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Abstract

Existing self-explaining models typically fa-
vor extracting the shortest possible rationales
— snippets of an input text “responsible for”
corresponding output — to explain the model
prediction, with the assumption that shorter ra-
tionales are more intuitive to humans. How-
ever, this assumption has yet to be validated. Is
the shortest rationale indeed the most human-
understandable? To answer this question, we
design a self-explaining model, LimitedInk,
which allows users to extract rationales at any
target length. Compared to existing base-
lines, LimitedInk achieves compatible end-
task performance and human-annotated ratio-
nale agreement, making it a suitable represen-
tation of the recent class of self-explaining
models. We use LimitedInk to conduct a user
study on the impact of rationale length, where
we ask human judges to predict the sentiment
label of documents based only on LimitedInk-
generated rationales with different lengths. We
show rationales that are too short do not help
humans predict labels better than randomly
masked text, suggesting the need for more
careful design of the best human rationales.1

1 Introduction

While neural networks have recently led to large
improvements in NLP, most of the models make
predictions in a black-box manner, making them
indecipherable and untrustworthy to human users.
In an attempt to faithfully explain model decisions
to humans, various work has looked into extract-
ing rationales from text inputs (Jain et al., 2020;
Paranjape et al., 2020), with rationale defined as
the “shortest yet sufficient subset of input to predict
the same label” (Lei et al., 2016; Bastings et al.,
2019). The underlying assumption is two-fold: (1)
by retaining the label, we are extracting the texts
used by predictors (Jain et al., 2020); and (2) short

1Find open-source code at: https://github.com/
huashen218/LimitedInk.git

Figure 1: LimitedInk’s rationale generation with length
control: (A) control rationale generation with different
lengths; (B) incorporating contextual information into
rationale generation; (C) regularizing continuous ratio-
nale for human interpretability. Examples use the SST
dataset for sentiment analysis (Socher et al., 2013).

rationales are more readable and intuitive for end-
users, and thus preferred for human understand-
ing (Vafa et al., 2021). Importantly, prior work
has knowingly traded off some amount of model
performance to achieve the shortest possible ratio-
nales. For example, when using less than 50% of
text as rationales for predictions, Paranjape et al.
(2020) achieved an accuracy of 84.0% (compared
to 91.0% if using the full text). However, the as-
sumption that the shortest rationales have better
human interpretability has not been validated by
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human studies (Shen and Huang, 2021). Moreover,
when the rationale is too short, the model has much
higher chance of missing the main point in the full
text. In Figure 1A, although the model can make
the correct positive prediction when using only 20%
of the text, it relies on a particular adjective, “life-
affirming,” which is seemingly positive but does
not reflect the author’s sentiment. These rationales
may be confusing when presented to end-users.

In this work, we ask: Are shortest rationales re-
ally the best for human understanding? To answer
the question, we first design LimitedInk, a self-
explaining model that flexibly extracts rationales
at any target length (Figure 1A). LimitedInk allows
us to control and compare rationales of varying
lengths on input documents. Besides controls on
rationale length, we also design LimitedInk’s sam-
pling process and objective function to be context-
aware (i.e., rank words based on surrounding con-
text rather than individually, Figure 1B2) and co-
herent (i.e., prioritize continuous phrases over dis-
crete tokens, Figure 1C2). Compared to existing
baselines (e.g., Sparse-IB ), LimitedInk achieves
compatible end-task performance and alignment
with human annotations on the ERASER (DeY-
oung et al., 2020) benchmark, which means it can
represent recent class of self-explaining models.

We use LimitedInk to conduct user studies to
investigate the effect of rationale length on human
understanding. Specifically, we ask MTurk par-
ticipants to predict document sentiment polarities
based on only LimitedInk-extracted rationales. By
contrasting rationales at five different length lev-
els, we find that shortest rationales are largely not
the best for human understanding. In fact, humans
do not perform better prediction accuracy and con-
fidence better than using randomly masked texts
when rationales are too short (e.g., 10% of input
texts). In summary, this work encourages a rethink-
ing of self-explaining methods to find the right
balance between brevity and sufficiency.

2 LimitedInk

2.1 Self-Explaining Model Definition

We start by describing typical self-explaining meth-
ods (Lei et al., 2016; Bastings et al., 2019; Paran-
jape et al., 2020). Consider a text classification
dataset containing each document input as a tu-
ple (x, y). Each input x includes n features (e.g.,
sentences or tokens) as x = [x1, x2, ..., xn], and
y is the prediction. The model typically consists

of an identifier idn(·) to derive a boolean mask
m = [m1,m2, ...,mn], where mi ∈ {1, 0} indicates
whether feature xi is in the rationale or not. Note
that the mask m is typically a binary selection
from the identifier’s probability distribution, i.e.,
m ∼ idn(x). Then it extracts rationales z by
z = m � x, and further leverages a classifier cls(·)
to make a prediction y based on the identified ratio-
nales as y = cls(z). The optimization objective is:

min
θidn,θcls

Ez∼idn(x)L(cls(z), y)︸                   ︷︷                   ︸
sufficient prediction

+ λΩ(m)︸ ︷︷ ︸
regularization

(1)

where θidn and θcls are trainable parameters of iden-
tifier and classifier. Ω(m) is the regularization func-
tion on mask and λ is the hyperparameter.
2.2 Generating Length Controllable

Rationales with Contextual Information
We next elaborate on the definition and method of
controlling rationale length in LimitedInk Assum-
ing that the rationale length is k as prior knowledge,
we enforce the generated boolean mask to sum up
to k as k =

∑n
i=1(mi), where m = idn(x, k). Exist-

ing self-explaining methods commonly solve this
by sampling from a Bernoulli distribution over in-
put features, thus generating each mask element mi

independently conditioned on each input feature
xi (Paranjape et al., 2020). For example, in Fig-
ure 1B1), “life affirming” is selected independent
of the negation context “not” before it, which con-
tradicts with the author’s intention. However, these
methods potentially neglect the contextual input
information. We leverage the concrete relaxation
of subset sampling technique (Chen et al., 2018)
to incorporate contextual information into ratio-
nale generation process (see Figure 1B2), where
we aim to select the top-k important features over
all n features in input x via Gumbel-Softmax Sam-
pling (i.e., applying the Gumbel-softmax trick to
approximate weighted subset sampling process).
To further guarantee precise rationale length con-
trol, we deploy the vector and sort regularization
on mask m (Fong et al., 2019). See more model
details in Appendix A.1.
2.3 Regularizing Rationale Continuity
To further enforce coherent rationale for human
interpretability, we employ the Fused Lasso to en-
courage continuity property (Jain et al., 2020; Bast-
ings et al., 2019). The final mask regularization is:

Ω(m) = λ1

n∑
i=1

|mi − mi−1|︸           ︷︷           ︸
Continuity

+λ2 ‖ vecsort (m) − m̂‖︸                 ︷︷                 ︸
Length Control

(2)
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Method Movies BoolQ Evidence Inference MultiRC FEVER
Task P R F1 Task P R F1 Task P R F1 Task P R F1 Task P R F1

Full-Text .91 - - - .47 - - - .48 - - - .67 - - - .89 - - -

Sparse-N .79 .18 .36 .24 .43 .12 .10 .11 .39 .02 .14 .03 .60 .14 .35 .20 .83 .35 .49 .41
Sparse-C .82 .17 .36 .23 .44 .15 .11 .13 .41 .03 .15 .05 .62 .15 .41 .22 .83 .35 .52 .42
Sparse-IB .84 .21 .42 .28 .46 .17 .15 .15 .43 .04 .21 .07 .62 .20 .33 .25 .85 .37 .50 .43

LimitedInk .90 .26 .50 .34 .56 .13 .17 .15 .50 .04 .27 .07 .67 .22 .40 .28 .90 .28 .67 .39
Length Level 50% 30% 50% 50% 40%

Table 1: LimitedInk performs compatible with baselines in terms of end-task performance (Task, weighted average
F1) and human annotated rationale agreement (Precision, Recall, F1). All results are on test sets and are averaged
across five random seeds. For LimitedInk, we report results for the best performing length level.

For BERT-based models, which use subword-
based tokenization algorithms (e.g., WordPiece),
we assign each token’s importance score as its sub-
tokens’ maximum score to extract rationales during
model inference (see Figure 1C).

3 Model Performance Evaluation

We first validate LimitedInk on two common ratio-
nale evaluation metrics, including end-task perfor-
mance and human annotation agreement.

3.1 Experimental Setup

We evaluate our model on five text classification
datasets from the ERASER benchmark (DeYoung
et al., 2020). We design the identifier module
in LimitedInk as a BERT-based model, followed
by two linear layers with the ReLU function and
dropout technique. The temperature for Gumbel-
softmax approximation is fixed at 0.1. Also, we
define the classifier module as a BERT-based se-
quence classification model to predict labels. We
train five individual self-explaining models of dif-
ferent rationale lengths with training and validation
sets, where we set the rationale lengths as {10%,
20%, 30%, 40%, 50%} of all input text. Then we
select one out of the five models, which has the best
weighted average F1 score, to compare with cur-
rent baselines on end-task performance and human
annotation agreement on test sets. Note that we
use all models with five rationale lengths in human
evaluation described in Section 4.
Baselines. We compare LimitedInk with four
baselines. Full-Text consists of only the clas-
sifier module with full-text inputs. Sparse-N en-
forces shortest rationales by minimizing rationale
mask length (Lei et al., 2016; Bastings et al., 2019).
Sparse-C controls rationale length by penalizing
the mask when its length is less than a thresh-
old (Jain et al., 2020). Sparse-IB enables length
control by minimizing the KL-divergence between

the generated mask with a prior distribution (Paran-
jape et al., 2020). See Appendix A.1 for more
model and baseline details.

3.2 Evaluation Results
End-Task Performance. Following metrics
in DeYoung et al. (2020), we report the weighted
average F1 scores for end-task classification
performance. Among five LimitedInk models
with different rationale lengths, Table 1 reports
the model with the best end-task performance on
the test set. We observe that LimitedInk performs
similarly to or better than the self-explaining
baselines in all five datasets. See ablation studies
in Appendix A.2.
Human-Annotated Rationale Agreement. We
calculate the alignment between generated ratio-
nales and human annotations collected in the
ERASER benchmark (DeYoung et al., 2020). As
also shown in Table 1, we report the Token-level
F1 (F1) metric along with corresponding Precision
(P) and Recall (R) scores. The results show that
LimitedInk can generate rationales that are consis-
tent with human annotations and comparable to
self-explaining baselines in all datasets.

4 Human Evaluation

Equipped with LimitedInk, we next carry out hu-
man studies to investigate the effect of rationale
length on human understanding.

4.1 Study Design
Our goal is to quantify human performance on pre-
dicting the labels and confidence based solely on
the rationales with different lengths. To do so, we
control LimitedInk to extract rationales of differ-
ent lengths, and recruit Mechanical Turk (MTurk)
workers to provide predictions and confidence.
Dataset & rationale extraction. We focus on
sentiment analysis in user study, and randomly sam-
ple 100 reviews from the Movie Reviews (Zaidan

12



Figure 2: Key components of the User Interface in the
MTurk task HITs. Note that each HIT contains five
reviews with different rationale lengths.

Figure 3: The human evaluation’s workflow. We (1) di-
vide 100 movie reviews into 20 batches and (2) produce
10 HITs from each batch for ten worker groups.

and Eisner, 2008) test set that have correct model
predictions. Then, we extract five rationales for
each review using LimitedInk, with lengths from
10% to 50%, with an increment of 10%.

Since human accuracy likely increases when par-
ticipants see more words (i.e., when the lengths of
rationales increase), we also create a Random ratio-
nale baseline, where we randomly select words of
the same rationale length on the same documents
(10% to 50%) while taking the continuity constraint
into consideration. More details of Random base-
line generation are in Appendix A.3.1.

Study Procedure. The study is completed in two
steps. First, we posted a qualification Human In-
telligence Tasks (HITs, $0.50 per assignment) on
MTurk to recruit 200 qualified workers.2 Next,
the 200 recruited workers can participate the task
HIT ($0.20 per assignment, 7 assignments posted)
which contains five distinct movie reviews, with
varying rationale lengths (10%-50%). In task HIT,
as key components shown in Figure 2, we only dis-
play the rationales and mask all other words with
ellipses of random length, such that participants
can not infer the actual review length. Then partic-

2In addition to our custom qualification used for worker
grouping, three built-in worker qualifications are used in all of
our HITs: HIT Approval Rate (≥98%), Number of Approved
HITs (≥ 3000), and Locale (US Only) Qualification.
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Figure 4: Human accuracy and confidence on predict-
ing model labels given rationales with different lengths.

ipants are asked to guess the sentiment of the full
review, and provide their confidence level based on
a five-point Likert Scale (Likert, 1932). The full
user interface is in Appendix A.3.2.

Participants recruiting and grouping. With
each review having ten distinct rationales (five from
LimitedInk and five Random), if these rationale con-
ditions were randomly assigned, participants are
likely to see the same review repeatedly and grad-
ually see all the words. We carefully design our
study to eliminate such undesired learning effect.
More specifically, we group our 100 reviews into
20 batches, with five reviews in each batch (Step 1
in Figure 3). For each batch, we create five HITs
for LimitedInk and Random, respectively, such that
all the rationale lengths of five reviews are covered
by these 10 HITs (Step 2 in Figure 3). Further, we
make sure each participant is only assigned to one
unique HIT, so that each participant can only see
a review once. To do so, we randomly divide the
200 qualified workers into 10 worker groups (20
workers per group), and pair one worker group with
only one HIT in each batch. This way, each HIT
can only be accomplished by one worker group. As
our participant control is more strict than regular
data labeling tasks on MTurk, we keep the HITs
open for 6 days. 110 out of 200 distinct workers
participated in the main study, and they completed
1,169 of 1,400 assignments.

4.2 Results

We show the human prediction accuracy and con-
fidence results in Figure 4. We find that the
best explanations for human understanding are
largely not the shortest rationales (10% length
level): here, the human accuracy in predicting
model labels is lower than for the random base-
line (0.61 vs. 0.63), indicating that the shortest
rationales are not the best for human understand-
ing. There is a significant difference in human pre-
dicted labels (i.e., “positive”=1,“negative”=2) be-
tween LimitedInk (M=1.24,SD=0.71) and Random
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length level (%) Negative Positive
& Extract. method P / R / F1 P / R / F1

10% LimitedInk 0.66 / 0.56 / / 0.61 0.70 / 0.58 / 0.64
Random 0.67 / 0.57 / 0.62 0.66 / 0.70 / 0.68

20% LimitedInk 0.75 / 0.61 / 0.67 0.71 / 0.77 / 0.74
Random 0.69 / 0.60 / 0.64 0.68 / 0.74 / 0.71

30% LimitedInk 0.74 / 0.76 / 0.75 0.81 / 0.78 / 0.79
Random 0.72 / 0.61 / 0.66 0.72 / 0.78 / 0.75

40% LimitedInk 0.84 / 0.76 / 0.80 0.78 / 0.85 / 0.81
Random 0.79 / 0.63 / 0.70 0.65 / 0.79 / 0.71

50% LimitedInk 0.78 / 0.78 / 0.78 0.85 / 0.84 / 0.85
Random 0.77 / 0.63 / 0.70 0.75 / 0.84 / 0.79

Table 2: Human performance (i.e., Precision / Recall /

F1 Score) on predicting model labels of each category
in the Movie Reviews dataset.

(M=1.32,SD=0.54); t(1169)=2.27, p=0.02. Ta-
ble 2 shows human performance for each category.

Additionally, notice that the slope of our model’s
accuracy consistently flattens as the rationale in-
creases, whereas the random baseline does not dis-
play any apparent trend and is obviously lower than
our model at higher length levels (e.g., 40%). We
hypothesize that this means our model is (1) indeed
learning to reveal useful rationales (rather than just
randomly displaying meaningless text), and (2) the
amount of information necessary for human un-
derstanding only starts to saturate at around 40%
of the full text. This creates a clear contrast with
prior work, where most studies extract 10-30% of
the text as the rationale on the same dataset (Jain
et al., 2020; Paranjape et al., 2020). The eventually
flattened slope potentially suggests a sweet spot
to balance human understanding on rationales and
sufficient model accuracy.

5 Discussion

By examining human prediction performance on
five levels of rationale lengths, we demonstrate that
the shortest rationales are largely not the best for
human understanding. We are aware that this work
has limitations. The findings are limited to Movie
Reviews dataset, and we only evaluate human per-
formance with rationales generated by the pro-
posed LimitedInk. Still, our findings challenge the
“shorter is better” assumption commonly adopted
in existing self-explaining methods. As a result, we
encourage future work to more cautiously define
the best rationales for human understanding, and
trade off between model accuracy and rationale
length. More concretely, we consider that ratio-
nale models should find the right balance between

brevity and sufficiency. One promising direction
could be to clearly define the optimal human inter-
pretability in a measurable way and then learn to
adaptively select rationales with appropriate length.

6 Related Work

Self-explaining models. Self-explaining models,
which condition predictions on their rationales, are
considered more trustworthy than post-hoc expla-
nation techniques (Rajagopal et al., 2021). How-
ever, existing efforts often enforce minimal ratio-
nale length, which degrade the predictive perfor-
mance (Yu et al., 2019; Bastings et al., 2019; Jain
et al., 2020). Paranjape et al. (2020) improves this
by proposing an information bottleneck approach
to enable rationale length control at the sentence
level. In this paper, LimitedInk further enables
length control at the token level to allow more flex-
ibility needed for our human studies.
Human-grounded evaluation. A line of stud-
ies evaluated model-generated rationales by com-
paring them against human-annotated explana-
tions (Carton et al., 2020; Paranjape et al., 2020).
Some other studies collect feedback from users to
evaluate the explanations, such as asking people
to choose a preferred model (Ribeiro et al., 2016)
or to guess model predictions only based on ratio-
nales (Lertvittayakumjorn and Toni, 2019; Shen
and Huang, 2020).

7 Conclusion

To investigate if the shortest rationales are best un-
derstandable for humans, this work presents a self-
explaining model, LimitedInk, that achieves com-
parable performance with current self-explaining
baselines in terms of end-task performance and
human annotation agreement. We further use Lim-
itedInk to generate rationales for human studies
to examine how rationale length can affect human
understanding. Our results show that the shortest
rationales are largely not the best for human un-
derstanding. This would encourage a rethinking of
rationale methods to find the right balance between
brevity and sufficiency.
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9 Ethical Considerations

This work shows that the shortest rationales are
often not the best for human understanding. We
thus advocate for studying how users interact with
machine-generated rationales. However, we are
aware that using rationales to interpret model pre-
diction could pose some risks for users. Rationales
omit a significant portion of the contents (in our
case, 50% to 90% of the words in a movie review
are omitted), which could convey information in-
correctly or mislead users. Furthermore, machine-
learned rationales could encode some unwanted
biases (Chuang et al., 2021). We believe that such
risks should be explicitly communicated with users
in real-world applications.
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A Appendix

A.1 Model Details and Hyperparameters

A.1.1 Methodology Details
Concrete Relaxation of Subset Sampling Pro-
cess. Given the output logits of identifier, we
use Gumbel-softmax (Jang et al., 2017) to gen-
erate a concrete distribution as c = [c1, ...cn] ∼
Concrete(idn(x)), represented as a one-hot vec-
tor over n features where the top important fea-
ture is 1. We then sample this process k times in
order to sample top-k important features, where
we obtain k concrete distributions as {c1, ..., ck}.
Next we define one n-dimensional random vec-
tor m to be the element-wise maximum of these k
concrete distributions along n features, denoted as
m = max j{c

j
i }

j=k
i=n . Discarding the overlapping fea-

tures to keep the rest, we then use m as the k-hop
vector to approximately select the top-k important
features over document x.

Vector and sort regularization. We deploy a
vector and sort regularization on mask m (Fong
et al., 2019), where we sort the output mask m in
a increasing order and minimize the L1 norm be-
tween m and a reference m̂ consisting of n−k zeros
followed by k ones.

A.1.2 Model Training Details
Training and inference. During training, we se-
lect the Adam optimizer with the learning rate at 2e-
5 with no decay. We set hyperparameters in Equa-
tion 5 and 2 as λ = 1e − 4, v1 = 0.5 and v2 = 0.3
and trained 6 epochs for all models. Furthermore,
we train LimitedInk on a set of sparsity levels as
k = {10%, 20%, 30%, 40%, 50%} and choose mod-
els with optimal predictive performance on valida-
tion sets.

A.1.3 Details of Self-Explaining Baselines
We compare our method with state-of-the-art self-
explaining baseline models.

Sparse-N (Minimization Norm). This method
learns the short mask with minimal L0 or L1
norm (Lei et al., 2016; Bastings et al., 2019), which
penalizes for the total number of selected words in
the explanation.

min Ez∼idn(x)L(cls(z), y) + λ||m|| (3)

Sparse-C (Controlled Norm Minimization).
This method controls the mask sparsity through
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a tunable predefined sparsity level α (Chang et al.,
2020; Jain et al., 2020). The mask is penalized as
below as long as the sparsity level α is passed.

min Ez∼idn(x)L(cls(z), y) + λmax(0,
||m||
N
− α)

(4)
where N is the input length and ||m|| denotes

mask penalty with L1 norm.

Sparse IB (Controlled Sparsity with Informa-
tion Bottleneck). This method introduces a prior
probability of z, which approximates the marginal
p(m) of mask distribution; and p(m|x) is the para-
metric posterior distribution over m conditioned
on input x (Paranjape et al., 2020). The sparsity
control is achieved via the information loss term,
which reduces the KL divergence between the pos-
terior distribution p(m|x) that depends on x and a
prior distribution r(m) that is independent of x.

min Ez∼idn(x)L(cls(z), y) + λKL[p(m|x), r(m)]

(5)

A.2 Ablation Study on Model Components
We provide an ablation study on the Movie dataset
to evaluate each loss term’s influence on end-task
prediction performance, including Precision, Re-
call, and F1 scores. The result is shown in Table 3.

Setups End-Task Prediction
Precision Recall F1

No Sufficiency 0.25 0.50 0.34
No Continuity 0.82 0.81 0.81
No Sparsity 0.80 0.79 0.79
No Contextual 0.83 0.83 0.83
Our Model 0.91 0.90 0.90

Table 3: Ablation study of each module in our model
on Movie Review dataset.

A.3 Additional Details of Human Study
A.3.1 Generating Random Baselines
Human accuracy likely increases when participants
can see more words, i.e., when the lengths of ra-
tionales increase. If a rationale and a random text
span have the same number of words, the rationale
should help readers predict the label better. We
created a simple baseline that generated rationales
by randomly selecting words to form the rationales.

We could control (1) how many words to select and
(2) how many disjointed rationales to produce. In
the study, we set these two numbers to be identical
to that of LimitedInk at each length level.

In detail, given the rationale length k, we first got
the count of total tokens in rationale as #tokens = k.
Next, we computed the average number of rationale
segments m, which are generated by LimitedInk,
over the Movie dataset. We randomly selected m
spans with total tokens’ count as #tokens from the
full input texts, thus obtaining the random baselines.
We evenly separated 10 worker groups to finish five
random baseline HITs and LimitedInk HITs each.
We determined that good model rationales should
get higher human accuracy compared with same-
length random baselines.

A.3.2 Human Evaluation User Interface
We provide our designed user interfaces used in the
human study. Specifically, we show the interface
of the human study panel in Figure 5 (B). We also
provide the detailed instructions for workers to un-
derstand our task, the instruction inteface is shown
in Figure 6.
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(B) Worker Study Interface

(A) Worker Group Assignment

Figure 5: (A) The design of the worker group assignment in our human study. (B) The worker interface of the
human study.
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Figure 6: User Interface of the instruction in the human study.
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