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Abstract
Annotation errors that stem from various
sources are usually unavoidable when perform-
ing large-scale annotation of linguistic data. In
this paper, we evaluate the feasibility of using
the Transformer model to detect various types
of annotator errors in type-based morphologi-
cal datasets that contain inflected word forms.
We evaluate our error detection model on four
languages by injecting three different types of
artificial errors into the data: (1) typographic
errors, where single characters in the data are
inserted, replaced, or deleted; (2) linguistic con-
fusion errors where two inflected forms are sys-
tematically swapped; and (3) self-adversarial
errors where the Transformer model itself is
used to generate plausible-looking, but erro-
neous forms by retrieving high-scoring predic-
tions from a Transformer search beam. Results
show that the model can with perfect, or near-
perfect recall detect errors in all three scenarios,
even when significant amounts of the annotated
data (5%-30%) are corrupted on all languages
tested. Precision varies across the languages
and types of errors, but is high enough that the
model can reliably be used to flag suspicious
entries in large datasets for further scrutiny by
human annotators.

1 Introduction

Deep learning models have been responsible for
state-of-the-art performance in many tasks involv-
ing morphological generation and analysis (Devlin
et al., 2019; Raffel et al., 2019; Cotterell et al.,
2016; Vylomova et al., 2020). However, to reach
adequate performance, large amounts of labeled
examples are usually required for training (Cot-
terell et al., 2017; Silfverberg et al., 2017; Liu
and Hulden, 2021b). Annotation of morpholog-
ical data is particularly expensive since it requires
both domain and language expertise (McCarthy
et al., 2020). Manual correction and quality control
of annotated data adds to the cost (van Halteren,
2000). In light of this, we evaluate the feasibility of

using a deep learning model to automatically detect
annotation errors with the goal of reducing the cost
of annotation correction and quality control.

Earlier work on annotation error detection has
largely been non-neural and focused on other types
of annotation, such as part-of-speech (POS) tag-
ging (van Halteren, 2000; Kvĕtoň and Oliva, 2002;
Dickinson and Meurers, 2003; Loftsson, 2009),
syntactic parsing (Eskin, 2000; Ambati et al., 2011),
or semantic labeling (Dickinson and Lee, 2008).
A neural model error detector— an LSTM-based
tagger—has been used by Rehbein and Ruppen-
hofer (2017) to detect POS tagging errors.

In this paper, we propose a method to apply a
Transformer model (Vaswani et al., 2017) to detect
annotation errors in morphological data. In order
to evaluate the method, we simulate errors by in-
troducing artificial perturbations to our annotated
data, which are generated in three different ways
to simulate different types of annotation errors. Ex-
perimental results show that the Transformer model
can detect annotation errors in morphological data
very effectively, even when the datasets contain a
high percentage of erroneous forms.

2 Experiments

2.1 Data

We use data from four languages in the UniMorph
project (Kirov et al., 2018) for experiments. The
data has been vetted and used in multiple SIG-
MORPHON shared tasks (Cotterell et al., 2016,
2017, 2018; McCarthy et al., 2019; Vylomova et al.,
2020). Therefore, we expect very few erroneous
entries in this dataset. The data is organized into
inflection tables where each slot in an inflection
table is given as a tab-separated (lemma, inflected
form, morphosyntactic tag) triple, as shown in the
left chart in Figure 1.

Language choice The four languages—Finnish,
German, Russian and Spanish—represent differ-
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1

Paradigm size: m = 5
Number of  inflection tables: n
Number of  inflection models: m
The jth slot of  the ith inflection table: (i, j)

Figure 1: Illustration of the leave-n-out training and evaluation data split setup. We systematically leave out one slot
in each inflection table for evaluation, and use the remaining slots to train one particular inflection model. For each
inflection model, we rotate which slot is left out. The number of models we train is the same as the corresponding
paradigm size.

ent morphological complexities and challenges.
German and Russian nouns have relatively small
paradigm sizes, while Spanish and Finnish verbs
have large paradigms; the paradigm size of Finnish
nouns and German verbs is somewhere in between.
Finnish has an agglutinative inflectional system
with a large paradigm size, especially for verbs.
Though German inflection tables are not particu-
larly large, characteristic of the language are the
many cases of syncretism in each inflection table.
Spanish verbs have a large paradigm size, but the in-
flection is quite regular. Russian has a fusional mor-
phological system and is written in Cyrillic script
whereas the other three languages use Latin script.
An additional reason for our particular choice of
languages has been to provide a range of difficulty
for neural models—German has consistently been
among the most difficult languages to inflect in the
SIGMORPHON shared tasks; Finnish and Russian
have been of intermediate difficulty, and Spanish
has been consistently ‘easy’. Further, by limiting
ourselves to languages that have been used in mul-
tiple shared tasks, we assure—importantly—that
the gold data for our experiments is itself largely
error-free, something which is not obviously the
case for many other languages in UniMorph.

Language POS Paradigm Size Table Count Total Examples Accuracy
m n x

German N 8 160 1,280 0.9664
Russian N 12 240 2,880 0.9625
Finnish N 28 140 3,920 0.9959
German V 29 145 4,205 0.9919
Finnish V 141 141 19,881 0.9896
Spanish V 70 70 4,900 0.9980

Table 1: Basic data information. The last column
presents the Transformer inflection model performance
(average accuracy) when no artificial error is inserted.

2.2 Experiment setup
Inflection model The Transformer (Vaswani
et al., 2017) is the current state-of-the-art model ar-
chitecture for morphological inflection generation,
even when the amount of training data is limited
(Vylomova et al., 2020; Liu and Hulden, 2020a,b,
2021a,b; Moeller et al., 2020, 2021; Wu et al., 2021;
Liu, 2021); we therefore adopt this architecure in
all experiments.1

Applying the Transformer to detect morpholog-
ical data errors The core intuition behind our
error detection model is that we train inflection gen-
eration models on a subset of the inflected forms
in our total dataset, and then apply these models

1We implement all models in FAIRSEQ (Ott et al., 2019)
and the hyperparameter setting follow Liu and Hulden (2020a)
exactly.
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(a) Artificial Error I

(b) Artificial Error II

(c) Artificial Error III

Figure 2: Model performance on adding different types of artificial errors. In each group, the bars from left to
right show results for introducing an increasingly larger amount of artificial errors. Accuracy (acc) is the inflection
model performance. Precision (p), recall (r) and F1-score (f1) evaluate the effectiveness of error detection with the
inflection model. p, r and f1 are not applicable when no artificial error, i.e. 0%, is introduced.

to generate precisely those inflected forms that the
inflection models have not been trained on. If a
model’s prediction for these forms disagrees with

the corresponding held-out annotated form, we flag
that particular annotated form as a potential error.
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Preliminary experiment and data split
Throughout our experiments, we use complete
inflection tables for our labeled data. Moreover,
the dataset is a small subset of the UniMorph
tables, ranging from 70 tables (Spanish verbs) to
240 (Russian nouns). The reason for limiting the
data is twofold. First, we want to ensure that error
detection is feasible with datasets significantly
smaller than large projects such as UniMorph.
Secondly, before our actual error detection
experiment, we want to verify that the Transformer
model is powerful enough to reconstruct, with high
accuracy, single unseen (or potentially erroneous)
forms in the data.

We use a leave-n-out cross-validation setup
to split the data for training and evaluating the
model before attempting to perform error detec-
tion. Specifically, as illustrated in Figure 1, we
systematically leave one slot out in each inflection
table for evaluation and use the remaining slots to
train one particular inflection model. For each such
model, we rotate which slot is left out. The number
of models we train for each POS of a language
is thus the same as the corresponding paradigm
size, m. The evaluation data size for each model is
n, the same as the number inflection tables in the
data, and the training data size for each model is
m×n−n. Each model is thus trained to make pre-
dictions for slots it has not witnessed—one missing
slot per table—and the union of all models’ predic-
tions cover all the slots. Table 1 shows the accuracy
when using the m models to perform an artificial
reconstruction of “unseen forms”. For example, we
train m = 8 inflection models for German nouns,
each model is trained on 1,120 (8 × 160 − 160)
slots and evaluated on n = 160 slots.

Generating artificial errors We now simulate
noisy annotation data by injecting artificial errors
into the above dataset in three different ways before
training models. The first method generates artifi-
cial errors (Artificial Error I) to mimic typographic
errors by inserting, replacing or deleting a single
character in an inflected word form. The second
error model simulates annotator confusion by swap-
ping two randomly sampled slots with different in-
flected forms in a randomly chosen inflection table,
denoted as Artificial Error II. The third type of ar-
tificial error, Artificial Error III, is self-adversarial
to generate plausible-looking noise: we first train a
single Transformer inflection model with the com-
plete data for each POS of a language, then apply

it to predict inflected forms for slots it has been
trained on. We use beam search at decoding time
and pick out the second best (but erroneous) pre-
diction to represent a noisy inflected form. This
self-adversarial approach gives us incorrect word
forms which are however very close to the ground
truth inflected word forms. We hypothesize that
such errors are more difficult to identify than the
others.

Erroneous inflected forms of each type are intro-
duced to the original data at different error rates:
0.5%, 1%, 5%, 15%, 20%, 25% and 30% (of all
forms).

Evaluation metrics We evaluate the error detec-
tion model w.r.t. accuracy, i.e. the ratio of correctly
predicted forms vs. all predicted forms and also
precision, recall, and F1-score.

3 Results and Discussion

Figure 2 provides a summary of the experiment
results, plotting the accuracy, precision, recall, and
F1-score for each POS of each language, averaged
across the m models after adding Artificial Errors
I, II, III at different amounts, respectively. Detailed
numbers are provided in Table 2 in the appendix.

We observe that the accuracy of the model de-
creases as more word erroneous forms are added,
but is still high overall. This indicates that the leave-
n-out training strategy is robust to noise in the data.
For every type of artificial error, the recall is 1.0
or very close to 1.0 after varying amounts of noise
is injected. In other words, the model can identify
all, or nearly all the artificial errors we introduce,
even when a large amount of noise is mixed into
the gold data. The precision increases (from a low
of 0.11 to a high of 0.95) as more errors are added,
indicating that a reasonably small amount of false
positives would be produced by the model. (See
Table 3 in the appendix for detailed counts.)

As such, if an annotator were to manually cor-
rect the forms flagged by the model, all erroneous
annotations would be corrected and the annotator
should not be frustrated by vetting a large number
of already-correct annotations. To illustrate this,
consider the average precision (0.43) for all six
datasets with Artificial Error type I (typos) where
1% of the forms are corrupted—a plausible sce-
nario in an annotation project. Under such assump-
tions, our model would present flagged forms in
a dataset for vetting to an annotator, and, indeed,
nearly half of these flagged forms would be true
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errors, and no errors would be undetected (since
the recall is 1.0).

However, we observe that the worst case (e.g.
lowest F1 scores on average) where the annotation
error detection model performs is the second type
of artificial error. In this type of error, we consis-
tently switched a portion of slots. The worst error
detection model performance on this type of er-
ror points to the limitation of the annotation error
detection method we propose: it cannot detect con-
sistent errors if the errors in question are present
in a large portion of the data; for example, in the
extreme case that all the forms in the paradigm
carry the same error, it is impossible for the in-
flection model to learn the ground-truth inflection.
Another shortcoming of our proposed approach is
that it requires relatively complete inflection tables,
which are expensive to annotate as to expertise and
effort. Future work is needed to evaluate whether
the method works when there are slots missing in
most inflection tables.

4 Conclusion

In this work, we propose a method to leverage the
Transformer model architecture for annotation er-
ror detection in morphological data. We propose to
systematically leave out one slot in each morpho-
logical inflection table as the data to be detected
and use such subsets of annotated data to train in-
dividual Transformer inflection models—one for
each group of missing slots—and then apply the
inflection models to make predictions for the held-
out slots. If the predicted form disagrees with the
actual annotation (a form the predicting model has
not seen), the model flags that form as erroneous.

To check efficiency, we evaluate the model un-
der three different scenarios where we inject arti-
ficial errors into gold data, simulating noisy data
resulting from an annotation process: typographic
errors generated by inserting, replacing or deleting
a single character in an inflected word form; er-
rors resulting from annotator confusion where two
slots in an inflection table are swapped; and self-
adversarial errors where erroneous but plausible
predictions generated by the Transformer inflec-
tion model are introduced. Our experiments on
four languages with different morphological char-
acteristics and levels of irregularity indicate that
the proposed method can detect every type of error
in morphological datasets very effectively. Even
when large portions of the data (5% to 30%) have

been replaced with corrupted forms, our model re-
tains perfect, or near-perfect, recall and also shows
increasingly higher precision as more erroneous
forms are present.

The results show that the Transformer model can
detect various kinds of errors without producing
excessive false positive predictions. We believe
such a model can directly be incorporated into the
correction and quality control process of morpho-
logical data annotation projects, specifically for
low-resource language where datasets are in the
early stages of development and few annotators are
available. Further research should investigate how
well this basic method of error detection works in
other linguistic annotation domains.
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A Detailed experiment results

Artificial Artificial Error I Artificial Error II Artificial Error III
Error Rate acc p r f1 acc p r f1 acc p r f1

German N

0% 0.9664 N/A N/A N/A 0.9664 N/A N/A N/A 0.9664 N/A N/A N/A
0.5% 0.9688 0.1489 1.0 0.2592 0.9625 0.1455 1.0 0.254 0.9641 0.1321 1.0 0.2334
1% 0.9641 0.2203 1.0 0.3611 0.9586 0.2121 1.0 0.35 0.968 0.2453 1.0 0.394
5% 0.9641 0.5926 1.0 0.7442 0.9258 0.4052 1.0 0.5714 0.9422 0.4621 0.9531 0.6224
10% 0.9508 0.6882 1.0 0.8153 0.8852 0.4841 1.0 0.6421 0.9031 0.5216 0.9453 0.6723
15% 0.95 0.7837 1.0 0.8787 0.8742 0.5619 1.0 0.7113 0.8789 0.5828 0.9167 0.7126
20% 0.9344 0.7853 1.0 0.8797 0.8281 0.5574 1.0 0.6969 0.8531 0.6117 0.8984 0.7278
25% 0.9266 0.8226 1.0 0.9027 0.7742 0.562 1.0 0.6938 0.8258 0.6437 0.9031 0.7516
30% 0.9094 0.8219 0.9974 0.9012 0.732 0.5643 0.9974 0.6877 0.7883 0.6301 0.8828 0.7353

Russian N

0% 0.9625 N/A N/A N/A 0.9625 N/A N/A N/A 0.9625 N/A N/A N/A
0.5% 0.9653 0.1304 1.0 0.2307 0.958 0.1168 1.0 0.2092 0.958 0.1111 1.0 0.2
1% 0.9632 0.218 1.0 0.358 0.9549 0.1847 1.0 0.3101 0.9649 0.2205 0.9655 0.359
5% 0.9524 0.5238 0.9931 0.6859 0.9253 0.4103 0.9931 0.5819 0.9438 0.4792 0.9583 0.6389
10% 0.9483 0.6776 1.0 0.8078 0.8771 0.469 1.0 0.6378 0.9378 0.6393 0.9479 0.7636
15% 0.9358 0.7248 1.0 0.8404 0.8378 0.5162 1.0 0.6798 0.9128 0.6549 0.9444 0.7734
20% 0.9302 0.7888 0.9983 0.8813 0.8201 0.5706 0.9983 0.7257 0.9028 0.705 0.9462 0.808
25% 0.924 0.8133 0.9986 0.8965 0.7792 0.5884 0.9986 0.7366 0.8722 0.6993 0.9236 0.7959
30% 0.9194 0.8367 0.9965 0.9096 0.766 0.622 0.9965 0.759 0.8302 0.7031 0.8796 0.7815

Finnish N

0% 0.9959 N/A N/A N/A 0.9959 N/A N/A N/A 0.9959 N/A N/A N/A
0.5% 0.9913 0.3704 1.0 0.5406 0.9923 0.4 1.0 0.5714 0.9939 0.4545 1.0 0.625
1% 0.9901 0.5063 1.0 0.6722 0.9908 0.5263 1.0 0.6896 0.989 0.4815 0.975 0.6446
5% 0.9862 0.8066 1.0 0.8929 0.9702 0.6282 1.0 0.7716 0.9875 0.8058 0.9949 0.8904
10% 0.977 0.8369 0.9949 0.9091 0.9378 0.6501 0.9949 0.788 0.9788 0.8391 0.9974 0.9114
15% 0.976 0.8855 1.0 0.9393 0.9184 0.6861 1.0 0.8138 0.9681 0.8531 0.9779 0.9112
20% 0.9643 0.8737 0.9974 0.9315 0.8804 0.678 0.9974 0.8069 0.9429 0.8075 0.9579 0.8763
25% 0.9638 0.9047 0.998 0.9491 0.8852 0.7368 0.998 0.8485 0.8982 0.7557 0.9092 0.8254
30% 0.9571 0.9052 0.9991 0.9498 0.8434 0.7273 0.9991 0.8421 0.8418 0.7042 0.8605 0.7745

German V

0% 0.9919 N/A N/A N/A 0.9919 N/A N/A N/A 0.9919 N/A N/A N/A
0.5% 0.9895 0.3385 1.0 0.5058 0.9891 0.3235 1.0 0.4889 0.9895 0.3333 1.0 0.5
1% 0.9857 0.4175 1.0 0.5891 0.9883 0.4731 1.0 0.6423 0.9879 0.4574 1.0 0.6277
5% 0.9874 0.8084 1.0 0.894 0.9006 0.3471 1.0 0.5141 0.985 0.7836 0.9953 0.8769
10% 0.9843 0.875 0.9976 0.9323 0.8528 0.4293 0.9976 0.5981 0.986 0.8968 0.9905 0.9413
15% 0.9826 0.9078 0.9984 0.9509 0.8098 0.4749 0.9984 0.6379 0.9753 0.8733 0.9937 0.9296
20% 0.9793 0.9231 0.9988 0.9595 0.7477 0.4888 0.9988 0.648 0.9636 0.8797 0.9738 0.9244
25% 0.9729 0.922 1.0 0.9594 0.7244 0.5397 1.0 0.6915 0.9272 0.8154 0.9449 0.8754
30% 0.9693 0.9292 0.9984 0.9626 0.6923 0.5716 0.9984 0.7153 0.8728 0.7571 0.8867 0.8168

Spanish V

0% 0.998 N/A N/A N/A 0.998 N/A N/A N/A 0.998 N/A N/A N/A
0.5% 0.9973 0.6579 1.0 0.7937 0.9971 0.65 1.0 0.7879 0.9971 0.641 1.0 0.7812
1% 0.9951 0.6712 1.0 0.8033 0.9959 0.7143 1.0 0.8333 0.9959 0.7231 0.9592 0.8246
5% 0.9937 0.8909 1.0 0.9423 0.9794 0.7193 1.0 0.8367 0.9908 0.8769 0.9592 0.9162
10% 0.9894 0.9108 1.0 0.9533 0.9573 0.7208 1.0 0.8363 0.992 0.9383 0.9939 0.9653
15% 0.9873 0.9327 0.9986 0.9645 0.921 0.698 0.9986 0.8217 0.9884 0.9396 0.9946 0.9663
20% 0.9849 0.9441 1.0 0.9712 0.898 0.7033 1.0 0.8255 0.98 0.9353 0.9878 0.9608
25% 0.9829 0.9481 0.9992 0.973 0.8924 0.752 0.9992 0.8582 0.9688 0.917 0.9829 0.9488
30% 0.9753 0.9453 0.9986 0.9712 0.8484 0.74 0.9986 0.8496 0.93 0.8653 0.9524 0.9068

Finnish V

0% 0.9896 N/A N/A N/A 0.9896 N/A N/A N/A 0.9896 N/A N/A N/A
0.5% 0.9905 0.346 1.0 0.5141 0.9545 0.1003 1.0 0.1823 0.9961 0.5625 0.99 0.7174
1% 0.991 0.528 0.995 0.6899 0.9442 0.1542 0.995 0.2672 0.9966 0.7538 0.9849 0.854
5% 0.9818 0.7394 0.998 0.8495 0.8527 0.2631 0.998 0.4164 0.9934 0.898 0.9819 0.9381
10% 0.9818 0.8618 0.997 0.9245 0.743 0.3007 0.997 0.4622 0.9902 0.9257 0.9839 0.9539
15% 0.9765 0.8826 0.9983 0.9369 0.6335 0.3259 0.9983 0.4914 0.9855 0.9349 0.9769 0.9554
20% 0.971 0.9002 0.998 0.9466 0.5865 0.3759 0.998 0.5463 0.9805 0.9317 0.9806 0.9555
25% 0.9633 0.9006 0.997 0.9464 0.5266 0.4121 0.997 0.5832 0.9688 0.9182 0.971 0.9439
30% 0.9622 0.9178 0.9977 0.9561 0.4915 0.4559 0.9977 0.6258 0.9493 0.9003 0.9465 0.9228

Table 2: Model performance in details on adding artificial errors of different types in different amounts. This is the
information used to create Figure 2 in section 3. When no artificial errors, i.e. 0%, are introduced, precision, recall
and F1-score are not applicable.
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Artificial Artificial Error I Artificial Error II Artificial Error III
Error True Detected Artificial True Detected Artificial True Detected Artificial
Rate Positive Error Error Positive Error Error Positive Error Error

German N

0% N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5% 7 47 7 8 47 8 7 53 7
1% 13 59 13 14 59 14 13 53 13
5% 64 108 64 62 108 64 61 132 64
10% 128 186 128 122 186 128 121 232 128
15% 192 245 192 186 245 192 176 302 192
20% 256 326 256 238 326 256 230 376 256
25% 320 389 320 290 389 320 289 449 320
30% 383 466 384 338 466 384 339 538 384

Russian N

0% N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5% 15 115 15 16 115 16 15 135 15
1% 29 133 29 29 133 30 28 127 29
5% 143 273 144 144 273 144 138 288 144
10% 288 425 288 287 425 288 273 427 288
15% 432 596 432 430 596 432 408 623 432
20% 575 729 576 574 729 576 545 773 576
25% 719 884 720 709 884 720 665 951 720
30% 861 1029 864 841 1029 864 760 1081 864

Finnish N

0% N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5% 20 54 20 20 54 20 20 44 20
1% 40 79 40 40 79 40 39 81 40
5% 196 243 196 196 243 196 195 242 196
10% 390 466 392 392 466 392 391 466 392
15% 588 664 588 588 664 588 575 674 588
20% 782 895 784 781 895 784 751 930 784
25% 978 1081 980 980 1081 980 891 1179 980
30% 1175 1298 1176 1176 1298 1176 1012 1437 1176

German V

0% N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5% 22 65 22 22 65 22 22 66 22
1% 43 103 43 44 103 44 43 94 43
5% 211 261 211 210 261 212 210 268 211
10% 420 480 421 416 480 422 417 465 421
15% 630 694 631 614 694 632 627 718 631
20% 840 910 841 809 910 842 819 931 841
25% 1052 1141 1052 1012 1141 1052 994 1219 1052
30% 1260 1356 1262 1206 1356 1262 1119 1478 1262

Spanish V

0% N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5% 25 38 25 26 38 26 25 39 25
1% 49 73 49 50 73 50 47 65 49
5% 245 275 245 246 275 246 235 268 245
10% 490 538 490 488 538 490 487 519 490
15% 734 787 735 735 787 736 731 778 735
20% 980 1038 980 979 1038 980 968 1035 980
25% 1224 1291 1225 1225 1291 1226 1204 1313 1225
30% 1468 1553 1470 1466 1553 1470 1400 1618 1470

Finnish V

0% N/A N/A N/A N/A N/A N/A N/A N/A N/A
0.5% 100 289 100 100 289 100 99 176 100
1% 198 375 199 200 375 200 196 260 199
5% 993 1343 995 994 1343 996 977 1088 995
10% 1983 2301 1989 1987 2301 1990 1957 2114 1989
15% 2978 3374 2983 2980 3374 2984 2914 3117 2983
20% 3969 4409 3977 3975 4409 3978 3900 4186 3977
25% 4956 5503 4971 4957 5503 4972 4827 5257 4971
30% 5951 6484 5965 5951 6484 5966 5646 6271 5965

Table 3: Count of errors. “True Positive” column lists the count of errors which are artificial errors we introduce
to the data and identified by the model as being erroneous. “Detected Error” column lists the number of inflected
forms which the model detects as being erroneous, and the inflection model is trained with corrupted data by adding
artificial errors at different amounts. “Artificial Error” column lists the number of artificial errors for each artificial
error type we introduce to the original morphological data.
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