
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 771 - 777

May 22-27, 2022 c©2022 Association for Computational Linguistics

How reparametrization trick broke differentially-private text
representation learning

Ivan Habernal
Trustworthy Human Language Technologies

Department of Computer Science
Technical University of Darmstadt

ivan.habernal@tu-darmstadt.de
www.trusthlt.org

Abstract

As privacy gains traction in the NLP com-
munity, researchers have started adopting var-
ious approaches to privacy-preserving meth-
ods. One of the favorite privacy frameworks,
differential privacy (DP), is perhaps the most
compelling thanks to its fundamental theoreti-
cal guarantees. Despite the apparent simplicity
of the general concept of differential privacy, it
seems non-trivial to get it right when applying
it to NLP. In this short paper, we formally ana-
lyze several recent NLP papers proposing text
representation learning using DPText (Beigi
et al., 2019a,b; Alnasser et al., 2021; Beigi
et al., 2021) and reveal their false claims of
being differentially private. Furthermore, we
also show a simple yet general empirical san-
ity check to determine whether a given imple-
mentation of a DP mechanism almost certainly
violates the privacy loss guarantees. Our main
goal is to raise awareness and help the com-
munity understand potential pitfalls of apply-
ing differential privacy to text representation
learning.

1 Introduction

Differential privacy (DP), a formal mathematical
treatment of privacy protection, is making its way
to NLP (Igamberdiev and Habernal, 2021; Senge
et al., 2021). Unlike other approaches to protect
privacy of individuals’ text documents, such as
redacting named entities (Lison et al., 2021) or
learning text representation with a GAN attacker
(Li et al., 2018), DP has the advantage of quan-
tifying and guaranteeing how much privacy can
be lost in the worst case. However, as Habernal
(2021) showed, adapting DP mechanisms to NLP
properly is a non-trivial task.

Representation learning with protecting pri-
vacy in an end-to-end fashion has been recently
proposed in DPText (Beigi et al., 2019b,a; Al-
nasser et al., 2021). DPText consists of an auto-
encoder for text representation, a differential-

privacy-based noise adder, and private attribute
discriminators, among others. The latent text rep-
resentation is claimed to be differentially private
and thus can be shared with data consumers for
a given down-stream task. Unlike using a pre-
determined privacy budget ε, DPText takes ε as a
learnable parameter and utilizes the reparametriza-
tion trick (Kingma and Welling, 2014) for random
sampling. However, the downstream task results
look too good to be true for such low ε values. We
thus asked whether DPText is really differentially
private.

This paper makes two important contributions
to the community. First, we formally analyze
the heart of DPText and prove that the employed
reparametrization trick based on inverse continu-
ous density function in DPText is wrong and the
model violates the DP guarantees. This shows that
extreme care should be taken when implementing
DP algorithms in end-to-end differentiable deep
neural networks. Second, we propose an empir-
ical sanity check which simulates the actual pri-
vacy loss on a carefully crafted dataset and a re-
construction attack. This supports our theoretical
analysis of non-privacy of DPText and also con-
firms previous findings of breaking privacy of an-
other system ADePT.1

2 Differential privacy primer

Suppose we have a dataset (database) where each
element belongs to an individual, for example Al-
ice, Bob, Charlie, up to m. Each person’s entry,
denoted with a generic variable x, could be an ar-
bitrary object, but for simplicity consider it a real
valued vector x ∈ Rk. An important premise is
that this vector contains some sensitive informa-
tion we aim to protect, for example an income
(x ∈ R), a binary value whether or not the person

1ADePT is a text-to-text rewriting system claimed to be
differentially private (Krishna et al., 2021) but has been found
to be DP-violating (Habernal, 2021).

771

www.trusthlt.org


has a certain disease (x ∈ {0.0, 1.0}), or a dense
representation from SentenceBERT containing the
person’s latest medical record (x ∈ Rk). This
dataset is held by someone we trust to protect the
information, the trusted curator.2

This dataset is a set from which we can create
2m subsets, for instance X1 = {Alice}, X2 =
{Alice,Bob}, etc. All these subsets form a uni-
verseX , that isX1, X2, · · · ∈ X , and each of them
is also called (a bit ambiguously) a dataset.
Definition 2.1. Any two datasets X,X ′ ∈ X are
called neighboring, if they differ in one person.

For example, X = {Alice}, X ′ = {Bob} or
X = {Alice,Bob}, X ′ = {Bob} are neighboring,
while X = {Alice}, X ′ = {Alice, Bob, Charlie}
are not.
Definition 2.2. Numeric query is any function f
applied to a dataset X and outputting a real-
valued vector, formally f : X → Rk.

For example, numeric queries might return an
average income (f → R), number of persons
in the database (f → R), or a textual summary
of medical records of all persons in the database
represented as a dense vector (f → Rk). The
query is simply something we want to learn from
the dataset. A query might be also an identity
function that just ‘copies’ the input, e.g., f(X =
{(1, 0)}) → (1, 0) for a real-valued dataset X =
{(1, 0)}.

An attacker who knows everything about Bob,
Charlie, and others would be able to reveal Al-
ice’s private information by querying the dataset
and combining it with what they know already.
Differentially private algorithm (or mechanism)
M(X; f) thus randomly modifies the query out-
put in order to minimize and quantify such attacks.
Smith and Ullman (2021) formulate the principle
of differential privacy as follows: “No matter what
they know ahead of time, an attacker seeing the
output of a differentially private algorithm would
draw (almost) the same conclusions about Alice
whether or not her data were used.”

Let a DP-mechanism M(X; f) have an arbi-
trary range R (a generalization of our case of nu-
meric queries, for which we would haveR = Rk).
Differential privacy is then defined as

Pr(X|M(X; f) = z)

Pr(X ′|M(X; f) = z)
≤ exp(ε) · Pr(X)

Pr(X ′)
(1)

2This is centralized DP, as opposed to local-DP where no
such trusted curator exists.

for all neighboring datasets X,X ′ and all z ∈
R, where Pr(X) and Pr(X ′) is our prior knowl-
edge of X and X ′. In words, our posterior knowl-
edge of X or X ′ after observing z can only grow
by factor exp(ε) (Mironov, 2017), where ε is a pri-
vacy budget (Dwork and Roth, 2013).3

3 Analysis of DPText

In the heart of the model, DPText relies on the
standard Laplace mechanism which takes a real-
valued vector and perturbs each element by a ran-
dom draw from the Laplace distribution.

Formally, let z be a real-valued d-dimensional
vector. Then the Laplace mechanism outputs a
vector z̃ such that for each index i = 1, . . . , d

z̃i = zi + si (2)

where each si is drawn independently from a
Laplace distribution with zero mean and scale b
that is proportional to the `1 sensitivity ∆ and the
privacy budget ε, namely

si ∼ Lap

(
µ = 0; b =

∆

ε

)
(3)

The Laplace mechanism satisfies differential
privacy (Dwork and Roth, 2013).

3.1 Reparametrization trick and inverse
CDF sampling

DPText employs the variational autoencoder ar-
chitecture in order to directly optimize the amount
of noise added in the latent layer parametrized
by ε. In other words, the scale of the Laplace
distribution becomes a trainable parameter of the
network. As directly sampling from a distribu-
tion is known to be problematic for end-to-end
differentiable deep networks, DPText borrows the
reparametrization trick from Kingma and Welling
(2014).

In a nutshell, the reparametrization trick decou-
ples drawing a random sample from a desired dis-
tribution (such as Exponential, Laplace, or Gaus-
sian) into two steps: First draw a value from
another distribution (such as Uniform), and then
transform it using a particular function, mainly the
inverse continuous density function (CDF).

As a matter of fact, sampling using the in-
verse CDF is a well-known and widely used

3In this paper, we will use the basic form of DP, that is
(ε, 0)-DP. There are various other (typically more ‘relaxed’)
variants of DP, such (ε, δ)-DP, but they are not relevant to the
current paper as DPText also claims (ε, 0)-DP.

772



method (Devroye, 1986; Ross, 2012) and forms
the backbone of probability distribution generators
in many popular frameworks.

3.2 Inverse CDF of Laplace distribution

The inverse cumulative distribution function of
Laplace distribution Lap(µ; b) is:

F−1(u) = µ− b sgn(u− 0.5) ln(1− 2|u− 0.5|)
(4)

where u ∼ Uni(0, 1) is drawn from a standard
uniform distribution (Sugiyama, 2016, p. 210),
(Nahmias and Olsen, 2015, p. 303). An equivalent
expression without the sgn and absolute functions
is derived, e.g., by Li et al. (2019, p. 166) as

F−1(u) =

{
b ln(2u) + µ if u < 0.5

µ− b ln(2(1− u)) if u ≥ 0.5
(5)

where again u ∼ Uni(0, 1).4

An alternative sampling strategy, as shown, e.g.,
by Al-Shuhail and Al-Dossary (2020, p. 62), as-
sumes that the random variable is drawn from a
shifted, zero-centered uniform distribution

v ∼ Uni (−0.5,+0.5) (6)

and transformed through the following function

F−1(v) = µ− b sgn(v) ln(1− 2|v|) (7)

While both (4) and (7) generate samples from
Lap(µ; b), note the substantial difference between
u and v, since each is drawn from a different uni-
form distribution (see visualizations in Fig. 1).

3.3 Proofs of DPText violating DP

According to Eq. 3 in (Alnasser et al., 2021), Eq. 9
in (Beigi et al., 2019a) which is an extended ver-
sion of (Beigi et al., 2019b), in Eq. 14 in (Beigi
et al., 2021), and personal communication to con-
firm the formulas, the main claim of DPText is as
follows (rephrased):

DPText utilizes the Laplace mech-
anism, which is DP (Dwork and Roth,
2013). It implements the mechanism as

4This implementation is used in numpy, see
https://github.com/numpy/numpy/blob/
maintenance/1.21.x/numpy/random/src/
distributions/distributions.c#L469

−0.5 0 0.5 1

−4

−2

0

2

4 − sgn(u) ln(1− 2|u|)
− sgn(u− 0.5) ln(1− 2|u− 0.5|)

Figure 1: Inverse CDFs for Laplace sampling.

follows: Sampling a value from stan-
dard uniform

v ∼ Uni(0, 1) (8)

and transforming using

F−1(v) = µ− b sgn(v) ln(1− 2|v|)
(9)

is equivalent to sampling noise from
Lap(b).

This claim is unfortunately false, as it mixes up
both approaches introduced in Sec. 3.2. As a con-
sequence, the Laplace mechanism using such sam-
pling is not DP, which we will first prove formally.

Theorem 3.1. Sampling using inverse CDF as
in DPText using (8) and (9) does not produce
Laplace distribution.

Proof. We will rely on the standard proof of sam-
pling from inverse CDF (see Appendix A). The
essential step of that proof is that the CDF is in-
creasing on the support of the uniform distribu-
tion, that is on [0, 1]. However, F−1 as used in
(9) is increasing only on interval [0, 0.5] (Fig. 1).
For v ≥ 0.5, we get negative argument to ln which
yields a complex function, whose real part is even
decreasing. Therefore (9) is not CDF of any prob-
ability distribution, if used with Uni(0, 1).

As a consequence, the output ln(v ≤ 0) arbi-
trarily depends on the particular implementation.
In numpy, it is NaN with a warning only. There-
fore this function samples only positive or NaN
numbers. Since DPText sources are not publicly
available, we can only assume that NaN numbers

773

https://github.com/numpy/numpy/blob/maintenance/1.21.x/numpy/random/src/distributions/distributions.c#L469
https://github.com/numpy/numpy/blob/maintenance/1.21.x/numpy/random/src/distributions/distributions.c#L469
https://github.com/numpy/numpy/blob/maintenance/1.21.x/numpy/random/src/distributions/distributions.c#L469


are either replaced by zero, or the sampling pro-
ceeds as long as the desired number of samples
is reached (discarding NaNs). In either case, no
negative values can be obtained. See Fig. 3 in the
Appendix for various Laplace-based distributions
sampled with different techniques including pos-
sible distributions sampled in DPText.

Theorem 3.2. DPText with private mechanism
based on (8) and (9) fails to guarantee differential
privacy.

Proof. We rely on the standard proof of the
Laplace mechanism as shown, e.g, by Habernal
(2021). Let X = 0 and X ′ = 1 be two neigh-
boring datasets, and the query f being the iden-
tity query, such that it outputs simply the value of
X . Let the DPText mechanismM(X; f) outputs
a particular value z.

In order to being differentially private, mecha-
nism M(X; f) has to fulfill the following bound
of the privacy loss:∣∣∣∣ Pr(M(X) = z)

Pr(M(X ′) = z)

∣∣∣∣ ≤ exp(ε) (10)

for all neighboring datasets X,X ′ ∈ X and all
outputs z ∈ R from the range ofM, provided that
our priors over X and X ′ are uniform (cf. Eq. 1).

Fix z = 0.1. Then Pr(M(X) = 0.1) will have
a positive probability (recall it takes the query out-
put f(X = 0) = 0 and adds a random number
drawn from the probability distribution, which is
always positive as shown in Theorem 3.1.) How-
ever Pr(M(X ′) = 0.1) will be zero, as the query
output f(X ′ = 1) = 1 will be added again only
a positive random number and thus never be less
than 1. By plugging this into (10), we obtain∣∣∣∣ Pr(M(X) = 0.1)

Pr(M(X ′) = 0.1)

∣∣∣∣ =
Pr > 0

Pr = 0
� exp(ε) (11)

which results in an infinity privacy loss and vio-
lates differential privacy.

4 Empirical sanity check algorithm

It is impossible to empirically verify that a given
DP-mechanism implementation is actually DP
(Ding et al., 2018). However, it is possible to de-
tect a DP-violating mechanism with a fair degree
of certainty. We propose a general sanity check

applicable to any real-valued DP mechanism, such
as the Laplace mechanism, DPText, or any other.5

We start by constructing two neighboring
datasets X (Alice) and X ′ (Bob) such that
X = (0, . . . , 0n) consists of n zeros and X ′ =
(1, . . . , 1n) consists of n ones. The dimensionality
n ∈ {1, 2, . . . } is a hyperparameter of the experi-
ment. We employ a synthetic data release mecha-
nism (also called local DP). The mechanism takes
X or X ′ and outputs its privatized version of the
same dimensionality n, so that the zeros or ones
are ‘noisified’ real numbers. The query sensitivity
∆ is n.6

Thanks to the post-processing lemma, any post-
processing of DP output remains DP. We can thus
turn the output real vector back to all zeros or all
ones, simply by rounding to closest 0 or 1 and
applying majority voting. This process is in fact
our reconstruction attack: given a privatized vec-
tor, we try to guess what the original values were,
either all zeros or all ones.

What our attacker is doing, and what DP pro-
tects, is that if Alice gives us her privatized data,
we cannot tell whether her private values were all
zeros or all ones (up to a given factor); the same
for Bob.

By definition (1) and having no prior knowledge
over X and X ′ apart from the fact that the val-
ues are correlated, our attacker cannot exceed the
guaranteed privacy loss exp(ε):

Pr(X|M(X; f) = z)

Pr(X ′|M(X; f) = z)
≤ exp(ε) (12)

We can estimate the conditional probability
Pr(X|M(X; f) = z) using maximum likelihood
estimation (MLE) simply as our attacker’s preci-
sion: How many times the attacker reconstructed
true X values given the observed privatized vec-
tor. We can do the same for estimating the condi-
tional probability of X ′. In particular, we repeat-
edly run each DP mechanism over X and X ′ 10
million times each, which gives very precise MLE
estimates even for small ε.7

5Some related works along these lines also utilize statis-
tical analysis of the source code written in a C-like language
(Wang et al., 2020).

6See (Dwork and Roth, 2013) for `1-sensitivity definition.
7For example, we repeated the full experiment on

ADePT (n = 2, ε = 0.1) 100 times which results in
standard deviation 0.0008 from the mean value 0.195.
Better MLE precision can be simply obtained by in-
creasing the 10 million repeats per experiment. Source
codes available at https://github.com/trusthlt/

774

https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy


0,10 1,00 10,00

Desired Ɛ

0,000

0,001

0,010

0,100

1,000

10,000

E
st

im
a
te

d
 a

ct
u
a
l 
p
ri

v
a
cy

 l
o
ss

Bound
Random output
Copy input

Extreme baselines
∞

0,10 1,00 10,00

Desired Ɛ

0,000

0,001

0,010

0,100

1,000

10,000

E
st

im
a
te

d
 a

ct
u
a
l 
p
ri

v
a
cy

 l
o
ss

Bound
1 dim
2 dims
8 dims
32 dims
64 dims
128 dims

Laplace mechanism
∞

0,10 1,00 10,00

Desired Ɛ

0,000

0,001

0,010

0,100

1,000

10,000

E
st

im
a
te

d
 a

ct
u
a
l 
p
ri

v
a
cy

 l
o
ss

Bound
1 dim
2 dims
8 dims
32 dims
64 dims
128 dims

Laplace in ADePT
∞

0,10 1,00 10,00

Desired Ɛ

0,000

0,001

0,010

0,100

1,000

10,000

E
st

im
a
te

d
 a

ct
u
a
l 
p
ri

v
a
cy

 l
o
ss

Bound
1 up to 128 dims

DPText mechanism
∞

Figure 2: Area under the green line: Our attack does not reveal more than allowed by the desired privacy budget.
Note that it does not guarantee DP, the reconstruction attack might be just weak. Area above the green line:
The algorithm almost certainly violates DP as our attack caused bigger privacy loss than allowed by ε. Extreme
baselines show two extreme scenarios, as random output is absolutely private (but provides zero utility) and copy
input provides maximal utility but no privacy by revealing the data in full.

5 Results and discussion

For the sake of completeness, we implemented
two extreme baselines: One that simply copies
input (no privacy) and other one completely ran-
dom regardless of the input (maximum privacy);
these are shown in Figure 2 left. The vanilla
Laplace mechanism behaves as expected; all em-
pirical losses for all dimensions (1 up to 128) are
bounded by ε. We re-implemented the Laplace
mechanism from ADePT (Krishna et al., 2021)
that, due to wrong sensitivity, has been shown the-
oretically as DP-violating (Habernal, 2021). We
empirically confirm that ADePT suffered from
the curse of dimensionality as the privacy loss
explodes for larger dimensions. The last panel
confirms our previous theoretical DPText results,
which (regardless of dimensionality) has infinite
privacy loss.

Note that we constructed the dataset carefully as
two neighboring multidimensional correlated data
that are as distant from each other as possible in
the (0, 1)n space. However, DP must guarantee
privacy for any datapoints, even the worst case
scenario, as shown by the correct Laplace mech-
anism.

6 Conclusion

We formally proved that DPText (Beigi et al.,
2019b,a; Alnasser et al., 2021; Beigi et al., 2021)
is not differentially private due to wrong sampling
in its reparametrization trick. We also proposed

acl2022-reparametrization-trick-broke-
differential-privacy

an empirical sanity check that confirmed our find-
ings and can help to reveal potential errors in DP
mechanism implementations for NLP.

7 Ethics Statement

We declare no conflict of interests with the authors
of DPText, we do not even know them personally.
The purpose of this paper is strictly scientific.

Acknowledgements

The independent research group TrustHLT is sup-
ported by the Hessian Ministry of Higher Edu-
cation, Research, Science and the Arts. Thanks
to Cecilia Liu, Haau-Sing Li, and the anonymous
reviewers for their helpful feedback. A special
thanks to Condor airlines, whose greed to make
passengers pay for everything resulted in the most
productive transatlantic flights I’ve ever had.

References

Abdullatif Al-Shuhail and Saleh Al-Dossary. 2020.
Robust Filter—Dealing with Impulse Noise, pages
61–80. Springer International Publishing.

Walaa Alnasser, Ghazaleh Beigi, and Huan Liu. 2021.
Privacy Preserving Text Representation Learning
Using BERT. In Proceedings of the 14th Interna-
tional Conference on Social, Cultural, and Behav-
ioral Modeling (SBP-BRiMS), pages 91–100, Vir-
tual event. Springer International Publishing.

John E. Angus. 1994. The Probability Integral Trans-
form and Related Results. SIAM Review, 36(4):652–
654.

775

https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://github.com/trusthlt/acl2022-reparametrization-trick-broke-differential-privacy
https://doi.org/10.1007/978-3-030-32948-8_4
https://doi.org/10.1007/978-3-030-80387-2_9
https://doi.org/10.1007/978-3-030-80387-2_9
https://doi.org/10.1137/1036146
https://doi.org/10.1137/1036146


Ghazaleh Beigi, Kai Shu, Ruocheng Guo, Suhang
Wang, and Huan Liu. 2019a. I Am Not What
I Write: Privacy Preserving Text Representation
Learning. arXiv preprint.

Ghazaleh Beigi, Kai Shu, Ruocheng Guo, Suhang
Wang, and Huan Liu. 2019b. Privacy Preserving
Text Representation Learning. In Proceedings of the
30th ACM Conference on Hypertext and Social Me-
dia, pages 275–276, Hof, Germany. ACM.

Ghazaleh Beigi, Kai Shu, Ruocheng Guo, Suhang
Wang, and Huan Liu. 2021. Systems and methods
for a privacy preserving text representation learn-
ing framework. U.S. Patent, Pending Application
US20210342546A1, Application filed by Arizona
Board of Regents of ASU.

Luc Devroye. 1986. Non-uniform random variate gen-
eration. Springer-Verlag New York Inc.

Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng
Zhang, and Daniel Kifer. 2018. Detecting Viola-
tions of Differential Privacy. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 475–489, Toronto,
Canada. ACM.

Cynthia Dwork and Aaron Roth. 2013. The Algorith-
mic Foundations of Differential Privacy. Founda-
tions and Trends® in Theoretical Computer Science,
9(3-4):211–407.

Ivan Habernal. 2021. When differential privacy meets
NLP: The devil is in the detail. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1522–1528, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Timour Igamberdiev and Ivan Habernal. 2021.
Privacy-Preserving Graph Convolutional Networks
for Text Classification. arXiv preprint.

Diederik P. Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In Proceedings of the
2nd International Conference on Learning Repre-
sentations (ICLR), pages 1–14, Banff, Canada.

Satyapriya Krishna, Rahul Gupta, and Christophe
Dupuy. 2021. ADePT: Auto-encoder based Differ-
entially Private Text Transformation. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 2435–2439, Online. Associa-
tion for Computational Linguistics.

Xianxian Li, Huaxing Zhao, Dongran Yu, Li-e Wang,
and Peng Liu. 2019. Multidimensional Correla-
tion Hierarchical Differential Privacy for Medical
Data with Multiple Privacy Requirements. In Pro-
ceedings of the 2nd International Conference on
Healthcare Science and Engineering, pages 153–
173, Guilin, China. Springer Singapore.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards Robust and Privacy-preserving Text Repre-
sentations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 25–30, Melbourne,
Australia. Association for Computational Linguis-
tics.

Pierre Lison, Ildikó Pilán, David Sanchez, Montser-
rat Batet, and Lilja Øvrelid. 2021. Anonymisation
Models for Text Data: State of the art, Challenges
and Future Directions. In Proceedings of the 59th
Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 4188–4203, Online. As-
sociation for Computational Linguistics.

Ilya Mironov. 2017. Rényi Differential Privacy. In
2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 263–275, Santa Barbara,
piiCA, USA. IEEE.

Steven Nahmias and Tava Lennon Olsen. 2015. Pro-
duction and Operations Analysis, 7th edition. Wave-
land Press, Inc.

Sheldon Ross. 2012. Simulation, 5th edition. Aca-
demic Press.

Manuel Senge, Timour Igamberdiev, and Ivan Haber-
nal. 2021. One size does not fit all: Investigating
strategies for differentially-private learning across
NLP tasks. arXiv preprint.

Adam Smith and Jonathan Ullman. 2021. Privacy in
Statistics and Machine Learning. Lecture 5: Differ-
ential Privacy II.

Masashi Sugiyama. 2016. Introduction to Statistical
Machine Learning. Morgan Kaufmann.

Yuxin Wang, Zeyu Ding, Daniel Kifer, and Danfeng
Zhang. 2020. CheckDP: An Automated and Inte-
grated Approach for Proving Differential Privacy or
Finding Precise Counterexamples. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 919–938, On-
line. ACM.

A Proof of sampling from inverse CDF

Important fact 1: A random variable U is uni-
formly distributed on [0, 1] if the following holds

U ∼ Uni(0, 1) ⇐⇒ Pr(U ≤ u) = u. (13)

Important fact 2: For any function g(·) with an
inverse function g−1(·), the following holds

g(g−1(x)) = x; g−1(g(x)) = x. (14)

776

http://arxiv.org/abs/1907.03189
http://arxiv.org/abs/1907.03189
http://arxiv.org/abs/1907.03189
https://doi.org/10.1145/3342220.3344925
https://doi.org/10.1145/3342220.3344925
https://patents.google.com/patent/US20210342546A1/
https://patents.google.com/patent/US20210342546A1/
https://patents.google.com/patent/US20210342546A1/
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://aclanthology.org/2021.emnlp-main.114/
https://aclanthology.org/2021.emnlp-main.114/
http://arxiv.org/abs/2102.09604
http://arxiv.org/abs/2102.09604
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://www.aclweb.org/anthology/2021.eacl-main.207
https://www.aclweb.org/anthology/2021.eacl-main.207
https://doi.org/10.1007/978-981-13-6837-0_12
https://doi.org/10.1007/978-981-13-6837-0_12
https://doi.org/10.1007/978-981-13-6837-0_12
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.1109/CSF.2017.11
http://arxiv.org/abs/2112.08159
http://arxiv.org/abs/2112.08159
http://arxiv.org/abs/2112.08159
https://dpcourse.github.io
https://dpcourse.github.io
https://dpcourse.github.io
https://doi.org/10.1145/3372297.3417282
https://doi.org/10.1145/3372297.3417282
https://doi.org/10.1145/3372297.3417282


4 2 0 2 4
0

500

1000

1500

2000

2500

3000

Fr
e
q

u
e
n
cy

Standard Laplace 
(numpy)

0.00 0.25 0.50 0.75 1.00
0

500

1000

1500

2000

Standard uniform

4 2 0 2 4
0

500

1000

1500

2000

2500

3000

Correct inverse 
CDF transform

4 2 0 2 4
0

500

1000

1500

2000

2500

3000

DPText transform 
(keep NaNs)

4 2 0 2 4
0

10000

20000

30000

40000

50000

DPText transform 
(NaNs to 0)

Figure 3: Comparing sampling strategies. Left: Sampling using vanilla numpy implementation. Second from the
left: Uniform sample as basis for the following three inverse CDF transformations. Generated with 100k samples.

Important fact 3: For any increasing function g(·),
we have by definition

x ≤ y =⇒ g(x) ≤ g(y). (15)

We know that Pr(X ≤ a) is a shortcut for prob-
ability of event E1 defined using the set-builder
notation as E1 = {s ∈ Ω : X(s) ≤ a}. Then
by plugging (15) into the predicate of E1, we ob-
tain an equal set, namely event E2 = {s ∈ Ω :
g(X(s)) ≤ g(a)}, for which the probability must
be the same. Therefore for any random variableX
and increasing function g(·) we have

Pr(X ≤ a) = Pr(g(X) ≤ g(a)). (16)

Theorem A.1. Let U be a uniform random vari-
able on [0, 1]. LetX be a continuous random vari-
able with CDF (cumulative distribution function)
F (·). Let Y be defined such that Y = F−1(U).
Then Y has CDF F (·).

Proof. Function F (·) is the CDF of a continuous
random variable X , and as a CDF its range is
[0, 1]. Also, if F (·) is strictly increasing, it has
a unique inverse function F−1(·) defined on [0, 1].

We defined Y = F−1(U), so consider

Pr(Y ≤ y) = Pr
(
F−1(U) ≤ y

)
. (17)

Since F (·) is increasing, using (16) we get

Pr(Y ≤ y) = Pr
(
F (F−1(U)) ≤ F (y)

)
. (18)

Now plugging (14) we obtain

Pr(Y ≤ y) = Pr(U ≤ F (y)), (19)

and finally by (13)

Pr(Y ≤ y) = F (y). (20)

For an overview of proofs of Theorem A.1 see
(Angus, 1994).

777


