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Abstract
Dense retrieval models, which aim at retriev-
ing the most relevant document for an input
query on a dense representation space, have
gained considerable attention for their remark-
able success. Yet, dense models require a vast
amount of labeled training data for notable per-
formance, whereas it is often challenging to ac-
quire query-document pairs annotated by hu-
mans. To tackle this problem, we propose a
simple but effective Document Augmentation
for dense Retrieval (DAR) framework, which
augments the representations of documents
with their interpolation and perturbation. We
validate the performance of DAR on retrieval
tasks with two benchmark datasets, showing
that the proposed DAR significantly outper-
forms relevant baselines on the dense retrieval
of both the labeled and unlabeled documents.

1 Introduction

Retrieval systems aim at retrieving the documents
most relevant to the input queries, and have re-
ceived substantial spotlight since they work as core
elements in diverse applications, especially for
open-domain question answering (QA) (Voorhees,
1999). Open-domain QA is a task of answering
the question from a massive amount of documents,
often requiring two components, a retriever and a
reader (Chen et al., 2017; Karpukhin et al., 2020).
Specifically, a retriever ranks the most question-
related documents, and a reader answers the ques-
tion using the retrieved documents.

Traditional sparse retrieval approaches such as
BM25 (Robertson et al., 1994) and TF-IDF rely
on term-based matching, hence suffering from the
vocabulary mismatch problem: the failure of re-
trieving relevant documents due to the lexical dif-
ference from queries. To tackle such a problem,
recent research focuses on dense retrieval mod-
els to generate learnable dense representations for
queries and documents (Karpukhin et al., 2020).
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Figure 1: (Left) The number of labeled and unlabeled
documents for the Natural Question dataset. (Right) T-
SNE (Maaten and Hinton, 2008) visualization of randomly
sampled document representations from the DPR model.

Despite their recent successes, some challenges
still remain in the dense retrieval scheme for a cou-
ple of reasons. First, dense retrieval models need
a large amount of labeled training data for a de-
cent performance. However, as Figure 1 shows,
the proportion of labeled query-document pairs is
extremely small since it is almost impossible to
rely on humans for the annotations of a large docu-
ment corpus. Second, in order to adapt a retrieval
model to the real world, where new documents con-
stantly emerge, handling unlabeled documents that
are not seen during training should obviously be
considered, but remains challenging.

To automatically expand the query-document
pairs, recent work generates queries from genera-
tive models (Liang et al., 2020; Ma et al., 2021)
or incorporates queries from other datasets (Qu
et al., 2021), and then generates extra pairs of aug-
mented queries and documents. However, these
query augmentation schemes have serious and ob-
vious drawbacks. First, it is infeasible to augment
queries for every document in the dataset (see the
number of unlabeled documents in Figure 1), since
generating and pairing queries are quite costly. Sec-
ond, even after obtaining new pairs, we need extra
training steps to reflect the generated pairs on the
retrieval model. Third, this query augmentation
method does not add variations to the documents
but only to the queries, thus it may be suboptimal
to handle enormous unlabeled documents.
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Figure 2: Our document augmenting schemes of interpola-
tion and perturbation on a dense representation space. Pos.
and Neg. denote positive and negative documents to the query.

Since augmenting additional queries is costly,
the question is then if it is feasible to only manip-
ulate the given query-document pairing to handle
numerous unlabeled documents. To answer this,
we first visualize the embeddings of labeled and
unlabeled documents. Figure 1 shows that there is
no distinct distributional shift between labeled and
unlabeled documents. Thus it could be effective
to manipulate only the labeled documents to han-
dle the nearby unlabeled documents as well as the
labeled documents. Using this observation, we pro-
pose a novel document augmentation method for a
dense retriever, which not only interpolates two dif-
ferent document representations associated with the
labeled query (Figure 2 (b)), but also stochastically
perturbs the representations of labeled documents
with a dropout mask (Figure 2 (c)). One notable
advantage of our scheme is that, since it manipu-
lates only the representations of documents, our
model does not require explicit annotation steps of
query-document pairs, which makes it highly effi-
cient. We refer to our overall method as Document
Augmentation for dense Retrieval (DAR).

We experimentally validate our method on stan-
dard open-domain QA datasets, namely Natural
Question (NQ) (Kwiatkowski et al., 2019) and Triv-
iaQA (Joshi et al., 2017) (TQA), against various
evaluation metrics for retrieval models. The experi-
mental results show that our method significantly
improves the retrieval performances on both the
unlabeled and labeled documents. Furthermore, a
detailed analysis of the proposed model shows that
interpolation and stochastic perturbation positively
contribute to the overall performance.

Our contributions in this work are threefold:
• We propose to augment documents for dense

retrieval models to tackle the problem of insuffi-
cient labels of query-document pairs.

• We present two novel document augmentation
schemes for dense retrievers: interpolation and
perturbation of document representations.

• We show that our method achieves outstanding
retrieval performances on both labeled and unla-
beled documents on open-domain QA tasks.

2 Related Work

Dense Retriever Dense retrieval models (Lee
et al., 2019; Karpukhin et al., 2020) have gained
much attention, which generate dense representa-
tions for queries and documents. However, dense
retrieval faces a critical challenge from limited
training data. Recent work has addressed such a
problem by generating extra query-document pairs
to augment those pairs to the original dense re-
trieval model (Liang et al., 2020; Ma et al., 2021;
Qu et al., 2021), or by regularizing the model (Ros-
set et al., 2019). However, unlike ours that automat-
ically augments data during a training phase, these
methods require extensive computational resources
for an additional generation step of explicitly query-
document pairing before training the retriever.

Data Augmentation Since data augmentation is
crucial to the performance of deep neural networks,
it is widely applied to diverse domains (Shorten and
Khoshgoftaar, 2019; Hedderich et al., 2021), where
interpolation and perturbation are dominant meth-
ods. Mixup interpolates two items, such as pixels
of images, to augment the training data (Zhang
et al., 2018; Verma et al., 2019), which is also
adopted for NLP (Chen et al., 2020; Yin et al.,
2021). However, none of the previous work has
shown the effectiveness of mixup when applied to
retrieval tasks. Besides interpolation, Wei and Zou
(2019) and Ma (2019) proposed perturbation over
words, and Lee et al. (2021b) proposed perturbation
over word embeddings. Jeong et al. (2021) and Gao
et al. (2021) perturbed text embeddings to generate
diverse sentences and to augment positive sentence
pairs in unsupervised learning. In contrast, we
address dense retrieval, perturbing document repre-
sentations with dropout (Srivastava et al., 2014) in
a supervised setting with labeled documents.

3 Method

We begin with the definition of dense retrieval.

Dense Retrieval Given a pair of query q and doc-
ument d, the goal of dense retrieval is to correctly
calculate a similarity score between them from the
dense representations q and d, as follows:

f(q, d) = sim(q,d),

q = EQ(q; θq) and d = ED(d; θd),
(1)

where f is a scoring function that measures the
similarity between a query-document pair, sim is a

443



Natural Questions (NQ) TriviaQA (TQA)
MRR MAP T-100 T-20 T-5 T-1 MRR MAP T-100 T-20 T-5 T-1

BM25 32.46 20.78 78.25 62.94 43.77 22.11 55.28 34.85 83.15 76.41 66.28 46.30
DPR 39.55 25.61 83.77 72.94 54.02 27.45 44.29 27.24 80.50 71.07 57.74 33.63
DPR w/ QA 40.00 24.93 83.46 72.13 55.46 27.67 46.27 28.08 80.76 71.88 59.14 35.90
DPR w/ DA 41.28 26.60 83.68 72.83 55.51 29.31 46.08 27.82 80.42 71.55 58.64 35.85
DPR w/ AR 41.18 26.04 83.60 73.41 55.51 29.11 45.13 27.57 80.65 71.68 58.09 34.52
DAR (Ours) 42.92 27.12 84.18 75.04 57.62 30.42 47.32 28.70 81.30 72.66 59.88 36.94
QAR (Ours) 43.09 27.64 84.21 74.76 57.51 31.25 47.21 29.00 80.91 72.12 59.94 36.92

Table 1: Retrieval results on NQ and TQA datasets, including the variant of our model – QAR:
applying data augmentation techniques to queries instead of documents. BM25 is the sparse
retrieval model, whereas others are dense retrieval models. The best model and the second best
model among dense retrievers are denoted in bold, which we aim to improve in this work.
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Figure 3: Retrieval results on
the labeled and unlabeled doc-
uments in the NQ dataset with
MRR as an evaluation metric.

similarity metric such as cosine similarity, and EQ
and ED are dense encoders for a query and docu-
ment, respectively, with parameters θ = (θq, θd).

A dense retrieval scheme generally uses the
negative sampling strategy to distinguish the rel-
evant query-document pairs from irrelevant pairs,
which generates an effective representation space
for queries and documents. We specify a relevant
query-document pair as (q, d+) ∈ τ+, and an irrel-
evant pair as (q, d−) ∈ τ−, where τ+ ∩ τ− = ∅.
The objective function is as follows:

min
θ

∑
(q,d+)∈τ+

∑
(q,d−)∈τ−

L(f(q, d+), f(q, d−)), (2)

where a loss function L is a negative log-likelihood
of the positive document. Our goal is to augment
a set of query-document pairs, by manipulating
documents with their interpolation or perturbation,
which we explain in the next paragraphs.

Interpolation with Mixup As shown in interpo-
lation of Figure 2, we aim at augmenting the doc-
ument representation located between two labeled
documents to obtain more query-document pairs,
which could be useful to handle unlabeled docu-
ments in the middle of two labeled documents. To
achieve this goal, we propose to interpolate the
positive and negative documents (d+, d−) for the
given query q, adopting mixup (Zhang et al., 2018).
Note that, since the input documents to the encoder
ED are discrete, we use the output embeddings of
documents to interpolate them, as follows:

d̃ = λd+ + (1− λ)d−, (3)

where d̃ is the mixed representation of positive
and negative documents for the given query q, and
λ ∈ [0, 1]. We then optimize the model to estimate
the similarity sim(q, d̃) between the interpolated
document and the query as the soft label λ with a
binary cross-entropy loss. The output of the cross-
entropy loss is added to the original loss in equa-
tion 2. One notable advantage of our scheme is

# Query MRR R@1k

10K ANCE 42.62 94.60
+ DAR 46.31 94.81

50K ANCE 46.88 95.58
+ DAR 48.20 95.58

Table 2: Results on the
MS MARCO subsets with
ANCE as a denser retriever.

Time (Min.) Memory (MiB)
DPR 19 22,071
DPR w/ QA 41 22,071
DPR w/ DA 38 22,071
DPR w/ AR 29 38,986
DAR (Ours) 21 22,071

Table 3: Wall-clock time and
maximum memory usage for
training a DPR model per epoch.

that the negative log-likelihood loss in equation 2
maximizes the similarity score of the positive pair,
while minimizing the score of the negative pair;
thus there are no intermediate similarities between
arbitrary query-document pairs. However, ours
can obtain query-document pairs having soft labels,
rather than strict positive or negative classes, by
interpolating the positive and negative documents.

Stochastic Perturbation with Dropout In addi-
tion to our interpolation scheme to handle unla-
beled documents in the space of interpolation of
two labeled documents, we further aim at perturb-
ing the labeled document to handle its nearby un-
labeled documents as shown in Figure 2 (c). In
order to do so, we randomly mask the representa-
tion of the labeled document, obtained by the doc-
ument encoder ED, with dropout, where we sam-
ple masks from a Bernoulli distribution. In other
words, if we sample n different masks from the
distribution, we obtain n different query-document
pairs

{
(q,d+

i )
}i=n
i=1

from one positive pair (q,d+).
By doing so, we augment n times more positive
query-document pairs by replacing a single posi-
tive pair (q, d+) in equation 2. Moreover, since the
document perturbation is orthogonal to the interpo-
lation, we further interpolate between the perturbed
positive document d+

i and the negative document
d− for the given query in equation 3, to augment a
soft query-document pair from perturbation.

Efficiency Data augmentation methods are gen-
erally vulnerable to inefficiency, since they need
a vast amount of resources to generate data and
to forward the generated data into the large lan-
guage model. However, since our interpolation and
perturbation methods only manipulate the already
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MRR MAP T-20 T-5
DAR (Ours) 42.92 27.12 75.04 57.62
w/o Perturbation 41.26 26.19 73.68 55.37
w/o Interpolation 40.40 25.70 73.41 55.29
DPR 39.55 25.61 72.94 54.02

Table 4: Ablation studies of our DAR on the NQ
dataset by removing interpolation or perturbation.
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Figure 4: T-20 on the NQ dataset
with varying batch sizes.

10 20 30 40 50 60 70 80 90 100
Number of retrieved documents

34
35
36
37
38
39

EM DPR
DAR (Ours)

Figure 5: Exact Match (EM)
scores for a reader on the NQ.

obtained representations of the documents from
the encoder ED, we don’t have to newly generate
document texts and also to forward generated docu-
ments into the model, which greatly saves time and
memory (see Table 3). We provide a detailed analy-
sis and discussion of efficiency in Appendix B.1.

4 Experiments

4.1 Experimental Setups
Here, we describe datasets, models, and implemen-
tation details for experiments. More experimental
details are shown in Appendix A. Our code is pub-
licly available at github.com/starsuzi/DAR.

Datasets For documents to retrieve, we use the
Wikipedia, following Karpukhin et al. (2020),
where the processed dataset contains 21,015,324
passages. To evaluate retrieval models, we use two
open-domain QA datasets, following Karpukhin
et al. (2020): 1) Natural Questions (NQ) is col-
lected with Google search queries (Kwiatkowski
et al., 2019); 2) TriviaQA (TQA) is a QA collec-
tion scraped from the Web (Joshi et al., 2017).

Retrieval Models 1) BM25 is a sparse term-
based retrieval model based on TF-IDF (Robertson
et al., 1994). 2) Dense Passage Retriever (DPR)
is a dense retrieval model with a dual-encoder of
query-document pairs (Karpukhin et al., 2020). 3)
DPR with Query Augmentation (DPR w/ QA)
augments pairs with query generation for the doc-
ument, adopting (Liang et al., 2020; Mao et al.,
2021a). 4) DPR with Document Augmentation
(DPR w/ DA) augments pairs by replacing words
in the document (Ma, 2019). 5) DPR with Ax-
iomatic Regularization (DPR w/ AR) regularizes
the retrieval model to satisfy certain axioms (Ros-
set et al., 2019). 6) DAR is ours with interpolation
and perturbation of document representations.

Metrics 1) Top-K Accuracy (T-K) computes
whether a query’s answer is included in Top-K
retrieved documents. 2) Mean Reciprocal Rank
(MRR) and 3) Mean Average Precision (MAP)
measure the first rank and the average precision of
query-relevant retrieved documents, respectively.

Implementation Details For the dense retrieval
model based on the DPR framework, we refer to the
publicly available code from DPR (Karpukhin et al.,
2020). We set the training epoch as 25 and batch
size as 32 under academic budgets with a single
GeForce RTX 3090 GPU having 24GB memory.
We use in-batch negative sampling as our negative
sampling strategy without hard negative samples.
Also, we retrieve 100 passages per question.

We use both interpolation and perturbation
schemes for our augmentation methods. Specif-
ically, for the interpolation method, we set λ ∈
[0, 1] in equation 3 to be sampled from the uniform
distribution. Also, for the perturbation method, we
set the dropping rate as 0.1, and the number of
dropout masks n is selected in the range of 3 to 9.

4.2 Results

In this subsection, we show the overall performance
of our DAR, and then give detailed analyses.

Overall Results As Table 1 shows, DAR outper-
forms dense retrieval baselines on all datasets on
the DPR framework. Note that DAR contributes
to more accurate retrieval performance, since the
smallerK gives higher performance improvements.
Furthermore, Figure 3 shows that, with our method,
the retrieval performance on unlabeled documents
– not seen during training – together with the la-
beled ones is improved, where performance gains
on unlabeled are remarkable. To see the robustness
of DAR on other retrievers, we further evaluate
our model on the recent ANCE framework (see
Appendix A for setups). As Table 2 shows, we
observe that the performance improvement is more
dominant on MRR when given a smaller number of
training queries (low-resource settings), that DAR
effectively augments document representations.

Results on Query Augmentation We focus on
the problem of a notably small proportion of la-
beled documents in the training dataset, and pro-
pose to augment representations of unlabeled doc-
uments, which are not seen during training. How-
ever, it is also possible to augment representations
of queries – likely to be unseen at the test time
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MRR MAP T-100 T-1
DPR+HN 53.40 33.38 84.82 43.21
DAR+HN (Ours) 54.18 33.71 85.35 44.18

Table 5: Retrieval results with hard negatives (HN) from
BM25 on the NQ dataset for the DPR framework.

– by applying our interpolation and perturbation
methods directly to queries. Note that we refer
to our query augmentation method as Query Aug-
mentation for dense Retrieval (QAR). As shown in
Table 1, our proposed augmentation strategies also
effectively improve the retrieval performance even
when applied to queries. This result implies that
our method is versatile, regardless of whether it is
applied to documents or queries.

Effectiveness of Interpolation & Perturbation
To understand how much our proposed interpo-
lation and perturbation techniques contribute to
the performance gain, we perform ablation studies.
Table 4 shows that each of the interpolation and
stochastic perturbation positively contributes to the
performance. In particular, when both of them are
simultaneously applied, the performance is much
improved, which demonstrates that these two tech-
niques are in a complementary relationship.

Batch Size We test DAR with varying numbers
of batch sizes. Figure 4 indicates that our DAR
consistently improves the retrieval performance.
Note that the smaller the batch size, the bigger
the performance gap. Also, the batch size 16 of
DAR outperforms the batch size 32 of the baseline,
which highlights that DAR effectively augments
document representations with a small batch.

Reader Performance To see whether accurately
retrieved documents lead to better QA performance,
we experiment with the same extractive reader from
DPR without additional re-training. Figure 5 illus-
trates the effectiveness of our method on passage
reading with varying numbers of retrieved docu-
ments. We observe that our retrieval result with
small retrieved documents (i.e., K = 10) signifi-
cantly improves the performance of the reader. This
implies that a more accurate retrieval on smaller K
in Table 1 helps achieve the improved QA perfor-
mance as Lee et al. (2021a) described. Furthermore,
our reader performance may be further enhanced
with advanced reading schemes (Mao et al., 2021a;
Qu et al., 2021; Mao et al., 2021b).

Negative Sampling Strategy To see the effec-
tiveness of our DAR coupled with an advanced neg-
ative sampling scheme, we compare DAR against

MRR MAP T-100 T-20 T-5 T-1
BM25 29.60 28.05 77.87 61.30 42.27 18.86
DPR 31.79 29.94 88.30 70.48 45.48 19.18
DPR w/ QA 30.02 28.26 86.82 68.80 43.95 17.56
DPR w/ DA 31.96 30.25 87.75 71.29 46.55 19.03
DPR w/ AR 31.41 29.50 88.27 70.57 45.10 19.12
DAR (Ours) 33.37 31.49 88.93 73.70 48.38 20.16

Table 6: Retrieval results on the NQ dataset, following the
processing procedure of Thakur et al. (2021).

the baseline with the hard negative sampling strat-
egy from BM25 (Karpukhin et al., 2020). Table 5
shows that DAR with hard negative sampling out-
performs the baseline method. The results demon-
strate that the performance of dense retrieval mod-
els could be further strengthened with a combina-
tion of our augmentation methods and advanced
negative sampling techniques. Also, in all our ex-
periments of the ANCE framework, we already use
the strategy of negative sampling in Xiong et al.
(2021), where we observe the clear performance
improvement of our DAR on ANCE in Table 2.

Results on Different Data Processing We addi-
tionally evaluate DAR on another NQ test dataset,
following the processing procedure of Thakur et al.
(2021). For experiments, we reuse the same train-
ing checkpoint used in Table 1, as the training
dataset is equal across the settings of Karpukhin
et al. (2020) and Thakur et al. (2021). As Ta-
ble 6 shows, our DAR also consistently outper-
forms all baselines when tested on the NQ test set
from Thakur et al. (2021). This confirms that our
DAR robustly improves retrieval performances, re-
gardless of the specific data processing strategies.

5 Conclusion
We presented a novel method of augmenting doc-
ument representations focusing on dense retriev-
ers, which require an extensive amount of labeled
query-document pairs for training. Specifically,
we augment documents by interpolating and per-
turbing their embeddings with mixup and dropout
masks. The experimental results and analyses on
multiple benchmark datasets demonstrate that DAR
greatly improves retrieval performances.
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Ethical Statements
Retrieving the most relevant documents from the
user’s query is increasingly important in a real-
world setting, as it is widely used from web search,
to question answering, to dialogue generation sys-
tems. Notably, our work contributes to the accurate
retrieval of documents with the proposed data aug-
mentation strategies, thus improving the document
retrieval performances on real-world applications.
However, we have to still consider the failure of
retrieval systems on low-resource but high-risk do-
mains (e.g., biomedicine), where the labeled data
for training retrieval models is limited yet one fail-
ure can yield a huge negative impact. While we
strongly believe that our data augmentation strate-
gies – interpolation and perturbation of document
representations – are also helpful to improve the
retrieval performances on such low-resource do-
mains, the model’s prediction performance is still
far from perfect, and more efforts should be made
to develop a reliable system.
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Train Val Test
Natural Question (NQ) 58,880 6,515 3,610
TriviaQA (TQA) 60,413 6,760 11,313
MS MARCO, # Query: 10K 6,591 6,980 -
MS MARCO, # Query: 50K 32,927 6,980 -

Table 7: Statistics for training, validation, and test sets on
the NQ, TQA, and randomly sampled MS MARCO datasets.
Note that, for MS MARCO, we only sample the number of
training query-document pairs except for the validation set.

A Experimental Setups

Datasets To evaluate the performance of retrieval
models, we need two types of datasets: 1) a set
of documents to retrieve, and 2) pairs of a query
and a relevant document, having an answer for
the query. We first explain the datasets that we
used for the DPR framework (Karpukhin et al.,
2020), and then describe the dataset for the ANCE
framework (Xiong et al., 2021).

For documents to retrieve, we use the Wikipedia
snapshot from December 20, 2018, which contains
21,015,324 passages consisting of 100 tokens, fol-
lowing Karpukhin et al. (2020) for the DPR frame-
work. For open-domain QA datasets, we use Natu-
ral Question (NQ) (Kwiatkowski et al., 2019) and
Trivia QA (TQA) (Joshi et al., 2017), following the
dataset processing procedure of Karpukhin et al.
(2020). We report the statistics of the training, vali-
dation, and test sets on NQ and TQA in Table 7.

To see the performance gain of our DAR on other
dense retrieval models, we evaluate DAR on the
ANCE framework (Xiong et al., 2021), which is
one of the recent dense retrieval models. ANCE is
evaluated on the MS MARCO dataset, thus we use
MS MARCO for training and testing our model.
Note that training ANCE with the full MS MARCO
dataset requires 225 GPU hours even after exclud-
ing the excessive BM25 pre-training and inference
steps. Thus we randomly sample the MS MARCO
dataset to train the model under academic budgets.
Specifically, the subset of our MS MARCO pas-
sage dataset contains 500,000 passages. Also, we
randomly divide the training queries into two sub-
sets: one for 10,000 training queries and the other
for 50,000 training queries. Then we align the sam-
pled training queries to the query-document pairs
in the MS MARCO dataset. On the other hand,
we do not modify the validation set (dev set) of
query-document pairs for testing. We summarize
the statistics of the dataset in Table 7. Note that
since the test set of MS MARCO is not publicly
open, we evaluate the dense retrievers with the val-
idation set, following Xiong et al. (2021).

Metrics Here, we explain the evaluation metrics
for retrievers in detail. Specifically, given an in-
put query, we measure the ranks of the correctly
retrieved documents for the DPR framework with
the following metrics:

1) Top-K Accuracy (T-K): It measures whether
an answer of the given query is included in the
retrieved Top-K documents.

2) Mean Reciprocal Rank (MRR): It com-
putes the rank of the first correct document for
the given query among the Top-100 retrieved docu-
ments, and then computes the average of the recip-
rocal ranks for all queries.

3) Mean Average Precision (MAP): It com-
putes the mean of the average precision scores for
all queries, where precision scores are calculated
by the ranks of the correctly retrieved documents
among Top-100 ranked documents.

We use the following evaluation metric for the
reader, which identifies the answer from retrieved
documents.

1) Exact Match (EM): It measures whether the
reader exactly predicts one of the reference answers
for each question.

Note that, for the ANCE framework, we follow
the evaluation metrics, namely MRR@10 and Re-
call@1k, in the original paper (Xiong et al., 2021).

Experimental Implementation Details For
dense retrieval models based on the DPR frame-
work, we follow the dual-encoder structure of
query and document by using the publicly available
code from DPR1 (Karpukhin et al., 2020). For
all experiments, we set the batch size as 32, and
train models on a single GeForce RTX 3090 GPU
having 24GB memory. Note that, in contrast to
the best reported setting of DPR which requires
industrial-level resources of 8 V100 GPUs (8 ×
32GB = 256GB) for training with a batch size of
128, we use a batch size of 32 to train the model
under academic budgets. We optimize the model
parameters of all dense retrieval models with the
Adam optimizer (Kingma and Ba, 2015) having a
learning rate of 2e-05. We train the models for 25
epochs, following the analysis2 that the training
phases converge after 25 epochs.

For the retrievers based on the ANCE frame-
work, we refer to the implementation from
ANCE3 (Xiong et al., 2021). In order to directly

1https://github.com/facebookresearch/DPR
2See footnote 1.
3https://github.com/microsoft/ANCE
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measure the performance gain of the dense retrieval
models based on ANCE from using our DAR, we
use the pre-trained RoBERTa without warming up
with the BM25 negatives. We train all the dense
retrieval models for 50,000 steps with a single
GeForce RTX 3090 GPU having 24GB memory,
and simultaneously generate the ANN index with
another GeForce RTX 3090 GPU, following Xiong
et al. (2021). Following the standard implementa-
tion setting, we set the training batch size as 8, and
optimize the model with the LAMB optimizer (You
et al., 2020) with a learning rate of 1e-6.

Architectural Implementation Details For our
augmentation methods, we use both interpolation
and perturbation schemes of document represen-
tations obtained from the document encoder ED
in equation 1. Specifically, given a positive query-
document pair (q,d+), we first perturb the docu-
ment representation d+ with dropout masks sam-
pled from a Bernoulli distribution, which gener-
ates n numbers of perturbed document representa-
tions

{
d+
i

}i=n
i=1

. Then, we augment them to gen-
erate n numbers of positive query-document pairs{
(q,d+

i )
}i=n
i=1

, which we use in equation 2. We
search the number of perturbations n in the range
from 3 to 9, and set the probability of the Bernoulli
distribution as 0.1.

Instead of only using positive or negative pairs,
we further augment query-document pairs hav-
ing intermediate similarities with mixup. Specifi-
cally, we interpolate representations between the
perturbed-positive document d+

i and the negative
document d− for the given query q, with λ ∈ [0, 1]
in equation 3 sampled from a uniform distribution.
Note that, given a positive pair of a query and a doc-
ument, we consider the documents not identified
as positive in the batch as negative documents. In
other words, if we set the batch size as 32, then we
could generate 31 interpolated document represen-
tations from 1 positive pair and 31 negative pairs.
To jointly train the interpolation scheme with the
original objective, we add the loss obtained from
interpolation to the loss in equation 2.

B Additional Experimental Results

B.1 Efficiency

As described in the Efficiency paragraph of Sec-
tion 3, compared to the existing query augmen-
tation methods (Liang et al., 2020; Ma et al.,
2021; Qu et al., 2021), document augmentation

method (Ma, 2019), and word replacement method
for regularization (Rosset et al., 2019), our method
of augmenting document representations with inter-
polation and perturbation in a dense representation
space is highly efficient. This is because, unlike the
baselines above, we do not explicitly generate or re-
place a query or document text; but rather we only
manipulate the representations of documents. This
scheme greatly saves the time for training, since
additional forwarding of the generated or replaced
query-document pairs into the language model is
not required for our data augmentation methods.

To empirically validate the efficiency of our
methods against the baselines, we report the mem-
ory usage and time for training a retrieval model per
epoch in Table 3. As for memory efficiency, all the
compared dense retrieval models using data aug-
mentation methods, including ours, use the same
amount of maximum GPU memory. This shows
that the overhead of memory usage comes from op-
erations in the large-size language model, such as
BERT (Devlin et al., 2019), not from manipulating
the obtained document representations to augment
the query-document pairs. Technically speaking,
there are no additional parameters to augment doc-
ument representations; thus our interpolation and
perturbation methods do not increase the memory
usage. On the other hand, DPR w/ AR excessively
increases the memory usage, since it requires an
extra forwarding process to the language model to
represent the additional word-replaced sentences
for regularization, instead of using the already ob-
tained dense representations like ours.

We also report the training time for dense re-
trievers in Table 3. Note that, for the explicit aug-
mentation method based models, such as DPR w/
QA and DPR w/ DA, we exclude the extra time for
training a generation model and generating a query
or document for the given text. Also, we addition-
ally generate the same number of query-document
pairs in the training set, where the total amount
of training data-points for DPR w/ QA and DPR
w/ DA baselines are twice larger than the original
dataset. Unlike these explicit query or document
generation baselines, we perturb the document n
times, but also interpolate the representations of
positive and negative documents. As shown in Ta-
ble 3, our DAR is about doubly more efficient than
the explicit text augmentation methods, since DPR
w/ QA and DPR w/ DA explicitly augment query-
document pairs instead of using the obtained dense
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T-5 T-20 T-100
DPR (Karpukhin et al., 2020) 52.1 70.8 82.1
DPR (Ours) 53.2 71.6 82.7

Table 8: Comparison of the DPR models’ Top-K accuracy be-
tween the reported and reproduced scores. Best performance
is highlighted in bold.

representations like ours. Also, our DAR takes a lit-
tle more time to augment document representations
than the base DPR model, while significantly im-
proving retrieval performances as shown in Table 1.
Even compared to the term replacement based reg-
ularization model (DPR w/ AR), our DAR shows
noticeable efficiency, since an additional embed-
ding process of the document after the word re-
placement on it requires another forwarding step
besides the original forwarding step.

B.2 Reproduction of DPR
We strictly set the batch size as 32 for training
all the dense retrievers using the DPR framework;
therefore the retrieval performances are different
from the originally reported ones in Karpukhin
et al. (2020) that use a batch size of 128. However,
while we use the available code from the DPR pa-
per, one may wonder if our reproduction result is
accurate. Therefore, since Karpukhin et al. (2020)
provided the retrieval performances of the DPR
with different batch sizes (e.g., a batch size of 32),
evaluated on the development (validation) set of
the NQ dataset, we compare the Top-K accuracy
between the reported scores and our reproduced
scores. Table 8 shows that our reproduced Top-K
accuracy scores with three different Ks (e.g., Top-
5, Top-20, and Top-100) are indeed similar to the
reported ones, with ours even higher, thus showing
that our reproductions are accurate.

B.3 Experiment on WebQuestions
One may have a concern that, as a sparse retrieval
model – BM25 – outperforms all the other dense re-
trieval models on the TQA dataset in Table 1, TQA
is not good enough to demonstrate the strength of
our dense augmentation strategy. While we believe
that sparse retrieval models are not our competi-
tors as we aim to improve the dense retrieval mod-
els with data augmentation, in order to clear out
such a concern, we additionally train and evaluate
our DAR on the WebQuestions (WQ) dataset (Be-
rant et al., 2013), following the data processing
procedure from (Karpukhin et al., 2020). As Ta-
ble 9 shows, our DAR outperforms both dense and
sparse retrieval models. Thus, the best scheme

MRR MAP T-100 T-20 T-5 T-1
BM25 29.75 19.15 75.49 62.40 41.83 18.90
DPR 33.34 21.76 78.64 65.75 45.87 22.00
DAR (Ours) 34.48 22.16 78.79 67.37 47.54 23.23

Table 9: Retrieval results on the WQ dataset, in which the
best performance is highlighted in bold.

among sparse and dense retrievers still depends on
the dataset, and combining sparse and dense mod-
els to complement each other will be a valuable
research direction, which we leave as future work.

452


