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Abstract

Text style transfer and paraphrasing of texts
are actively growing areas of NLP, dozens of
methods for solving these tasks have been re-
cently introduced. In both tasks, the system is
supposed to generate a text which should be
semantically similar to the input text. There-
fore, these tasks are dependent on methods of
measuring textual semantic similarity. How-
ever, it is still unclear which measures are the
best to automatically evaluate content preserva-
tion between original and generated text. Ac-
cording to our observations, many researchers
still use BLEU-like measures, while there ex-
ist more advanced measures including neural-
based that significantly outperform classic ap-
proaches. The current problem is the lack of a
thorough evaluation of the available measures.
We close this gap by conducting a large-scale
computational study by comparing 57 measures
based on different principles on 19 annotated
datasets. We show that measures based on
cross-encoder models outperform alternative
approaches in almost all cases. We also intro-
duce the Mutual Implication Score (MIS), a
measure that uses the idea of paraphrasing as
a bidirectional entailment and outperforms all
other measures on the paraphrase detection task
and performs on par with the best measures in
the text style transfer task.

1 Introduction

Text style transfer (TST) and paraphrases genera-
tion (PG) are active areas of research in NLP, with
dozens of papers proposing new methods. These
methods could be applied for practical purposes,
such as supporting human writers, personalizing
digital assistants, or even creating artificial person-
alities.

Research and development of TST models re-
quire fast feedback loops, and they require fast and
reliable automatic quality measures. TST is hard
to evaluate for several reasons. First, golden an-
swers, even if available, are not the only valid way

to rewrite the text. Second, parallel corpora with
different styles do not emerge naturally and are
hard to find. This means that reference-based eval-
uation is often prohibitive and creates a need for
manual evaluation of TST or for clever automatic
measures.

The basic desired properties of TST are style
accuracy, content preservation, and fluency (Mir
et al., 2019). For many methods of unsupervised
TST, keeping the content of the original text and
automatically measuring its preservation is one of
the most difficult tasks (see e.g. Dale et al. (2021)).

During development, the only way to control
content preservation is to use automatic measures.
Such measure takes two sentences and return the
value which indicates the similarity of their con-
tent. More formally, the measure sim quantifies
semantic relatedness of two utterances, an original
text x and a style-transferred or paraphrased text y
: sim(x, y)→[0; 1]. The measure sim yields high
score for the pairs with similar content and low
score for ones with different content.

As Krishna et al. (2020) and Yamshchikov et al.
(2021) show, most TST works evaluate the content
preservation with BLEU (Papineni et al., 2002) or
similar measures based on word overlap between
two texts. The situation in PG is almost identical.
Most works including the most recent ones (Sun
et al., 2021; Fu et al., 2020) also still rely on BLEU.

Even though measures like BLEU, based on a
word or character-level n-grams are pretty intuitive
and straightforward, they don’t take into account
synonyms and distributively related words. More-
over, there already exist several pieces of evidence
that correlation of standard BLEU-like automatic
measures is relatively low (Briakou et al., 2021).
The recent development of vector representations
of textual information (Mikolov et al., 2013; Zhang
et al., 2019) and various ways to handle these vec-
tors provides room for improvement of the ap-
proaches to scoring the content preservation. It
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is, therefore, crucial to perform a thorough analysis
of all existing content preservation measures and
to gather best practices from the top-performing
approaches to create a new approach that could
demonstrate stable performance in terms of both
PG and TST tasks.

In this work, we further extend a comprehensive
study of Yamshchikov et al. (2021) by analyzing
a much more diverse set of measures including re-
cently developed transformers-based ones, and also
by proposing a new measure specially developed
for TST and PG content preservation scoring. The
contributions of our paper are as follows:

• We perform a large-scale evaluation of auto-
matic content preservation measures for text
style transfer and paraphrase generation tasks,
which includes 57 measures applied to 9 para-
phrasing datasets and 10 text style transfer
datasets. To the best of our knowledge, this is
the largest and the most comprehensive evalu-
ation of this kind;

• We introduce Mutual Implication Score
(MIS): a measure of content preservation
based on predictions of NLI models in two
directions. We show that it outperforms all
known measures in paraphrase detection and
shows consistently high results for TST. We
opensource the model on Huggingface Model
Hub.1

The code for measures and experiments is re-
leased publicly.2

2 Related work

2.1 Measures of content preservation
There exists a large number of content preservation
measures that can be classified into several groups.
In this section, we describe all of these approaches.
Refer to Figure 1 for a schematic description of all
approaches.

Words or characters n-grams (ngram) The
most simple and intuitive way to compare two
texts is based on the overlap of word or charac-
ter n-grams. The standard method used to evalu-
ate the quality of a generated text is to compare
it with a human-written reference text via BLEU

1https://huggingface.co/
SkolkovoInstitute/Mutual_Implication_
Score

2https://github.com/skoltech-nlp/
mutual_implication_score

score (Papineni et al., 2002), which is the preci-
sion of word n-grams. In TST and PG papers,
BLEU is often used to evaluate content preser-
vation relative to the original text or a reference.
Other popular measures based on words or n-grams
are ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), chrF (Popović, 2015). Such
approaches as Levenshtein distance (Levenshtein
et al., 1966), Jaro-Winkler distance (Jaro, 1989)
also work at the subword level by calculating the
edit distance between two sequences, so we also
refer them to the ngram group. Panchenko and
Morozova (2012) provided a comparative study of
classic word similarity measures and their combina-
tions. The ngram measures are simple and intuitive
but do not handle well such linguistic phenomena
as synonyms, negation, and issues with word order.

Similarity between static embeddings (emb-
static) Another family of measures partially over-
comes these difficulties by representing texts with
their embeddings and calculating the distance (e.g.
cosine similarity) between the embeddings of two
texts. This group of measures can be further di-
vided by the way the embeddings are generated.
The basic way of obtaining the embedding of a
text is by averaging across static word embeddings:
Word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), FastText (Bojanowski et al., 2017).

Similarity between contextualized embeddings
(emb-context) Special distance function (e.g.
WMD (Kusner et al., 2015), POS-distance (Tian
et al., 2018a)) can be also applied to context-
dependent vectors: BERTScore (Zhang et al.,
2019), MoverScore (Zhao et al., 2019).

Similarity between embeddings from bi-
encoders (emb-bi-enc) Embeddings of a text
can be generated by encoding a text with a
pre-trained encoder. If the two texts are encoded
separately, and then we compute the cosine
similarity between their embeddings, we refer to
such models as bi-encoders. This group of models
is usually trained in a supervised manner. The
encoders can be trained on the translation task
(Laser (Artetxe and Schwenk, 2019), LaBSE (Feng
et al., 2020)), paraphrase identification task
(SIMILE (Wieting et al., 2019)), or text generation
task (BARTScore (Yuan et al., 2021)). They
potentially can compare the meanings of texts
that are very different in terms of structure and
vocabulary.
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Figure 1: Different approaches to calculating content preservation between two sentences.

Symmetric and asymmetric cross-encoders
(sym/asym-cross-enc) The models called cross-
encoders process both texts simultaneously using
cross-attention and directly predict the relationship
between the texts. They can perform symmetrically
(score is independent of the order of the texts be-
ing compared) or asymmetrically (score strongly
depends on the order of the texts). Due to their
supervised nature, such models can reflect content
preservation more accurately than word-based ap-
proaches, but they depend on labeled data and may
not generalize well to new domains. The pres-
ence of symmetry is defined by the task the model
was trained on. Thus, models trained on the Nat-
ural Language Inference (NLI) task data (such as
BLEURT (Sellam et al., 2020) or NUBIA (Kane
et al., 2020)) are asymmetric, while cross-stsb-
base model trained solely on STS-B dataset (Cer
et al., 2017) for semantic textual similarity, or APD
model (Nighojkar and Licato, 2021) trained on
paraphrase datasets perform symmetrically.

Two-folded asymmetric cross-encoders (2x-
asym-cross-enc) A textual entailment model can
be used for scoring semantic relations between two

phrases. Nighojkar and Licato (2021) propose to
use a natural language inference (NLI) model for
paraphrase identification, and Deng et al. (2021)
suggest a similar model for evaluation of summa-
rization and text style transfer. The main idea of
these works is to use NLI models in a two-fold
manner (direct and reverse). NLI models are gen-
erally asymmetric cross-encoders, so we classify
this group of approaches as a two-fold asymmetric
encoder.

As shown in Figure 2, despite the wide variety
of measures, n-gram-based measures are still used
most often, while embedding-based measures and
cross-encoders are much less popular. In some
papers, no automatic content preservation measures
are used.

2.2 Evaluation of content preservation
measures

Our work in many respects follows the setup
of Yamshchikov et al. (2021) and extends it in
several directions. In this work, the authors col-
lected crowdsource estimates of content preser-
vation for 14,000 sentence pairs from 14 sources
and compared these estimates with 13 automatic
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Figure 2: The number of research papers on TST and
PG which use automatic content preservation measures
from different groups, based on 58 publications listed
in Appendix (Table 7).

measures. They evaluated the quality of automatic
measures by the correlation between rankings pro-
vided by these measures and rankings created by
human scores. This scoring showed that the WMD
over GloVe embeddings and L2 distance between
the ELMo embeddings outperform other measures.
However, no supervised sentence encoders or cross-
encoders were considered in this work.

In the work by Briakou et al. (2021), the authors
evaluated measures of formality transfer in four lan-
guages. The main subject of this work is a thorough
analysis of multilingual formality style transfer, in-
cluding a high-level analysis of all aspects of style
transfer quality: style accuracy, content preserva-
tion, and fluency. The authors used chrF and a
cross-encoder (XLM-R) trained on a semantic text
similarity dataset to calculate content preservation.
They also cautioned against using BLEU in this
context, because it has a lower correlation with
human judgments than many other measures. How-
ever, automatic measures of content preservation
were not the main focus of this work, so we extend
its results by applying more diverse measures on
the English part of their dataset, among others.

3 Datasets used in comparative study

We run our analysis of measures on parallel
datasets manually labeled for semantic similarity
or content preservation. To make the comparison
more generalizable, we fetch a large number of
datasets generated by different models.

3.1 Text style transfer datasets
The text style transfer task is aimed at transforming
a text to change its style (a particular attribute of
its text) while keeping the content intact. Since in
some cases the style cannot be separated from the
content (e.g. if the style is positive/negative sen-
timent), strict preservation of all content is some-
times impossible in the TST task. Therefore, we
consider the parallel TST datasets separately from
other data used for the analysis.

In many TST works, outputs were evaluated with
human judgments, but the raw similarity labels are
rarely published. We managed to find datasets that
include human similarity scores for various TST
tasks

• Detoxification:
– Tox600 (Dale et al., 2021),
– CAE (Laugier et al., 2021)

• Formality transfer:
– xformal-FoST (Briakou et al., 2021),
– STRAP_form, (Krishna et al., 2020)
– Yam. GYAFC (Yamshchikov et al.,

2021)3

• Sentiment transfer:
– PG-YELP (Pang and Gimpel, 2019)
– Yam. Yelp (Yamshchikov et al., 2021)

• Transfer to Old English:
– Yam. Bible (Yamshchikov et al., 2021),
– STRAP_coha (old American En-

glish), (Krishna et al., 2020)
– STRAP_SP (Shakespearean En-

glish) (Krishna et al., 2020)

3.2 Paraphrases datasets
Unlike TST, the paraphrase generation task re-
quires full preservation of content. There ex-
ist a large number of parallel datasets of para-
phrases manually labelled for content preserva-
tion. The majority of them have binary labels
(“same”/“different”). We use the following datasets
in our analysis:

• MSRP (Dolan and Brockett, 2005),
• Twitter-URL (Lan et al., 2017),
• PIT (Xu et al., 2014),
• PAWS (Yang et al., 2019b),
• ETPC (Kovatchev et al., 2018),
3We use the datasets collected and/or used in the analysis

by Yamshchikov et al. (2021). For clarity, we prepend their
names with “Yam.” prefix.
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• APT (Nighojkar and Licato, 2021),
• Yam. Para (Yamshchikov et al., 2021).

We provide detailed information about the
datasets in the Appendix tables 5 and 6.

4 Mutual Implication Score (MIS)

The goal of our research is not only to analyze the
existing measures of content preservation but also
to suggest a new measure that can outperform the
existing ones. We devise a new measure that is
based on measuring content similarity with NLI,
as described by Nighojkar and Licato (2021). In
this work, the authors exploit the assumption that
implies the two sentences with the same mean-
ing should be equivalent in their inferential proper-
ties, i.e. each sentence should textually entail the
other. This means that the NLI model is supposed
to return similar entailment scores when applied
to semantically equal sentences regardless of the
sequence these sentences are sent to the input of
the model. The authors used this assumption to
propose an adversarial method of dataset creation
for paraphrase identification.

NLI models predict whether one text logically
entails another, and are, therefore, asymmetric.
High entailment probability in the forward direc-
tion means that the second text accurately follows
the first one and does not contain hallucinated infor-
mation. A high entailment score in the backward
direction means that all the information from the
first text is retained in the second text.

The most natural way to aggregate scores from
both directions is to multiply them or compute their
arithmetic or harmonic mean. We use this approach
as a baseline. We yield NLI scores from the follow-
ing models:

PG TST
Measure ρ Measure ρ

MIS 0.61 MIS 0.54
DeBERTa 0.60 RobNLI 0.47
RobNLI 0.59 DeBERTa 0.46
FBrobNLI 0.55 FBrobNLI 0.43

Table 1: Mean Spearman correlations of MIS and
baseline NLI-based measures on PG and TST datasets.
For baseline NLI measures, the forward and backward
scores are averaged.

• RobNLI (Nie et al., 2020) — RoBERTA-
Large (Zhuang et al., 2021) pre-trained on
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), FEVER-NLI (Nie et al., 2019),
and ANLI (Nie et al., 2020),

• FBrobNLI (Liu et al., 2019) — RoBERTA-
Large pre-trained only on MNLI,

• DeBERTa (He et al., 2021) pre-trained on the
MNLI dataset.

Although these NLI models are a good starting
point, they might not be fully suitable for measur-
ing content preservation, because they were trained
for a different task. We suggest that further fine-
tuning them on the data annotated with content
preservation scores might yield better models.

Thus, we modify the RoBERTA architecture
used for NLI. Namely, we use the original encoder
in both forward and backward directions, concate-
nate the last hidden states, and then send them to
the classification module which is tuned on data an-
notated with content preservation scores. We refer
to this model as Mutual Implication Score (MIS).
The scheme of our model is given in Figure 3.

We initialize the model with pre-trained weights
from the RobNLI model. We tune it on Quora
Question Pairs dataset (Sharma et al., 2019) for 2
epochs with a learning rate 4e−6 and all but the last
encoder layer and classifier layer frozen.

We evaluate the model with the Spearman rank
correlation coefficient of the automatic content
preservation scores with human judgments. We
evaluate all TST and PG datasets introduced in
Section 3. We evaluate MIS and baseline NLI-
based measures (we aggregate the NLI scores for
both directions with the arithmetic mean because it
showed the best results in our preliminary experi-
ments).

The results are shown in Table 1. Fine-tuning the
(slightly modified) NLI model on content preser-
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vation data slightly improves its performance on
datasets generated by paraphrasing models and
yields significantly higher correlation on TST
datasets.

5 Measures analysis

We compute the content preservation scores for
paraphrasing and style transfer datasets using mea-
sures of different types. We analyze the perfor-
mance of individual measures and compare the per-
formance of different groups of measures. We also
look into the difference in measures performance
on PG and TST tasks and analyze the individual
datasets.

5.1 Experimental setting

We analyze 57 content preservation measures of
different types. As described in Section 2.1, the
measures can be divided into the following groups:
a word or character n-gram based (ngram), the mea-
sures based on the distance between static (emb-
static) or contextualized (emb-context) embed-
dings, or embeddings from bi-encoders (emb-bi-
enc), different groups of encoders-based measures:
symmetric (sym-cross-enc), asymmetric (asym-
cross-enc) or two-fold asymmetric (2x-asym-cross-
enc) cross-encoders. This grouping is used explic-
itly during analysis. The full list of measures is
given in Table 8.

We compute the content preservation scores for
19 datasets listed in Section 3. The full information
about the datasets is given in Appendix Tables 5
and 6.

We evaluate measures using the Spearman rank
correlation coefficient of the automatic scores with
human judgments. Since we use a large number
of measures and datasets, we report only aggre-
gated results. The full results are available in the
Appendix Figures 7 and 8.

5.2 Measure-level analysis

Figure 4 shows the correlations of the best-
performing measures from different groups for indi-
vidual datasets. The last columns of the plots show
the performance of each measure averaged across
datasets. The plot shows that MIS and similar
measures based on two-folded asymmetric cross-
encoders have the best average performance on
the paraphrase datasets. For TST datasets, there is
no clear winner: symmetric cross-encoders (cross-
stsb-large/base), bi-encoders (SIMCSE-SL/SB),

Toxic Old_Eng Form Sent
Measure

BLEURT-B128 0.47 0.52 0.61 0.39
BLEURT-L128 0.54 0.57 0.64 0.35
MIS 0.50 0.60 0.69 0.28
NUBIA 0.43 0.60 0.66 0.33
SIMCSE-SL 0.46 0.60 0.69 0.36

Table 2: Mean Spearman correlation of measures which
perform best on different text style transfer tasks. Tasks:
Toxic — detoxification, Old_Eng — old-style to modern
English, Form — formal to informal, Sent — sentiment
transfer. The best scores are shown in bold.

Paraphrase Generation (PG)
ρmax ρavg #wins

2x-asym-cross-enc 0.61 0.56 3
sym-cross-enc 0.55 0.51 5
asym-cross-enc 0.54 0.49 2
emb-bi-enc 0.54 0.45 2
emb-context 0.47 0.42 0
ngram 0.42 0.34 0
emb-static 0.32 0.27 0

Text Style Transfer (TST)
ρmax ρavg #wins

sym-cross-enc 0.55 0.51 3
emb-bi-enc 0.55 0.49 3
asym-cross-enc 0.54 0.46 3
2x-asym-cross-enc 0.54 0.45 0
emb-context 0.5 0.45 2
emb-static 0.4 0.36 1
ngram 0.41 0.35 1

Table 3: Spearman correlations of measures belong-
ing to different groups: ρmax — correlation of the
best-performing in the group, ρavg — correlation aver-
aged over the group, #wins — the number of times
the model from the group performs best on any of the
datasets.

asymmetric cross-encoders (BLEURT, NUBIA),
and two-folded asymmetric cross-encoder (MIS)
demonstrate almost equal performance.

The performance of content preservation mea-
sures on TST datasets varies from style to style.
The TST datasets we use contain style transforma-
tions of four types: detoxification, formal to infor-
mal, positive to negative sentiment, and modern to
old-style English. Thus, it seems natural to aver-
age the measures performance not only by all TST
datasets but also by TST datasets of different styles.
The averaged scores are shown in Table 2. There is
no clear winner for old-style English and formality
transfer: MIS and SIMCSE-SL show almost equal
performance. However, we can see that BLEURT
measures are clear leaders in detoxification and
sentiment transfer.
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5.3 Group-level analysis

To get more generalizable results of the analysis,
we perform a group-level comparison of measures
in Table 3. We report the Spearman correlation
scores averaged over datasets of PG and TST tasks
(as before, we do not merge all datasets and con-
sider the two tasks separately). We report the mean
and maximum correlations of all measures of a
group. We also compute the number of times when
a measure of a group performs best on the particu-
lar dataset. This indicator can be somewhat biased
due to the nature of each dataset, however, it can
still serve as an additional source of information.
If the difference between correlations is not sig-
nificant (by Williams test (Graham and Baldwin,
2014)) we assign one winning time to each group.

From this point of view, we can even better see
that two-folded asymmetric models are the best
choice for paraphrases detection because the mean
correlation outperforms the next best-performing
group by 0.05. Symmetric cross-encoders can also
be an alternative option for this task because they
show the largest number of wins. Symmetric cross-
encoders show the highest mean correlation on the
TST task. At the same time, the number of wins
and correlations of the best models from this class
are similar for all encoder-based classes.

Finally, from the measure-level and group-level
perspective, we can see that encoder-based mea-
sures outperform ngrams-based measures in the
absolute majority of datasets on TST and PG tasks.

5.4 Data-level analysis

So far we relied on the correlations averaged across
different datasets. However, it is also natural to
have a closer look at how the behavior of different
measures changes across datasets.

For this purpose, we represent each dataset as
a vector of correlations of each measure with the
human judgments and plot a dendrogram (see Fig-
ure 5) to show the clustered structure of the ob-
tained vectors. The dendrogram should be inter-
preted as follows. The height at which each dataset
is connected to another dataset or group of datasets
indicates the distance between the dataset vectors.
We additionally plot a heatmap of cosine similari-
ties of these datasets vectors in Appendix Figure 9.

Datasets related to sentiment transfer (PG-YELP,
Yam. Yelp) look different from others, thus, they
form a separate cluster in the dendrogram. The
reason for this dissimilarity is probably the fact
that in this type of TST task (sentiment transfer)
the content of the utterance changes more signif-
icantly than in other tasks. Moreover, PG-YELP
is originally distributed as a pairwise comparison
dataset. To yield sentence-level scores, we apply
Luce Spectral Ranking (Maystre and Grossglauser,
2016). This preprocessing might affect the quality
of labels.

In general, the datasets are clustered into two
rather dense groups and this clustering does not
match the separation of the datasets among TST
and PG tasks. The different behavior of the tested
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Figure 5: Dendrogram of vectors of measures correla-
tions on a dataset. The height of the bar indicates the
distance between vectors or groups of vectors. Postfixes
‘p’ and ‘t’ denote the datasets for PG and TST tasks,
respectively.

measures might be explained by the way the data is
annotated. For example, the PAWS datasets were
collected in an adversarial manner (by shuffling the
words in sentences), STRAP datasets were gener-
ated with TST models, and Yam. datasets were
annotated by a similar group of workers — these
three sets form clusters in the dendrogram.

6 Using automatic measures to rank text
style transfer systems

While above we compared automatic and human
ranking of individual text pairs, our final goal is
to find a measure to rank TST or PG systems.
Six TST datasets used in our analysis were cre-
ated by running several TST models on the same
dataset and manually assessing the degree of con-
tent preservation in the resulting text pairs. They
cover diverse tasks: formality transfer (xformal-
FoST and STRAP_form datasets), text detoxifica-
tion (Tox600 and CAE datasets), Shakespeare style
transfer (STRAP_SP), and sentiment transfer (PG-
YELP). We use the human judgments on content
preservation from these datasets to rate the abil-
ity of various measures to rank text style transfer
systems.

For brevity and clarity, we do not report the
results of this analysis for all measures. Instead,
we select the best-performing measure from each
group:

• cross-encoders: MIS, RobNLI/mean,
BLEURT-L128 and cross-stsb-base,

• bi-encoders: LaBSE and SIMCSE-SL (super-
vised, using ROBERTa-large),

Measure Measure type ρ acc

MIS 2x-asym-cross-enc 0.93 0.50
BLEURT-L128 asym-cross-enc 0.92 0.83
RobNLI/mean 2x-asym-cross-enc 0.83 0.50
cross-stsb-base sym-cross-enc 0.63 0.50
SIMCSE-SL emb-bi-enc 0.60 0.50
LaBSE emb-bi-enc 0.58 0.67
bertscore-Mic-Deberta emb-context 0.55 0.50
SIMILE emb-bi-enc 0.38 0.33
BLEU ngram 0.10 0.17
w2v_wmd emb-static 0.03 0.17
chrf ngram 0.03 0.17

Table 4: Mean rank correlation (ρ) of text style transfer
system-level automatic scores with human judgments,
and percentage of cases when they correctly identify the
best system (acc).

• embedding-based models: SIMILE,
BERTScore (with microsoft/deberta-xlarge-
mnli model), and WMD,

• ngram-based measures: BLEU and ChrF.

We show the results aggregated across the
datasets in Table 4. The scores for individual
datasets and measures and a list of measures man-
aged to identify the best-performing model for a
given dataset are given in Appendix C.

No measure can fully match the system rankings
produced by humans. However, our MIS measure
and BLEURT have the highest correlations with
human judgments. BLEURT performs best on this
task because it correctly identifies the winner on
5 datasets out of 6. The popular measures BLEU,
ChrF, and WMD identify the best system only on
the xformal-FoST dataset.

7 Computational efficiency of the
measures

While the correlation of measures with human judg-
ments is important, the usability of the measure in
real tasks can not be treated in isolation from its
computational efficiency. The main capabilities of
such measures are robustness and inference speed.

One of the key functions of content preservation
measures is to compare different TST or PG ap-
proaches with each other and ensure that different
runs of the learning-based measure yield similar
results. This problem does not apply to words or
character n-grams-based models. However, this
could yield some issues with trainable model-based
measures. That is why it is crucial for all such mea-
sures to open-source trained weights. Moreover,
when using such measures for comparison it is nec-
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Figure 6: Dependence of time necessary for calculating similarity score for one sample and average correlation of a
measure on text style transfer and paraphrases generation tasks.

essary to put the model into inference mode and
freeze all layers. In such a case the model-based
measures yield similar scores to similar text pairs
regardless of the number of attempts or any hard-
ware properties.

Another blocker to the usage of a certain mea-
sure could be a long inference time. We conduct
additional experiments by calculating the average
inference time per sample for a subset of measures
representing each class w.r.t. the average correla-
tion of the measure on the task. We concatenate
texts from both tasks into two united datasets. For
trainable measures, we use a data loader with a
batch size equal to eight. We load all trainable
models to NVIDIA GeForce RTX 2080 Ti. All
other measures are calculated sample-wise on In-
tel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz . We
plot the results on Figure 6.

The most optimal measures are located at the
bottom right corner of these plots, which means
that the measure requires the least possible compu-
tational time and at the same time demonstrates a
high correlation with human judgments. For the
PG task, the MIS measure demonstrates the best
performance and its average inference time is at
the approximately same level as most of the other
model-based measures. For TST task symmetric
and asymmetric cross-encoders are the most opti-
mal.

8 Conclusions

As our experiments show, encoder-based mea-
sures of content preservation correlate with human
judgments much better than the traditional word

or character-based measures such as BLEU on a
wide range of datasets. In all paraphrase datasets
and 9 out of 10 text style transfer datasets, the
best-performing measures are based on the cross-
encoder or bi-encoder architecture.

We suggest a measure called MIS which is based
on the idea that texts with similar meanings mutu-
ally entail each other. We show that the proposed
architecture outperforms other measures in the eval-
uation of paraphrases and performs on par with the
top-performing measures in the evaluation of text
style transfer. More specifically, it is particularly
successful in transferring between contemporary
and old English and between formal and informal
styles. Thus, we recommend using this measure for
content preservation scoring for paraphrases and
TST tasks in the aforementioned tasks and to use
BLEURT for other TST tasks.

While the best measures in our analysis improve
over the popular ones (e.g. BLEU) by a large mar-
gin, their correlation with human judgments is still
far from perfect. We expect that even better mea-
sures of content preservation will be proposed in
the nearest future. We also hope that the MIS mea-
sure and the performed large scale computational
study could be applied to other NLP tasks, such as
machine translation, text summarization, etc.
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A Datasets

Name Comment Size

ETPC all data from textual_np_pos and textual_np_neg files 6004
PAWS-qqp dev_and_test.tsv from qqp part used 677
PAWS-wiki Test split from PAWS-Wiki Labeled (Final) 8000
Twitter-URL Test split used 10120
PIT Test split used 972
MSR Test split used 1630
APT Test split used (ap-h-test) 1252
Yam. para Data from Paralex,Parphrase folder used 3223
SICK Test split form SICK_test_annotated used 4927

Table 5: Paraphrase generation (PG) datasets used in the experiments.

Name Comment Size Style

Tox600 All data used 600 Toxic
Yam. Yelp Yelp subset of annotated data 2000 sentiment
Yam. GYAFC GYAFC subset of annotated data 6000 Formality
Yam. Bible Bible subset of annotated data 2000 Old-style

English
xformal-FoST English subset of annotated data use (meta_gyafc_en.tsv) 2458 Formality
CAE All data used. For each sentence pair, the mean human score

was used. The dataset was obtained by direct request to Laugier
et al. (2021)

500 Toxic

PG All data used. Individual ranks were induced from side-by-side
comparisons using the Luce spectral ranking model. The dataset
was obtained by direct request to Pang and Gimpel (2019).

886 Sentiment

STRAP_coha
For each sentence pair, the mean human score was used. All
data used

100 Historical
American
English

STRAP_form 684 Formality
STRAP_SP 550 Old-style

English

Table 6: Text style transfer (TST) datasets used in the experiments.

B Measures analysis
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Citation Measure Task

Hu et al. (2017) Automatic content preservation measures are not used CG
Shen et al. (2017) Automatic content preservation measures are not used TST
Mueller et al. (2017) Edit distance CG
Jhamtani et al. (2017) PINC (Chen and Dolan, 2011), BLEU TST
Radford et al. (2017) Only style accuracy analyzed TST
Logeswaran et al. (2018) round-trip BLEU CG
Subramanian et al. (2018) self-BLEU TST
Zhang et al. (2018b) BLEU TST
Prabhumoye et al. (2018) Manual pairwise comparison only TST
Tian et al. (2018b) self-BLEU, POS-distance - noun difference between the original and transferred sentences TST
Yang et al. (2018) self-BLEU TST
Rao and Tetreault (2018) STS CNN model (He et al., 2015) TST
Carlson et al. (2018) PINC, BLEU TST
Zhao et al. (2018) BLEU TST
Fu et al. (2018) Cossim between averaged or max/min-pooled GloVe (Pennington et al., 2014) embeddings TST
Xu et al. (2018) BLEU TST
Zhang et al. (2018a) BLEU TST
Gupta et al. (2018) BLEU, ROUGE, METEOR PG
Pang and Gimpel (2019) Cossim between GloVe (Pennington et al., 2014) embeddings weighted by inverse document frequency TST
Li et al. (2018) BLEU TST
Smith et al. (2019) self-BLEU TST
Sudhakar et al. (2019) self-BLEU TST
Wu et al. (2019b) BLEU TST
John et al. (2019) Cossim between averaged or max/min-pooled GloVe (Pennington et al., 2014) embeddings TST
Luo et al. (2019) BLEU TST
Dai et al. (2019) self-BLEU TST
Jain et al. (2019) BLEU, spacy.docsim TST
Lai et al. (2019) self BLEU TST
Wang et al. (2019) BLEU TST
Xu et al. (2019) BLEU TST
Kajiwara (2019) BLEU, F1-score over added, deleted, adn kept words PG
Wu et al. (2019a) Case insensitive BLEU TST
Li et al. (2019a) BLEU TST
Li et al. (2019b) BLEU, ROUGE PG
Chen et al. (2019) BLEU, ROUGE, METEOR PG
Yang et al. (2019a) BLEU, METEOR, TER (Snover et al., 2006) PG

Egonmwan and Chali (2019)
BLEU, ROUGE, METEOR,GMS
and EACS (Sharma et al., 2017)

PG

Wang et al. (2018) BLEU, METEOR, TER (Snover et al., 2006) PG
Krishna et al. (2020) SIMILEWieting et al. (2019) TST
Shen et al. (2020b) self-BLEU CG
Li et al. (2020) self-BLEU TST
Xu et al. (2020) self-BLEU TST
Gong et al. (2020) Cossim between averaged or max/min-pooled GloVe embeddings TST
Zhang et al. (2020) BLEU TST
Shen et al. (2020a) BLEU CG
He et al. (2020) self-BLEU TST
Goyal and Durrett (2020) BLEU PG
Fu et al. (2020) BLEU, ROUGE PG
Laugier et al. (2021) BLEU, cosine sinilarity of USE (Cer et al., 2018) TST
Lai et al. (2021) BLEU, BLEURT (Sellam et al., 2020) TST
Shi et al. (2021) WMD (Kusner et al., 2015), BLEU, BERTScore (Zhang et al., 2019) TST
Riley et al. (2021) self-BLEU TST
Krause et al. (2021) Only detoxicifcation and fluency analyzed CG
Lee et al. (2021) BLEU, BERTScore (Zhang et al., 2019) TST
Cao et al. (2020) BLEU TST
Rane et al. (2021) BLEU TST

Hu and He (2021)
Word Overlap, BLEU, cosine similarity between avearged or max/min-pooled GloVe (Pennington et al.,
2014) embeddings TST

Sun et al. (2021) BLEU, ROUGE, METEOR PG

Table 7: Automatic content preservation measures used in recent works on text style transfer (TST), paraphrase
generation (PG), and controllable generation (CG).
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Measure name in report Comment Article

RobNLI/* Combination or separate use of NLI scores in direct or reverse direction Nie et al. (2020)
SIMILE Cosine similarity between embeddings generated with LSTM-based model Wieting et al. (2019)
w2v_wmd_norm Word mover distance with word2vec normalized Kusner et al. (2015)
w2v_wmd Word mover distance with word2vec
w2v_l2 Euclidean distance vetween word2vec
w2v_cossim Cosine similarity over word2vec
USE Cosine similarity between embeddings generated with Universal Sentence

Encoder
Cer et al. (2018)

SIMCSE-UL
Unsupervised and supervised version of SIMCSE:Simple Contrastive
Learning of Sentence Embeddings. Unsupervised version trained to pre-
dict the input sentence itself with only dropout used as noise. Supervised
version trained to produce embeddings on NLI data in contrastive manner
using entailing sample as positive sample and contradiction as negative.

Gao et al. (2021)

SIMCSE-UB
SIMCSE-ULu
SIMCSE-UBu
SIMCSE-SL
SIMCSE-SB
SIMCSE-SBertUnc
LaBSE Cosine similarity between language-agnostic cross-lingual sentence em-

beddings
Feng et al. (2020)

BERT-base-NLI-STSB Reimers and
Gurevych (2019)

ROUGEL ROUGE Longest Common Subsequence

Lin (2004)
ROUGE3 ROUGE with trigram
ROUGE2 ROUGE with bigram
ROUGE1 ROUGE with unigram
NUBIA Multi-module pipeline consisting of Feature Extraction, Aggregation and

Calibration for semantic similarity scoring
Kane et al. (2020)

FBrobNLI/* Combination or separate use of Facebook roberta NLI model’s scores in
direct or reverse direction

Liu et al. (2019)

MoverScore Special case of Earth Mover’s Distance applied to BERT embeddings Zhao et al. (2019)
METEOR The measure is based on the harmonic mean of unigram precision and

recall
Banerjee and Lavie
(2005)

Levenshtein The minimum number of single-character edits Levenshtein et al.
(1966)

Jaro_winkler String measure measuring an edit distance between two sequences with
special modification giving more rating to strings that match from the
beginning for a set prefix

Jaro (1989)

fasttext_wmd_norm Normalized word mover distance over fasstext vectors Kusner et al. (2015)
fasttext_wmd Word mover distance over fasstext vectors
fasttext_l2 Euclidean distance between fasttext vectors
fasttext_cossim Cosine similarity between fasttext vectors

facebook/bart-large-cnn
Weighted log probability of one text y given another text x. The weights
are used to put different emphasis on different tokens Lewis et al. (2020)

BLEURT-L512
BERT fine-tuned for semantic similarity evaluation task in cross-encoder
manner on sythetic data

Sellam et al. (2020)
BLEURT-L128
BLEURT-B512
BLEURT-B128

deberta/* Combination or separate use of NLI scores from deberat model in direct
or reverse direction

He et al. (2021)

cross-stsb-large
Base and Large version of CrossEncoder trained on STSb

Reimers and
Gurevych (2019)cross-stsb-base

APD Paraphrase detector trained on the Adversarial Paraphrasing dataset from
the correponding paper

Nighojkar and Licato
(2021)

chrf Character n-gram F-score Popović (2015)
BLEU Modified unigram precision score Papineni et al. (2002)
bertscore/roberta-large F1-score over BERT-embeddings between tokens from initial and target

setneces. The packages are: roberta-large, Bert base multilingal cased,
microsoft/deberta-xlarge-mnli correspondingly

Zhang et al. (2019)bertscore_Bert-bmc
bertscore-Mic-Deberta

Table 8: The full list of the automatic measures of content preservation used in the analysis.
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https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://github.com/jwieting/simple-and-effective-paraphrastic-similarity
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
https://huggingface.co/princeton-nlp/unsup-simcse-roberta-large
https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base
https://huggingface.co/princeton-nlp/unsup-simcse-bert-large-uncased
https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased
https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
https://huggingface.co/princeton-nlp/sup-simcse-roberta-base
https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/bert-base-nli-stsb-mean-tokens
https://github.com/wl-research/nubia
https://huggingface.co/roberta-large-mnli
https://github.com/AIPHES/emnlp19-moverscore
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/Elron/bleurt-large-512
https://huggingface.co/Elron/bleurt-large-128
https://huggingface.co/Elron/bleurt-base-512
https://huggingface.co/Elron/bleurt-base-128
https://huggingface.co/microsoft/deberta-xlarge-mnli
https://huggingface.co/cross-encoder/stsb-roberta-large
http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
https://huggingface.co/cross-encoder/stsb-roberta-base
https://huggingface.co/coderpotter/adversarial-paraphrasing-detector
https://github.com/Tiiiger/bert_score
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MIS (2x-asym-cross-enc)
deberta/mean (2x-asym-cross-enc)
 RobNLI/mean (2x-asym-cross-enc)

RobNLI/prod (2x-asym-cross-enc)
deberta/prod (2x-asym-cross-enc)

FBrobNLI/mean (2x-asym-cross-enc)
RobNLI/f1 (2x-asym-cross-enc)

cross-stsb-base (sym-cross-enc)
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ROUGEL (ngram)

SIMCSE-UB (emb-bi-enc)
SIMILE (emb-bi-enc)

facebook/bart-large-cnn (emb-bi-enc)
bertscore_Bert-bmc (emb-context)

MoverScore (emb-context)
chrf (ngram)

ROUGE2 (ngram)
ROUGE1 (ngram)

BLEU (ngram)
METEOR (ngram)
ROUGE3 (ngram)

fasttext_wmd (emb-static)
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m
et

ric

0.56 0.48 0.60 0.66 0.63 0.47 0.59 0.81 0.67 0.61
0.68 0.53 0.63 0.52 0.44 0.51 0.71 0.70 0.65 0.60
0.69 0.50 0.57 0.54 0.44 0.48 0.81 0.66 0.64 0.59
0.67 0.51 0.57 0.53 0.42 0.51 0.82 0.65 0.62 0.59
0.67 0.53 0.62 0.49 0.42 0.53 0.71 0.65 0.64 0.58
0.69* 0.40 0.57 0.46 0.40 0.49 0.69 0.64 0.62 0.55
0.63 0.51 0.56 0.46 0.32 0.47 0.82* 0.62 0.59 0.55
0.58 0.21 0.19 0.73 0.68 0.58* 0.47 0.82 0.70 0.55
0.40 0.45 0.34 0.73 0.61 0.48 0.37 0.82* 0.70 0.54
0.67 0.40 0.56 0.43 0.36 0.52 0.70 0.61 0.59 0.54
0.64 0.53 0.61 0.39 0.32 0.47 0.71 0.57 0.60 0.54
0.57 0.27 0.32 0.65 0.59 0.55 0.42 0.80 0.67 0.54
0.44 0.10 0.18 0.74 0.71* 0.56 0.50 0.81 0.72* 0.53
0.64 0.49 0.61 0.37 0.38 0.39 0.62 0.53 0.62 0.52
0.63 0.48 0.56 0.47 0.35 0.39 0.65 0.51 0.59 0.51
0.63 0.54* 0.64* 0.40 0.24 0.41 0.45 0.66 0.60 0.51
0.38 0.31 0.27 0.72 0.55 0.48 0.34 0.81 0.70 0.51
0.63 0.49 0.56 0.39 0.27 0.41 0.48 0.66 0.58 0.50
0.43 0.33 0.27 0.67 0.45 0.54 0.35 0.77 0.68 0.50
0.38 0.30 0.25 0.72 0.50 0.46 0.35 0.80 0.71 0.50
0.37 0.26 0.35 0.64 0.51 0.50 0.39 0.73 0.70 0.49
0.63 0.40 0.56 0.29 0.22 0.46 0.70 0.53 0.54 0.48
0.27 0.23 0.31 0.62 0.53 0.49 0.39 0.72 0.69 0.47
0.36 0.22 0.25 0.69 0.54 0.47 0.30 0.74 0.68 0.47
0.14 0.40 0.46 0.66 0.55 0.49 0.31 0.63 0.59 0.47
0.64 0.38 0.56 0.31 0.31 0.36 0.62 0.48 0.57 0.47
0.40 0.25 0.12 0.68 0.57 0.48 0.30 0.71 0.70 0.47
0.35 0.16 0.09 0.72 0.55 0.44 0.34 0.76 0.71 0.46
0.27 0.23 0.31 0.60 0.48 0.48 0.34 0.71 0.67 0.45
0.63 0.39 0.56 0.32 0.19 0.39 0.41 0.62 0.56 0.45
0.43 0.21 0.15 0.68 0.48 0.43 0.29 0.72 0.67 0.45
0.32 0.21 0.28 0.58 0.43 0.48 0.33 0.73 0.66 0.45
0.55 0.10 0.20 0.75* 0.27 0.35 0.61 0.54 0.63 0.44
0.25 0.31 0.32 0.64 0.47 0.48 0.26 0.62 0.59 0.44
0.31 0.14 0.49 0.66 0.45 0.42 0.16 0.53 0.63 0.42
0.35 0.14 0.08 0.67 0.49 0.43 0.24 0.68 0.67 0.42
0.44 -0.13 -0.02 0.71 0.52 0.42 0.29 0.67 0.70 0.40
0.18 0.32 0.45 0.50 0.39 0.37 0.12 0.63 0.55 0.39
0.20 0.19 0.31 0.59 0.33 0.42 0.21 0.53 0.64 0.38
0.25 0.25 0.30 0.23 0.37 0.47 0.26 0.61 0.68 0.38
0.26 0.16 0.24 0.63 0.36 0.39 0.18 0.55 0.61 0.38
0.32 0.23 0.36 0.63 0.42 0.35 0.13 0.54 0.40 0.37
0.32 -0.02 -0.00 0.67 0.49 0.45 0.22 0.58 0.63 0.37
0.21 0.06 0.07 0.63 0.38 0.47 0.23 0.54 0.62 0.36
0.30 -0.05 0.17 0.64 0.46 0.39 0.11 0.57 0.59 0.35
0.30 0.15 0.43 0.56 0.40 0.29 0.10 0.48 0.25 0.33
0.18 -0.09 -0.03 0.62 0.35 0.45 0.21 0.57 0.64 0.32
0.31 0.16 0.09 0.32 0.27 0.36 0.25 0.53 0.54 0.31
0.03 -0.07 -0.04 0.62 0.32 0.43 0.20 0.57 0.60 0.30
0.09 -0.07 -0.04 0.53 0.32 0.39 0.16 0.61 0.61 0.29
0.34 -0.09 -0.03 0.52 0.23 0.40 0.16 0.51 0.51 0.29
0.05 -0.07 -0.04 0.51 0.25 0.43 0.20 0.58 0.60 0.28
0.24 0.32 0.37 0.27 0.08 0.26 0.06 0.37 0.52 0.28
0.28 0.12 -0.03 0.42 0.21 0.32 0.12 0.45 0.35 0.25
0.16 0.06 0.13 0.47 0.28 0.20 0.15 0.34 0.43 0.25
-0.03 -0.06 -0.05 0.39 0.25 0.41 0.15 0.55 0.40 0.22
0.16 -0.07 -0.04 0.39 0.19 0.29 0.16 0.47 0.43 0.22
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Figure 7: Spearman correlations of all the evaluated measures with human judgments for paraphrase generation (PG)
datasets. The measures are sorted by the mean correlation across all datasets. The top correlations for individual
datasets are marked with *. The color palette of the heatmap is based on the regret, which is the difference between
the correlation of the measure on a particular dataset and the best correlation on this dataset. The lower the value of
regret, the higher quality.
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SIMCSE-SL (emb-bi-enc)
cross-stsb-base (sym-cross-enc)
cross-stsb-large (sym-cross-enc)

MIS (2x-asym-cross-enc)
SIMCSE-SB (emb-bi-enc)

BLEURT-L128 (asym-cross-enc)
BLEURT-L512 (asym-cross-enc)

NUBIA (asym-cross-enc)
SIMCSE-SBertUnc (emb-bi-enc)

SIMCSE-UL (emb-bi-enc)
BLEURT-B128 (asym-cross-enc)
BLEURT-B512 (asym-cross-enc)

USE (emb-bi-enc)
SIMCSE-UB (emb-bi-enc)

bertscore-Mic-Deberta (emb-context)
BERT-base-NLI-STSB (emb-bi-enc)

SIMCSE-ULu (emb-bi-enc)
SIMCSE-UBu (emb-bi-enc)

SIMILE (emb-bi-enc)
 RobNLI/mean (2x-asym-cross-enc)

RobNLI/prod (2x-asym-cross-enc)
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MoverScore (emb-context)
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RobNLI/f1 (2x-asym-cross-enc)
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fasttext_wmd_norm (emb-static)

ROUGE2 (ngram)
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ROUGE3 (ngram)
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Levenshtein (ngram)
Jaro_winkler (ngram)
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0.46 0.45 0.74 0.46 0.62 0.70 0.69* 0.34 0.37 0.68* 0.55
0.54 0.44 0.73 0.42 0.62 0.73 0.69 0.30 0.40* 0.62 0.55
0.52 0.37 0.77* 0.44 0.62 0.74 0.69 0.34 0.39 0.62 0.55
0.61 0.47 0.73 0.40 0.61 0.77* 0.69 0.29 0.28 0.62 0.54
0.47 0.43 0.72 0.43 0.63 0.68 0.69 0.35 0.38 0.65 0.54
0.61* 0.36 0.71 0.46 0.63 0.62 0.68 0.33 0.38 0.63 0.54
0.56 0.32 0.68 0.48* 0.63 0.60 0.67 0.42 0.36 0.65 0.54
0.54 0.46 0.72 0.32 0.62 0.70 0.67 0.31 0.35 0.62 0.53
0.44 0.33 0.69 0.46 0.62 0.61 0.69 0.34 0.37 0.62 0.52
0.37 0.37 0.68 0.46 0.63 0.62 0.68 0.38 0.35 0.62 0.52
0.50 0.26 0.67 0.43 0.63 0.54 0.66 0.42 0.35 0.62 0.51
0.53 0.28 0.68 0.41 0.63 0.57 0.65 0.37 0.35 0.61 0.51
0.31 0.29 0.66 0.46 0.63 0.62 0.69 0.43 0.34 0.61 0.50
0.38 0.32 0.65 0.43 0.62 0.59 0.67 0.39 0.35 0.59 0.50
0.42 0.37 0.56 0.45 0.63 0.48 0.69 0.42 0.33 0.65 0.50
0.42 0.30 0.67 0.46 0.63 0.62 0.66 0.24 0.35 0.61 0.50
0.38 0.28 0.65 0.43 0.62 0.54 0.68 0.39 0.34 0.58 0.49
0.36 0.24 0.63 0.46 0.62 0.52 0.67 0.37 0.34 0.57 0.48
0.34 0.28 0.65 0.40 0.63 0.49 0.67 0.38 0.33 0.61 0.48
0.54 0.44 0.67 0.22 0.60 0.74 0.69 -0.05 0.17 0.63 0.47
0.51 0.40 0.65 0.25 0.60 0.72 0.68 -0.04 0.18 0.63 0.46
0.50 0.44 0.67 0.26 0.60 0.74 0.68 -0.04 0.13 0.58 0.46
0.27 0.26 0.48 0.47 0.63 0.39 0.68 0.42 0.33 0.57 0.45
0.46 0.41 0.65 0.29 0.60 0.71 0.68 -0.03 0.12 0.58 0.45
0.46 0.36 0.61 0.25 0.60 0.68 0.68 -0.02 0.18 0.63 0.44
0.27 0.25 0.47 0.45 0.63 0.38 0.66 0.39 0.32 0.59 0.44
0.27 0.31 0.52 0.24 0.58 0.62 0.67 0.30 0.29 0.59 0.44
0.49 0.45 0.64 0.23 0.60 0.72 0.67 -0.10 0.02 0.61 0.43
0.42 0.38 0.60 0.29 0.60 0.67 0.67 -0.02 0.12 0.58 0.43
0.41 0.33 0.54 0.28 0.59 0.65 0.67 0.02 0.15 0.62 0.43
0.53 0.42 0.65 0.14 0.60 0.67 0.66 -0.06 0.17 0.46 0.42
0.52 0.51* 0.64 0.19 0.58 0.67 0.66 -0.05 0.10 0.40 0.42
0.38 0.35 0.55 0.31 0.60 0.66 0.67 0.00 0.13 0.54 0.42
0.37 0.07 0.51 0.35 0.59 0.42 0.60 0.39 0.31 0.57 0.42
0.45 0.40 0.59 0.23 0.60 0.67 0.67 -0.09 0.02 0.61 0.41
0.19 0.28 0.30 0.42 0.64* 0.26 0.68 0.37 0.31 0.61 0.41
0.52 0.44 0.63 0.16 0.58 0.64 0.63 -0.10 0.01 0.46 0.40
0.15 0.20 0.34 0.44 0.63 0.26 0.67 0.36 0.32 0.58 0.40
0.24 0.10 0.38 0.42 0.60 0.39 0.63 0.33 0.31 0.54 0.40
0.42 0.36 0.54 0.23 0.59 0.62 0.64 -0.07 0.01 0.61 0.39
0.16 0.15 0.37 0.39 0.63 0.30 0.66 0.43* 0.32 0.52 0.39
0.15 0.16 0.31 0.44 0.63 0.27 0.68 0.38 0.32 0.56 0.39
0.15 0.19 0.31 0.43 0.63 0.27 0.68 0.33 0.31 0.55 0.39
0.15 0.17 0.31 0.41 0.64 0.26 0.67 0.39 0.31 0.55 0.39
0.40 0.34 0.49 0.24 0.58 0.61 0.63 -0.04 0.01 0.59 0.38
0.17 0.11 0.31 0.40 0.63 0.33 0.66 0.36 0.31 0.56 0.38
0.15 0.10 0.28 0.42 0.64 0.24 0.68 0.33 0.31 0.55 0.37
0.11 0.06 0.37 0.39 0.62 0.27 0.66 0.36 0.31 0.44 0.36
0.25 0.12 0.26 0.37 0.56 0.34 0.59 0.27 0.29 0.53 0.36
0.10 0.24 0.15 0.42 0.61 0.18 0.62 0.36 0.30 0.52 0.35
0.13 0.10 0.21 0.43 0.64 0.20 0.67 0.30 0.31 0.51 0.35
0.18 0.24 0.26 0.25 0.57 0.29 0.48 0.30 0.24 0.48 0.33
0.12 0.16 0.08 0.43 0.54 0.14 0.54 0.31 0.26 0.49 0.31
0.12 0.02 0.17 0.42 0.64 0.15 0.58 0.24 0.26 0.49 0.31
0.08 -0.02 0.13 0.41 0.57 0.18 0.57 0.27 0.27 0.49 0.30
0.12 0.01 0.17 0.13 0.53 0.19 0.48 0.29 0.23 0.59 0.27
-0.02 0.13 -0.06 0.31 0.59 0.16 0.59 0.25 0.29 0.39 0.26

0.75

0.60

0.45

0.30

0.15

0.00

Figure 8: Spearman correlations of all the evaluated measures with human judgments for text style transfer (TST)
datasets. The measures are sorted by the mean correlation across all datasets. The top correlations for individual
datasets are marked with *. The color palette of the heatmap is based on the regret, which is the difference between
the correlation of the measure on a particular dataset and the best correlation on this dataset. The lower the value of
regret, the higher quality.
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Figure 9: Cosine similarities of vectors of measures’ correlations on individual datasets. The last column shows the
mean cosine similarity of a dataset vector and vectors of all other dataset (excluding self-similarity). Postfixes ‘p’
and ‘t’ indicate datasets for to PG and TST tasks, respectively.
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C System-level ranking

human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf
system

paragedi 0.65 0.52 0.39 -0.25 0.82 0.95 0.68 0.76 0.67 -0.67 0.48 0.41
condbert 0.64 0.41 0.27 -0.26 1.07 0.96 0.75 0.83 0.76 -0.34 0.72 0.73
mask_infill 0.59 0.39 0.29 -0.29 0.96 0.99 0.82 0.87 0.82 -0.21 0.79 0.80

Table 9: System ranking on Tox600 (Dale et al., 2021), text detoxification.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

nmt_combined 4.67 0.91 0.90 0.78 4.35 0.98 0.96 0.95 0.93 -0.15 0.88 0.85
pbmt 4.64 0.89 0.88 0.71 4.08 0.98 0.95 0.94 0.91 -0.17 0.85 0.81
ref 4.56 0.87 0.84 0.32 2.98 0.95 0.89 0.86 0.76 -0.44 0.64 0.59
nmt_copy 3.99 0.74 0.72 0.40 3.04 0.97 0.88 0.88 0.82 -0.26 0.77 0.73
nmt_baseline 3.90 0.73 0.70 0.40 3.00 0.96 0.87 0.89 0.82 -0.25 0.77 0.74

Table 10: System ranking on xformal-FoST (Briakou et al., 2021), formality transfer.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

CAET rephras-
ing

2.63 0.34 0.28 -0.63 0.56 0.92 0.62 0.70 0.56 -0.66 0.47 0.44

IE rephrasing 2.20 0.37 0.36 -0.73 0.55 0.96 0.60 0.73 0.56 -0.56 0.58 0.56
ST (multi)
rephrasing

2.10 0.26 0.22 -1.16 -0.22 0.91 0.52 0.63 0.60 -0.67 0.46 0.46

ST (cond)
rephrasing

2.08 0.25 0.23 -1.11 -0.07 0.92 0.53 0.66 0.62 -0.65 0.49 0.47

CA rephrasing 1.88 0.05 0.08 -1.54 -2.22 0.90 0.18 0.51 0.16 -0.95 0.23 0.18

Table 11: System ranking on CAE (Laugier et al., 2021), text detoxification.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

m7 3.41 0.16 0.09 -1.03 -0.84 0.95 0.45 0.76 0.52 -0.56 0.52 0.45
m6 3.03 0.18 0.11 -1.16 -0.58 0.95 0.45 0.74 0.56 -0.52 0.58 0.53
m2 3.03 0.14 0.07 -1.23 -1.10 0.94 0.37 0.73 0.47 -0.56 0.53 0.46
m0 2.31 0.10 0.06 -1.50 -1.80 0.91 0.28 0.64 0.30 -0.80 0.34 0.29

Table 12: System ranking on PG-YELP (Pang and Gimpel, 2019), sentiment transfer.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

paraphrase_base 0.79 0.64 0.53 -0.39 1.19 0.94 0.77 0.74 0.65 -0.69 0.45 0.39
paraphrase_0.0 0.76 0.73 0.64 -0.08 1.91 0.94 0.82 0.77 0.71 -0.63 0.50 0.43
paraphrase_0.9 0.59 0.56 0.44 -0.45 1.04 0.93 0.73 0.71 0.61 -0.74 0.42 0.35
unmt 0.31 0.23 0.19 -0.95 -0.31 0.93 0.50 0.69 0.51 -0.61 0.51 0.43
he_2020 0.26 0.21 0.19 -0.99 -0.82 0.90 0.45 0.67 0.46 -0.65 0.45 0.40

Table 13: System ranking on STRAP_form, (Krishna et al., 2020), formality transfer.
human MIS RobNLI/mean BLEURT-L128 cross-stsb-base LaBSE SIMCSE-SL bertscore-Mic-Deberta SIMILE w2v_wmd BLEU chrf

system

paraphrase_0.0 0.81 0.62 0.58 -0.11 1.48 0.95 0.79 0.76 0.72 -0.69 0.44 0.37
paraphrase_base 0.58 0.44 0.43 -0.52 0.77 0.94 0.69 0.70 0.62 -0.79 0.37 0.31
he_2020 0.35 0.19 0.21 -1.07 -0.28 0.93 0.49 0.68 0.49 -0.65 0.46 0.40
unmt 0.26 0.12 0.13 -1.23 -0.92 0.93 0.41 0.66 0.41 -0.72 0.42 0.34

Table 14: System ranking on STRAP_SP (Krishna et al., 2020), Shakespeare style transfer.

dataset measures

Tox600 MIS, BLEURT-L128
xformal-FoST BLEURT-L128 , cross-stsb-base, SimCSE, BERTScore, and all other models
CAE BLEURT-L128 , cross-stsb-base, SimCSE
PG-YELP BLEURT-L128 , LaBSE, BERTScore
STRAP_form LaBSE
STRAP_SP MIS, BLEURT-L128 , cross-stsb-base, LaBSE, SimCSE, BERTScore, SIMILE

Table 15: The measures that correctly identify the best text style transfer system for each dataset.
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