a big step forward over the past few years.
For instance, language models can generate flu-
ent human-like text without any problems. How-
ever, some applications like question answering
and recommendation systems need correct, pre-
cise, and trustworthy answers.

For this goal, it is appropriate to leverage
knowledge graphs (KG) (Bollacker et al., 2008;
Rebele et al., 2016) a structured repository of es-
sential facts about the real world. For convenience,
the knowledge graph can be represented as a set of
triples. A triple is two entities bound with rela-
tion and describes the fact. It takes the forms of
⟨es, r, eo⟩, where es and eo represent objects and
subject entities, respectively.

For efficient use of information from KG, there
is a need for the low-dimensional embedding of

graph entities and relations. KG embedding mod-
els usually use a standard Neural Networks (NN)
backward mechanism for parameter tuning, dupli-
cating its memory consumption. Hence, existing
approaches to embedding learning have substan-
tial memory requirements and can be deployed
only on small datasets under a single GPU card.
Processing large KGs appropriate for the custom
downstream task is a challenge.

There are several libraries designed to solve this
problem. Framework LibKGE (Ruffinelli et al.,
2020) allows the processing of large datasets by
using sparse embedding layers. Despite the mem-
ory saving, sparse embedding has several limita-
tions - for example, in the PyTorch library, they are
not compatible with several optimizers. PyTorch-
BigGraph (Lerer et al., 2019) operates with large
knowledge graphs by dividing them into partitions
- distributed subgraphs. Subgraphs need a place
for storing, embedding models need modifications
to work with partitions and perform poorly.

The main contribution of our paper is a
memory-efficient approach to learning Knowledge
Graph embeddings MEKER (Memory Efficient
Knowledge Embedding Representation). It allows
more efficient KG embedding learning, maintain-
ing comparable performance to state-of-the-art
models. MEKER leverages generalized canonical
Polyadic (CP) decomposition (Hong et al., 2020),
which allows a better approximation of given data
and analytical computation of the parameters’ gra-
dient. MEKER is evaluated on a link predic-
tion task using several standard datasets and large
datasets based on Wikidata. Experiments show
that MEKER achieves highly competitive results
on these two tasks. To demonstrate downstream
usability, we create a Knowledge Base Question
Answering system Text2Graph and use embed-
dings in it. The system with MEKER embeddings
performs better as compared to other KG embed-
dings, such as PTBG (Lerer et al., 2019).

Subjects

Ob
jec

ts

Relations

Figure 1: The CP decomposition scheme in the case of entity and relation KG embedding in MEKER. This is a
binary 3-dimensional tensor X of knowledge graph facts that introduces objects, relations, and subjects indexes
along the three axes. B contains relation embedding, while A represents entity vectors for the subject and object
simultaneously. Λ is the diagonal core tensor, identity in our case.

2 Related Work

There are three types of approaches for learn-
ing KG embedding: distance-based, tensor-based,
and deep learning-based models. The first group
is based on the assumption of translation invari-
ance in the embedding vector space. In model
TransE (Bordes et al., 2013) relations are repre-
sented as connection vectors between entity rep-
resentations. TransH (Wang et al., 2014) implies
relation as a hyperplane onto which entities are be-
ing projected. QuatE (Zhang et al., 2019) extends
the idea with hypercomplex space and represents
entities as embeddings with four imaginary com-
ponents and relations as rotations in the space.

Tensor-based models usually represent triples
as a binary tensor and look for embedding matri-
ces as factorization products. RESCAL (Nickel
et al., 2011) employs tensor factorization in the
manner of DEDICOM (Harshman et al., 1982),
which decomposes each tensor slice along the re-
lationship axis. DistMult (Yang et al., 2015)
adapts this approach by restricting the relation em-
bedding matrix to diagonal. On the one hand,
it reduces the number of relation parameters, on
the other hand, it losses the possibility of describ-
ing asymmetric relations. The ComplEX (Trouil-
lon et al., 2016) represents the object and subject
variants of a single entity as complex conjugates
vectors. It combines tensor-based and translation-
based approaches and solves the asymmetric prob-
lem. TuckER (Balazevic et al., 2019) uses Tucker
decomposition (Tucker, 1966c) for finding repre-
sentation of a knowledge graph elements. This
work can also be considered a generalization of
several previous link prediction methods.

Standard Canonical Polyadic (CP) (Hitchcock,
1927) decomposition in the link prediction task

does not show outstanding performance (Trouil-
lon et al., 2017). Several papers address this
problem by improving the CP decomposition ap-
proach. SimplIE (Kazemi and Poole, 2018) states
that low performance is due to different represen-
tations of subject and object entity and deploys CP
decomposition with dependently learning of sub-
jects and objects matrices. CP-N3 (Lacroix et al.,
2018) highlights the statement that the Frobenius
norm regularizing is not fit for tensors of order
more than 3 (Cheng et al., 2016) and proposes a
Nuclear p-norm instead of it. Our approach also
uses CP decomposition with enhancement. We
consider remark from SimplIE and set the ob-
ject and subject representations of one entity to be
equals. At the same time, inside the local step of
the CP decomposition algorithm, the matrices of
subjects and objects consist of different elements
and are different (see Appendix). In contradistinc-
tion to CP-N3, we do not employ a regularizer to
improve training but change the objective. Instead
of squared error, we use logistic loss, which is ap-
propriate for one-hot data. We abandon the gra-
dient calculation through the computational graph
and count gradient analytically, which makes the
training process less resource-demanding.

Approaches based on Deep Learning convo-
lutions and attention mechanisms ConvE, GAT,
GAAT (Dettmers et al., 2017; Nathani et al., 2019;
Wang et al., 2020) achieve high performance in
link prediction. Besides, they have their disad-
vantages - it necessitate more time and memory
resources than other types of models and usually
needs pre-training.

3 MEKER: Memory Efficient
Knowledge Embedding Representation

Our approach to entity embeddings relies on
generalized CP tensor decomposition (Hitchcock,
1927). Namely, R-rank CP decomposition ap-
proximates an N-dimensional tensor as a sum of
R outer products of N vectors. Every product can
also be viewed as a rank-1 tensor. This approx-
imation is described by the following formula:
X ≈ M = [|A,B,C|], where X ∈ RI×J×K is
original data and M ∈ RI×J×K is its approxima-
tion. Factors have the following shape A ∈ RI×R,
B ∈ RJ×R, C ∈ RK×R. The scheme of CP de-
composition applied to the KG elements represen-
tation task is in Figure 1. We set matrix A equal
to matrix C and simultaneously corresponding to
subject and object entities.

3.1 Generalization of Canonical Poliyadic
(CP) Decomposition

Following the determination of the approxima-
tion type, the next task is to find the parameters
of the factor matrices that best match the ground
truth data. Battaglino et al. (2018); Dunlavy et al.
(2011) describe the most widely used CP decom-
position algorithm, CP-ALS. The update rules for
the factor matrices are derived by alternating be-
tween minimizing squared error (MSE) loss. Hong
et al. (2020) demonstrates that MSE corresponds
to Gaussian data and is a particular case of a more
general solution for an exponential family of dis-
tributions. In general, the construction of optimal
factors originates the minimization problem:

minF (M;X) ≡
∑
i∈Ω

f(xi,mi),

f(x,m) ≡ log p(x|l−1(m)),

(1)

where f - elementwise loss function, Ω - set of in-
dices of known elements of X , l - link function, xi
and mi - the i-th elements of X and M, respec-
tively. We also introduce Y - the tensor of deriva-
tives of the elementwise loss with the same size as
X and being filled by zeros for i ̸∈ Ω. The data
in the sparse one-hot triple tensor has a Bernoulli
distribution. The link function for Bernoulli is
l(ρ) = log(ρ/(1 − ρ)) and associated probability
is ρ = exp(m)(1 − exp(m)) so the loss function

and elements of the Y are defines as follows:

f(xi,mi) = log(1 + expmi)− ximi,

y(xi,mi) =
∂f(xi,mi)

∂mi
=

expmi

1 + expmi
− xi.

(2)
Hong et al. (2020) derives partial derivatives of

F w.r.t. factor matrices and presents gradients G
of it in a form similar to standard CP matrix update
formulas:

GA = Y[0](B ⊙ C)T †,

GB = Y[1](A⊙ C)T †,

GC = Y[2](A⊙B)T †,

(3)

where † - pseudo-inverse matrix, ⊙ - Khartri-Rao
operator, X[n] - mode-n matricization, a reshaping
of tensor X along the n axis. The importance of
representation (3) is that we can calculate the gra-
dients via an essential tensor operation called the
matricized tensor times Khatri-Rao product (MT-
TKRP), implemented and optimized in most pro-
gramming languages. Algorithm 1 describes the
procedure for computing factor matrices gradi-
ents (3) in a Bernoulli distribution case (2).

3.2 Implementation Details
We use PyTorch (Paszke et al., 2019) to implement
the MEKER model. We set the object and subject
factors equal and correspond to matrix A for the
decomposition of the one-hot KG triplet tensor.
Sparse natural and reconstructed tensors are stored
in Coordinate Format as a set of triplets (COO).
We combine actual triples and sampled negative
examples in batches, and process them. The corre-
sponding pieces from the ground-truth tensor and
current factor matrices are cut out for each batch.
Then the pieces are sent to Algorithm 1 for the cal-
culation of gradients of the matrix elements with
appropriate indexes. Algorithm 2 describes the
pseudocode of factorization KG tensor using GCP
gradients.

We train the MEKER model using Bayesian
search optimization to obtain the optimal training
parameters. We use the Wandb.ai tool (Biewald,
2020) for experiment tracking and visualizations.
The complete sets of tunable hyperparameters are
in the Appendix. Table 2 shows the best combina-
tions of it for the proposed datasets.

3.3 Baselines
As a comparison, we deploy related link predic-
tion approaches that meet the following criteria:

1) it should learn KG embedding from scratch 2) it
should report high performance 3) the correspond-
ing paper should provide a runnable code. We
use the Tucker, Hyper, ConvKB, and QuatE im-
plementations from their respective repositories.
For TransE, DistMult, ComplEx, and ConvE, we
use LibKGE (Ruffinelli et al., 2020) library with
the best parameter setting for reproducing every
model. We run each model five times for each ob-
served value and provide means and sample stan-
dard deviation.

Algorithm 1 GCP GRAD Bernuilli
Input: X ▷ Ground Truth Tensor
A, B, C ▷ Factor matrices

Output: F , GA, GB , GC

M = {A,B,C} ▷ Model Restored tensor

F =
∑

i f(xi,mi) =
∑

log(1 + emi)− ximi ▷ Loss

Y =
∑

i
δf(xi,mi)

δmi
= ▷ Derivative tensor

=
∑

1

1+e(−mi)
− xi

GA = Y[0](B ⊙ C)T†. ▷ Element-wise gradient for A
GB = Y[1](A⊙ C)T† ▷ Element-wise gradient for B
GC = Y[2](A⊙B)T† ▷ Element-wise gradient for C

Algorithm 2 Factorization of the KG tensor using
GCP gradients
Input: X ▷ Ground Truth Tensor
Triplets ▷ List of triplets
LR ▷ learning rate
R ▷ Desired size of embeddings
N ▷ Number of epoch

Output: A, B ▷ Updated factor matrices

Initialize factor matrices A ∈ RR×ne , B ∈ RR×nr

for i = 1 . . . N do
for [indsa, indsb, indsc] in Triplets do

Xbatch = X [indsa, indsb, indsc]
ga, gb, gc, loss =

GCP_GRAD(Xbatch, A[indsa], B[indsb], A[indsc])
A[indsa].grad = ga
B[indsb].grad = gb
A[indsc].grad = gc
UPDATE(A, B, LR)

4 Experiments on Standard Link
Prediction Datasets

4.1 Experimental settings
The Link prediction task estimates the quality of
KG embedding. Link prediction is a classification
predicting if triple over graph elements is true or
not. The scoring function Φ(es, rel, eo) returns the
probability of constructing a true triple. We test

our model on this task using standard Link predic-
tion datasets.

FB15k237 (Toutanova and Chen, 2015) is a
dataset based on the FB15k237 adapted Freebase
subset, which contains triples with the most men-
tioned entities. FB15k237 devised the method of
selecting the most frequent relations and then fil-
tering inversions from test and valid parts. The
WN18RR (Bordes et al., 2013) version of WN18
is devoid of inverse relations. WN18 is a WordNet
database that contains the senses of words as well
as the lexical relationships between them. Table 3
shows the number of entities, relations, and train-
valid-test partitions for each dataset used in the
proposed work. As an evaluation, we obtain com-
plementary candidates from the entity set for each
pair entity-relation from each test triple and esti-
mate the probability score of the received triple be-
ing true. The presence of a rising real supplement
entity at the top indicates a hit. Candidate rank-
ing is provided using a filtered setting, which was
first used in (Bordes et al., 2013). In a filtered set-
ting, all candidates who completed a true triple on
the current step are removed from the set, except
for the expected entity. We use Hit@1, Hit@3,
Hit@10 as evaluation metrics. We also use mean
reciprocal rank (MRR) to ensure that true comple-
mentary elements are ranked correctly.

4.2 Link Prediction
Table 1 shows the mean value of the experiment
on small datasets for the embedding of size 200.
The Hit@10 standard deviation for MEKER is
0.0034 for the FB15k237 dataset and 0.0026 for
the WNRR18 dataset. Due to space constraints,
the table with deviations from all experiments,
comparable to Table 1, is in Appendix.

The best score belongs to QuatE (Zhang et al.,
2019) model due to its highly expressive 4-
dimensional representations. Among the remain-
ing approaches, MEKER outperforms its contes-
tants’ overall metrics except for the Hit@10 -
Tucker model surpasses MEKER for Fb15k237,
ComplEX by LibKGE for WNRR18. In gen-
eral, MEKER shows decent results comparable
to strong baselines (Zhang et al., 2019; Balazevic
et al., 2019). It is also worth noting that MEKER
significantly improves MRR and Hit@1 metrics
on freebase datasets, whereas on word sense, ac-
cording to data, it has been enhanced in Hit@10.

Dataset FB15k237 WNRR18

Model MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

ConvKB (Nguyen et al., 2018) 0.2985 0.4785 0.3270 0.2296 0.2221 0.5074 0.3777 0.0347
HypER (Balazevic et al., 2018) 0.3423 0.5228 0.3774 0.2536 0.4653 0.5228 0.4774 0.4361
TuckER (Balazevic et al., 2019) 0.3455 0.5408 0.3899 0.2606 0.4654 0.5215 0.4784 0.4368
QuatE (Zhang et al., 2019) 0.3614 0.5538 0.4014 0.2711 0.4823 0.5719 0.4955 0.4360
CP-N3 (Lacroix et al., 2018) 0.3514 0.5294 0.3876 0.2646 0.4402 0.4858 0.4485 0.4207

LibKGE ConvE (Dettmers et al., 2017) 0.3367 0.5213 0.3682 0.2381 0.4282 0.5049 0.4492 0.3934
LibKGE TransE (Bordes et al., 2013) 0.3121 0.4962 0.3175 0.2195 0.2274 0.5189 0.3677 0.0516
LibKGE DistMult (Yang et al., 2015) 0.3331 0.5185 0.3673 0.2410 0.4505 0.5215 0.4634 0.4162
LibKGE ComplEx (Trouillon et al., 2016) 0.3390 0.5265 0.3724 0.2468 0.4752 0.5467 0.4809 0.4366

MEKER 0.3588 0.5393 0.3915 0.2682 0.4768 0.5447 0.4875 0.4371

Table 1: Link Prediction scores for various models on the FB15k237 and WN18RR datasets. The embedding size
is 200. The winner scores are highlighted in bold font, and the second results are underlined.

Dataset FB15k237 WN18RR

Optimizer AdamW AdamW
LR 0.01 0.009
Batch Size 156 128
L2 reg 0.001 0.0
Number of negative 6 8
Step of decay LR 3 15
Gamma of decay LR 0.8 0.6

Table 2: The best hyperparameters of the MEKER.

Number of Triplets
Dataset #ents #rels Train Valid Test

Fb15k237 14,541 237 27.2·104 17,535 20,466
WN18RR 40,943 11 8.6·104 30,034 3,134
Wiki4M 4,316·104 1,245 1,367·104 30,000 35,815
Wikidata5m 4,594·104 822 2,061·104 5,163 5,133

Table 3: Statistics of link prediction datasets.

4.3 Model efficiency in case of parameter size
increasing

With a strong memory assumption, we can reduce
the size of pre-trained MEKER embeddings by
tenfold while losing only a few percent of perfor-
mance.

Figures 2, 3 show MRR and Hit@1 scores for
MEKER, TuckER, and ComplEX models at var-
ious embedding sizes. Each model approaches a
constant value on both metrics around rank 100.
For ranks 200 and 300, the performance difference
between the three models is approximately con-
sistent for both metrics, with MEKER scoring the
highest on rank 20. It means that the number of
MEKER parameters can be reduced while main-
taining or improving quality. The quality loss is
significant for other presented models.

4.4 Memory Complexity Analysis
The theoretical space complexity of models men-
tioned in the current work is shown in the right col-
umn of Table 4. In the context of the Link Predic-
tion task, all approaches have asymptotic memory
complexity O((ne + nr)d), which is proportional
to the size of the full dictionary of KG elements,
i.e. the embedding layer or look-up table. Other
aspects of the proposed models are less signifi-
cant: the convolutional layers are not very exten-
sive. The implementation determines the amount
of real memory used by the model during the train-
ing process. The Neural Network backpropagation
mechanism is used to tune parameters in the most
related work. Backpropagation in Figure 4 creates
computational graph in which all model parame-
ters are duplicated. It results in a multiplicative
constant 2, insignificant in a small dictionary but
becomes critical in a large one. To summarize,
the following factors account for the decrease in
MEKER’s required memory:

1. In the MEKER algorithm gradients are com-
puted analytically.

2. MEKER does not have additional neural net-
work layers (linear, convolutional, or atten-
tion).

To measure GPU RAM usage, we run each con-
sidered embedding model on FB15k-237 into a
single GPU and print peak GPU memory usage
within the created process. The left column of a
Table 4 demonstrates that MEKER has objective
memory complexity that is at least twice lower
than that of other linear approaches. This prop-
erty reveals the possibility of obtaining represen-
tations of specific large databases using a single
GPU card.

Figure 2: MRR score in dependence of embed-
ding ranks

Figure 3: Hit@1 score in dependence of embed-
ding ranks

y1 y2

*

w z

backward

backw
ardfo

rw
ar
d

Figure 4: The scheme of the augmented computational
graph of the Neural Network.

5 Experiments on Large-Scale KG
Datasets

5.1 Experimental settings
To test the model on large KG, we employ
two WikiData-based datasets. The first English
dataset, Wikidata5m (Wang et al., 2021)1, is se-
lected due to the presence of related works and re-
producible baseline (Ruffinelli et al., 2020). This
dataset is created over the 2019 dump of WikiData
and contains of elements with links to informative
Wikipedia pages. Our experiments use the trans-
ductive setting of Wikidata5m - triplet sets to dis-
joint across training, validation, and test.

The second English-Russian dataset is formed
since its suitability for the NLP downstream task.
We leverage KG-based fact retrieval over Russian
Knowledge Base Questions (RuBQ) (Rybin et al.,
2021) benchmark. This benchmark is a subset of
Wikidata entities with Russian labels. Some ele-
ments in RuBQ are not covered with Wikidata5m,
so we created a link-prediction Wiki4M dataset
over RuBQ. We select triples without literal ob-
jects and obtain approximately 13M triples across
4M entities (see Table 3). Wiki4M also fits the

1https://deepgraphlearning.github.io/
project/wikidata5m

Model GPU Memory Theoretical Approximation
Usage, MB of Space Complexity

TuckER 357 2 · ((ne + nr + c · lin) · d)
HypER 208 2 · ((ne + nr + c · lin) · d)
ConvKB 3 563 2 · ((ne + nr) · d+ c · conv)
ConvE 229 2 · ((ne + nr) · d+ c · conv)
ComplEX 252 2 · (ne + nr) · d
DistMult 174 2 · (ne + nr) · d
QuatE 2 367 2 · 4 · (ne + nd + c · lin)
CP (N3) 138 2 · (ne + nr) · d
MEKER 79 ((ne + nr) · d)

Table 4: Memory, reserved in the PyTorch Framework
during the training process and theoretical approxima-
tion of given implementations’ complexity. On the
FB15k237 dataset, we train 200-size representations
with a batch size of 128. Lin denotes the number of
output features in a linear layer, conv denotes the size
of convolutional layer parameters. The constant c rep-
resents the number of different layers.

concept of multilingualism is intended to be used
in a cross-lingual transfer or few-shot learning.

5.2 Link Prediction
We embed the datasets for ten epochs on a 24.268
Gb GPU card with the following model settings:
LR 2.5 · 10−4, increasing in 0.5 steps every 10
epoch, batch size 256, number of negative samples
4 for Wiki4M and 2 for Wikidata5m.

As a comparison, we use the PyTorch-BigGraph
large-scale embedding system (Lerer et al., 2019).
PyTorch-BigGraph modifies several traditional
embedding systems to focus on the effective repre-
sentation of KG in memory. We select ComplEX
and TransE and train graphs for these embedding
models, dividing large datasets into four partitions.
With a batch size of 256, the training process takes
50 epochs.

We also deploy LibKGE (Ruffinelli et al., 2020)
to evaluate TransE and ComplEX approaches. For

https://deepgraphlearning.github.io/project/wikidata5m
https://deepgraphlearning.github.io/project/wikidata5m

Model MRR Hit@1 Hit@3 Hit@10 Memory, GB Storage, GB

English: Wikidata5m dataset

PTBG (ComplEX) 0.184 0.131 0.210 0.287 45.15 9.25
PTBG (TransE) 0.150 0.091 0.176 0.263 43.64 9.25
LibKGE sparse (TransE) 0.142 0.153 0.211 0.252 33.29 0.00
LibKGE sparse (ComplEX) 0.202 0.160 0.233 0.316 21.42 0.00
MEKER (ours) 0.211 0.149 0.238 0.325 22.27 0.00

Russian: Wiki4M dataset

PTBG (ComplEX) 0.194 0.141 0.212 0.293 42.83 9.25
LibKGE sparse (TransE) 0.183 0.126 0.191 0.275 26.75 0.00
LibKGE sparse (ComplEX) 0.247 0.196 0.275 0.345 20.22 0.00
MEKER (ours) 0.269 0.199 0.303 0.410 21.04 0.00

Table 5: Unfiltered link prediction scores for MEKER and PyTorch-BigGraph approaches for Wiki4M and Wiki-
data5m datasets and memory needed in leveraging every model. Storage means additional memory demanded for
auxiliary structures. Batch size 256. Here “RAM” is GPU RAM or main memory RAM if GPU limit of 24 GB is
reached. Sparse means sparse embeddings. Models without sparse mark employ dense embeddings matrix.

ComplEX model training, we use the best param-
eter configuration from the repository, for TransE,
we obtain a set of training parameters by greed
search. The learning rate for TransE is 0.5, decay-
ing in factor 0.45 every 5 step and train model in
100 epochs. In both cases, we use sparse embed-
ding in the corresponding model setting and batch
size of 256. Models from both wrappers that did
not fit in 24 GB, we train on the CPU.

Embedding sets yielded by we these experi-
ments we then test on the link prediction task.
We provide scoring without filters because the
partition-based setup of PyTorch-Biggraph does
not support filtering evaluation. Tables 5 shows
that MEKER significantly improves the results
of PyTorch-Biggraph models across all proposed
metrics. The ComplEX model with sparse em-
bedding, fine-tuned by LibKGE, gives results al-
most approaching the MEKER and exceeding the
Hit@1 in Wiki4M. The right part of Tables 5
shows that the baseline approaches consume twice
as much memory as MEKER, but sparse Com-
plEX slightly improves memory consumption.
TransE does not give such significant results as
ComplEX.

5.3 Knowledge Base Question
Answering (KBQA)

In this section, to further evaluate the proposed
MEKER embeddings we test them in an extrinsic
way within on a KBQA task on two datasets for
English and Russian.

5.3.1 Experimental Setting
We perform experiment with two datasets: for
English we use the common dataset SimpleQues-

tions (Bordes et al., 2015) aligned with Wiki4M
KG2 (cf. Table 3), and for Russian we use RuBQ
2.0 dataset (Rybin et al., 2021) which comes
with the mentioned above Wiki4M KG (cf. Ta-
ble 3). RuBQ 2.0 is a Russian language QA bench-
mark with multiple types of questions aligned with
Wikidata. For both SimpleQuestions and RuBQ,
for each question, an answer is represented by a
KG triple.

For training we use a training set of Simple-
Questions for verification we use a test set of Sim-
pleQuestions and RuBQ 2.0 dataset for English
and Russian, respectively. These Q&A pairs pro-
vide ground truth answers linked to exact this ver-
sion of KG elements.

More specifically, in these experiments, we test
answers to 1-hop questions which are questions
corresponding to one subject and one relation in
the knowledge graph, and takes their object as an
answer.

We want to leverage the KBQA model, which
can process questions both in English and Rus-
sian. To measure the performance of a KBQA
system, we measure the accuracy of the retrieved
answer/entity. This metric was used in previously
reported results on SimpleQuestions and RuBQ. If
the subject of the answer triple matches the refer-
ence by ID or name, it is considered correct.

5.3.2 KBQA methods
The key idea of the KBQA approaches is map-
ping questions in natural language to the low-
dimensional space and comparing them to graph
elements’ given representation. In KEQA (Huang

2https://github.com/askplatypus/
wikidata-simplequestions

https://github.com/askplatypus/wikidata-simplequestions
https://github.com/askplatypus/wikidata-simplequestions

Question

m-BERT eq

MLPo

MLPr

MLPs

eoeres

Graph
Embeddings

NER

Candidate
subjects

Filtered
embeddingsOnly

 candidates

coss + cosr + coso
Ranked
answers

KG
Embed

Figure 5: Text2Graph method used in our experiments: 1-Hop QA pipeline. First, we take original entity and
relation embeddings. The question is embedded using m-BERT. This embedding is then processed by MLP,
yielding candidate representations of an object, relation, and subject. The sum of the subject, relation, and object
cosines is the final score of triple candidates.

et al., 2019) LSTM models detect the entity and
predicates from the question text and project it
further into the entity and predicate embedding
spaces. The closest subject in terms of similarity
to the entity and predicate embeddings is selected
as the answer.

We created a simple approach Text2Graph
which stems from the KEQA and differs from the
original work in improved question encoder, en-
tity extractor, additional subject embedding space
and simplified retrieval pipeline. The Algorithm 3
describes the procedure of projecting the input
question to graph elements. The multilingual-
BERT (Devlin et al., 2019) model encodes the in-
put question, and all word vectors are averaged
into a single deep contextualized representation
eq. This representation then goes through three
MLPs jointly learning candidate embeddings of
an object, relation, and subject. We minimize
MSE between predicted embeddings and the cor-
responding KGE model’s embeddings. The appro-
priateness score of every fact in KG is a sum of co-
sine similarity between MLP outputs and ground
truth model representation for every element in the
triple. The triple with the highest score is consid-
ered to be an answer. The scheme is trained using
an AdamW optimizer with default parameters for
10 epochs.

5.4 Baselines
5.4.1 RuBQ 2.0
We compare our method to several QA approaches
compatible with questions from this benchmark.

Algorithm 3 Text2Graph question projection al-
gorithm
Input: Q, G, E,
text encoder Menc,
projection modules: Ms,Mr,Mo,
Subject Candidates Extractor: NER
Output: answer ⟨oa, ra, sa⟩

eq = Menc(Q)
Initialize answers-candidates list with empty list A=[]
Initialize scores list with empty list S=[]
Initialize entities-candidates list with empty list C=[]
for entity in G do

if entity.name in NER(Q) then
C.append(entity)

for entity in C do
for relation in entity.relations do

s = entity.id
r = relation.id
o = entity[r]
triple = ⟨s, r, o⟩
A.append(triple)
es = E[s]
er = E[r]
eo = E[o]
ys = Ms(eq)
yr = Mr(eq)
yo = Mo(eq)
score = cos(eo,yo)+cos(er,yr)+cos(es,ys)
S.append(score)

ind = argmax(S)
⟨sa, ra, oa⟩ = A[ind]
return ⟨sa, ra, oa⟩

KBQA Model Embedding Model Accuracy 1-Hop

DeepPavlov - 30.5 ± 0.04
SimBa - 32.3 ± 0.05
QA-En - 32.3 ± 0.08
QA-Ru - 30.8 ± 0.03

Text2Graph PTBG (ComplEX) Wiki4M 48.16 ± 0.05
Text2Graph PTBG (TransE) Wiki4M 48.84 ± 0.06
Text2Graph MEKER Wiki4M 49.06 ± 0.06

Table 6: Comparison of the Text2Graph system with
the various KG embeddings with existing solutions
(QA-Ru, QA-En, SimBa) on RuBQ 2.0 benchmark.

KBQA Model Embedding Model Accuracy 1-Hop

KEQA TransE FB5M 40.48 ± 0.10

Text2Graph PTBG (TransE) Wikidata5m 59.97 ± 0.15
Text2Graph MEKER Wikidata5m 61.81 ± 0.13

Table 7: Comparison of the Text2Graph system with
the various KG embeddings with existing embedding-
based solution on the SimpleQuestions benchmark.

QAnswer3 is a rule-based system addressing
questions in several languages, including Russian.
SimBa is a baseline presented by RuBQ 2.0 au-
thors. It is a SPARQL query generator based on
an entity linker and a rule-based relation extractor.
KBQA module of DeepPavlov Dialogue System
Library (Burtsev et al., 2018) also based on query
processing.

5.4.2 SimpleQuestions
Simple Question is an English language bench-
mark aligned with FB5M KG - the subset of Free-
base KG. Its train and validation parts consist of
100k and 20k questions, respectively. As a base-
line solution we employ KEQA (Huang et al.,
2019). We realign answers from this benchmark to
our system, which is compatible with Wikidata5m.
Not all of the questions from FB5M have answers
among Wiki4M, that is why we test both systems
on a subset of questions whose answers are present
in both knowledge graphs.

5.4.3 Experimental Results
We compare the results of the Text2Graph with
PTBG embeddings versus MEKER embedding
and baseline KBQA models. Results on the RuBQ
2.0 dataset are shown in Table 6. Text2Graph out-
performs baselines. Using MEKER embeddings
instead of the PTBG version of ComplEX and
TransE demonstrates slightly better accuracy.

Table 7 presents results on the SimpleQuestions
dataset. As Huang et al. (2019) model uses FB5M

3https://www.qanswer.eu

KG and Text2Graph uses Wikidata5m KG we test
both models on the subset of questions, which an-
swers are present in both knowledge graphs for a
fair comparison. Our model demonstrates superior
performance and regarding the comparison within
different embeddings in a fixed system, MEKER
provides better accuracy of answers than TransE
embeddings on the SimpleQuestions benchmark.

6 Conclusion

We propose MEKER, a linear knowledge embed-
ding model based on generalized CP decomposi-
tion. This method allows for the calculation of
gradient analytically, simplifying the training pro-
cess under memory restriction. In comparison to
previous KG embedding linear models (Balaze-
vic et al., 2019), our approach achieves high ef-
ficiency while using less memory during training.
On the standard link prediction datasets WN18RR
and FB15k-237, MEKER shows quite competitive
results.

In addition, we created a Text2Graph — KBQA
system based on the learned KB embeddings to
demonstrate the model’s effectiveness in NLP
tasks. We obtained the required representations
using MEKER on the Wikipedia-based dataset
Wiki4M for questions in Russian and on Wiki-
data5m for questions in English. Text2Graph
outperforms baselines for English and Russian,
while using MEKER’s embeddings provides ad-
ditional performance gain compared to PTBG em-
beddings. Furthermore, our model’s link predic-
tion scores on Wiki4M and Wikidata5m outper-
form the baseline results. MEKER can be helpful
in question-answering systems over specific KG,
in other words, in systems that need to embed large
sets of facts with acceptable quality.

All codes to reproduce our experiments are
available online.4

Acknowledgements

The work was supported by the Analytical cen-
ter under the RF Government (subsidy agreement
000000D730321P5Q0002, Grant No. 70-2021-
00145 02.11.2021).

4https://github.com/skoltech-nlp/
meker

https://www.qanswer.eu
https://github.com/skoltech-nlp/meker
https://github.com/skoltech-nlp/meker

References
Ivana Balazevic, Carl Allen, and Timothy Hospedales.

2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Ivana Balazevic, Carl Allen, and Timothy M.
Hospedales. 2018. Hypernetwork knowledge graph
embeddings. CoRR, abs/1808.07018.

Casey Battaglino, Grey Ballard, and Tamara G. Kolda.
2018. A practical randomized CP tensor decompo-
sition. SIAM J. Matrix Anal. Appl., 39(2):876–901.

Lukas Biewald. 2020. Experiment tracking with
weights and biases. Software available from
wandb.com.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, page 2787–2795, Red
Hook, NY, USA. Curran Associates Inc.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yuri Kuratov, Denis Kuznetsov, Alexey
Litinsky, Varvara Logacheva, Alexey Lymar,
Valentin Malykh, Maxim Petrov, Vadim Polulyakh,
Leonid Pugachev, Alexey Sorokin, Maria Vikhreva,
and Marat Zaynutdinov. 2018. DeepPavlov:
Open-source library for dialogue systems. In
Proceedings of ACL 2018, System Demonstrations,
pages 122–127, Melbourne, Australia. Association
for Computational Linguistics.

Hao Cheng, Yaoliang Yu, Xinhua Zhang, Eric Xing,
and Dale Schuurmans. 2016. Scalable and sound
low-rank tensor learning. In Proceedings of the 19th
International Conference on Artificial Intelligence
and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 1114–1123, Cadiz, Spain.
PMLR.

Tim Dettmers, Pasquale Minervini, Pontus Stene-
torp, and Sebastian Riedel. 2017. Convolu-
tional 2d knowledge graph embeddings. CoRR,
abs/1707.01476.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar.
2011. Temporal link prediction using matrix and
tensor factorizations. ACM Trans. Knowl. Discov.
Data, 5(2):10:1–10:27.

Richard A. Harshman, Paul E. Green, Yoram Wind,
and Margaret E. Lundy. 1982. A model for the anal-
ysis of asymmetric data in marketing research. Mar-
keting Science, 1(2):205–242.

F. L. Hitchcock. 1927. The expression of a tensor or
a polyadic as a sum of products. J. Math. Phys,
6(1):164–189.

David Hong, Tamara G. Kolda, and Jed A. Duersch.
2020. Generalized canonical polyadic tensor de-
composition. SIAM Review, 62(1):133–163.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data
Mining, WSDM ’19, page 105–113, New York, NY,
USA. Association for Computing Machinery.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems,
NIPS’18, page 4289–4300, Red Hook, NY, USA.
Curran Associates Inc.

Timothee Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. In Proceedings
of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2863–2872. PMLR.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee
Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. 2019. PyTorch-BigGraph: A Large-
scale Graph Embedding System. In Proceedings of
the 2nd SysML Conference, Palo Alto, CA, USA.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and
Manohar Kaul. 2019. Learning attention-based
embeddings for relation prediction in knowledge
graphs. CoRR, abs/1906.01195.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2018. A novel embed-
ding model for knowledge base completion based
on convolutional neural network. In Proceedings of
the 16th Annual Conference of the North American

https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
http://arxiv.org/abs/1808.07018
http://arxiv.org/abs/1808.07018
https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/17M1112303
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.18653/v1/P18-4021
https://doi.org/10.18653/v1/P18-4021
https://proceedings.mlr.press/v51/cheng16.html
https://proceedings.mlr.press/v51/cheng16.html
http://arxiv.org/abs/1707.01476
http://arxiv.org/abs/1707.01476
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/1921632.1921636
http://www.jstor.org/stable/183857
http://www.jstor.org/stable/183857
https://doi.org/10.1137/18m1203626
https://doi.org/10.1137/18m1203626
https://doi.org/10.1145/3289600.3290956
https://doi.org/10.1145/3289600.3290956
https://proceedings.mlr.press/v80/lacroix18a.html
https://proceedings.mlr.press/v80/lacroix18a.html
http://arxiv.org/abs/1906.01195
http://arxiv.org/abs/1906.01195
http://arxiv.org/abs/1906.01195

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 327–333.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816, Madison, WI, USA. Omnipress.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran As-
sociates, Inc.

Thomas Rebele, Fabian M. Suchanek, Johannes Hof-
fart, Joanna Biega, Erdal Kuzey, and Gerhard
Weikum. 2016. YAGO: A multilingual knowledge
base from wikipedia, wordnet, and geonames. In
The Semantic Web - ISWC 2016 - 15th International
Semantic Web Conference, Kobe, Japan, October
17-21, 2016, Proceedings, Part II, pages 177–185.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You CAN teach an old dog new
tricks! on training knowledge graph embeddings. In
International Conference on Learning Representa-
tions.

Ivan Rybin, Vladislav Korablinov, Pavel Efimov, and
Pavel Braslavski. 2021. Rubq 2.0: An innovated
russian question answering dataset. In The Semantic
Web - 18th International Conference, ESWC 2021,
Virtual Event, June 6-10, 2021, Proceedings, vol-
ume 12731 of Lecture Notes in Computer Science,
pages 532–547. Springer.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compo-
sitionality, pages 57–66, Beijing, China. Associa-
tion for Computational Linguistics.

Théo Trouillon, Christopher R. Dance, Éric Gaussier,
Johannes Welbl, Sebastian Riedel, and Guillaume
Bouchard. 2017. Knowledge graph completion via
complex tensor factorization. J. Mach. Learn. Res.,
18(1):4735–4772.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Ma-

chine Learning Research, pages 2071–2080, New
York, New York, USA. PMLR.

L. R. Tucker. 1966c. Some mathematical notes on
three-mode factor analysis. Psychometrika, 31:279–
311.

Rui Wang, Bicheng Li, Shengwei Hu, Wenqian Du, and
Min Zhang. 2020. Knowledge graph embedding via
graph attenuated attention networks. IEEE Access,
8:5212–5224.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176–194.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence,
AAAI’14, page 1112–1119. AAAI Press.

B. Yang, Wen tau Yih, X. He, Jianfeng Gao, and
L. Deng. 2015. Embedding entities and relations for
learning and inference in knowledge bases. CoRR,
abs/1412.6575.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1007/978-3-319-46547-0_19
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://doi.org/10.1007/978-3-030-77385-4_32
https://doi.org/10.1007/978-3-030-77385-4_32
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf

