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Abstract

We teach goal-driven agents to interactively
act and speak in situated environments by
training on generated curriculums. Our agents
operate in LIGHT (Urbanek et al., 2019)—a
large-scale crowd-sourced fantasy text adven-
ture game wherein an agent perceives and in-
teracts with the world through textual natu-
ral language. Goals in this environment take
the form of character-based quests, consist-
ing of personas and motivations. We augment
LIGHT by learning to procedurally generate
additional novel textual worlds and quests to
create a curriculum of steadily increasing diffi-
culty for training agents to achieve such goals.
In particular, we measure curriculum difficulty
in terms of the rarity of the quest in the original
training distribution—an easier environment is
one that is more likely to have been found in
the unaugmented dataset. An ablation study
shows that this method of learning from the tail
of a distribution results in significantly higher
generalization abilities as measured by zero-
shot performance on never-before-seen quests.

1 Introduction

A key hypothesis in the pursuit towards creating
goal-driven natural language-based agents posits
that interactivity and environment grounding is
critical for effective language learning (Barsalou,
2008; Bisk et al., 2020; Ammanabrolu and Riedl,
2021). Text games provide a platform on which
to interactively train agents that can both act and
speak in a situated manner—producing language
that is both goal-driven and contextually relevant.
Agents in text games operate—perceiving, acting
in, and speaking to others in a world—entirely us-
ing textual natural language. These games are struc-
tured generally as sequential decision making prob-
lems in the form of puzzles or quests that must be
completed to advance in the game.

As seen in Figure 1, we focus on creating agents
in LIGHT (Urbanek et al., 2019), a large-scale

Figure 1: The LIGHT questing environment presented
as a 2 player game deployed in Messenger.

crowdsourced fantasy text-adventure game, consist-
ing of rich textual worlds—locations, objects, and
characters with personas, and quests—motivations
for each character. To complete these quests, an
agent must: (1) maintain character via its persona;
and (2) reason in a partially observable world about
potential actions and utterances based on incom-
plete descriptions of the locations, objects, and
other characters. This requires several human like
competencies such as commonsense reasoning, dy-
namic natural language understanding, and operat-
ing in combinatorially sized language-based state-
action spaces. Although recent work has provided
evidence showing that interactive language learn-
ing via reinforcement learning (RL) in text games
can be significantly more sample efficient than
static supervised learning (Ammanabrolu et al.,
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2021) when creating goal-driven natural language
agents, their ability to robustly generalize to novel
scenarios is limited.

In sequential decision making problems in par-
ticular, this generalization gap is the result of an
agent simply memorizing trajectories, e.g. the se-
quence of actions and dialogues required to finish
a game, and thus being unable to react in novel
scenarios—i.e. the agent learns from the head
the training data and simply memorizes the long
tail. One way of decreasing this generalization
gap is by training agents on procedurally gener-
ated environments—wherein the agent learns a
family of parametrized tasks with a significantly
larger state-action spaces than singular environ-
ments, thus effectively making the memorization
of trajectories impossible (Justesen et al., 2018;
Cobbe et al., 2020). Drawing inspiration from all of
these ideas, we create a method that learns to create
a training curriculum of increasingly more difficult
novel procedurally generated environments.

Our contributions are threefold: (1) We present
a method of parametrizing and generating a cur-
riculum of environments in text games; (2) We
show how to effectively train reinforcement learn-
ing agents on this curriculum; and (3) Provide an
experimental study showing that our method en-
ables significantly better generalization than those
training on singular environments.

2 Procedural Environment Generation

This section describes our procedural generation
pipeline as seen in Figure 2, starting with world
and quest generation, followed by aligning both
of them. There are two main kinds of models that
we use for the different modules in this pipeline:
retrieval and generative.

The LIGHT Questing Environment. The
LIGHT game environment (Urbanek et al., 2019)1

is a multi-user fantasy text-adventure game consist-
ing of a rich, diverse set of 1775 characters, 663
locations, and 3462 objects. Characters are able
to perform templated actions to interact with both
objects and characters, and can speak to other char-
acters through free form text dialogues. Actions in
text games generally consist of verb phrases (VP)
followed optionally by prepositional phrases (VP
PP). For example, get OBJ, put OBJ, give OBJ to
CHAR, etc.. These actions change the state of the
world which is expressed through text descriptions.

1https://parl.ai/projects/light

Quests in LIGHT (Ammanabrolu et al., 2021)
take the form of a short motivation and goal action
that is required reach the world state required to fin-
ish the game. For example, if the short motivation
is “Your motivation is to acquire a sword”, then
the corresponding goal state would be for the char-
acter to have a sword in their inventory and goal
action would be get sword. This environment also
contains a set of human expert demonstration of
people speaking and acting in character while play-
ing the quests mentioned above. Further details are
found in Appendix A.1.

2.1 World and Quest Creation

World Retrieval. The first step of the pipeline
involves choosing an initial character who will per-
form the quest. For this, we uniformly randomly
sample from the set of characters found in the
LIGHT-Quest training set. The corresponding char-
acter information includes a name and a description
of the character’s persona. Given this character in-
formation, we further retrieve the location where
the character is most likely to be found.

Retrieval models are trained to return the most
highly correlated output for a given input in the
dataset. For example, a retrieval model can be
asked to return the most likely character that can be
found at a particular location. These models com-
pare a human annotated gold standard label with
negative candidates drawn from the dataset. The
negative candidates provide noise that the model
must filter out in order to learn representations that
let it best predict the gold label. These models are
trained via a ranking loss that maximizes the scores
of the gold label while simultaneously minimizing
negative candidate score. At test time, the highest
ranked candidate based on the score is selected as
the model prediction.

Specifically, we use a retrieval-based ranker
model that checks for similarity of StarSpace (Wu
et al., 2018) embeddings. Our choice of model is
influenced by Fan et al. (2019) who report state-
of-the-art retrieval performance for locations in
LIGHT using this model. The overall ranker model
first trains a randomly initialized StarSpace embed-
ding model that is designed to correlate characters
with the locations they are found in. It learns a
single bag-of-words embedding that takes into ac-
count all the individual words contained within the
input—encoding character and location informa-
tion as well as the previously mentioned negative
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Select Initial Character:
Dragon - I am a dragon living

in the mountains. I enjoy

hoarding treasure. I terrorize the

local populace for fun. 

Retrieve Initial Location:
Dangerous Precipice - The

dangerous precipice overlooks

the valley below.  The ground

slopes down to the edge here....

Generate Motivation and Goal:
Dragon - I need to recover the

dragon egg that was stolen and

punish the knight.

Goal: take egg, hit knight 

Retrieve Additional Characters:
Knight - I come from a lower-

ranking noble family. I serve under

the king, as my father did before

me. In times of war...

Retrieve Additional Objects:
Golden Dragon Egg

Knight's Fighting Gear

Retrieve Neighboring Locations:
Forest - It is glowing with color...

Castle - The walls are tall and stony...

World and Quest
Generation

Alignment

Figure 2: Procedural environment generation pipeline. Black lines indicate conditioning on all prior components.
Gold lines indicate (adjacent) location placement.

retrieval candidates. The rest of the training is sim-
ilar to other retrieval models described earlier. The
retrieved location information consists of a location
name as well as a description of the location.

Quest Generation. The quest is now generated
using the existing character and location informa-
tion. The generation-based models used in this
pipeline are trained to return the most likely out-
put sequence given an input sequence. Given a
target sequence Y = {y1, ..., yM} and some input
context vector via the encoders X. These mod-
els use autoregressive decoding techniques that
factor the distribution over the target sequence
into a chain of conditional probabilities with a
causal left to right structure as P (Y |X; θ) =∏M+1

i=1 p(yi|y0:i−1,X; θ) where θ represents the
current network parameters. At test time, a special
start-of-sequence token is provided to the model
which then proceeds to decode the rest of the output
sequence using beam search.

We train two BART (Lewis et al., 2020) models
that encodes input information via a bidirectional
transformer encoder and decodes autoregressively:
the first takes as input character and location in-
formation and produces a short motivation (Sec-
tion 2); the second takes as input character, loca-
tion information, short motivation and produces
the sequence of LIGHT game engine executable
actions needed to achieve the motivation. This se-
quence of actions is provided by the human expert
demonstrations as mentioned in Section 2.

2.2 Aligning Worlds and Quests
At this stage, the environment contains a motivated
main character to perform a quest and a location
for them to start in. We now focus on aligning

the world with the quest to ensure that the quest is
playable and achievable. Intuitively, to ensure that
a quest is achievable, the world needs to contain all
of the entities—locations, characters, and objects—
mentioned within the quest.

To this end, the alignment process involves train-
ing three BERT-based (Devlin et al., 2018) bien-
coder retrieval models to retrieve the most likely
characters, locations, and objects required flesh the
environment out and make the quest achievable.
We use the same biencoder architecture proposed
by Urbanek et al. (2019) which encodes context us-
ing one transformer and candidates with another—
scoring candidates via inner product between the
two encoded vectors. The character retrieval model
is conditioned on the initial character, quest, and
location—producing additional characters required
to complete the world.

We follow the setup in Ammanabrolu et al.
(2021) and restrict worlds to only contains 2 charac-
ters at maximum but note that this method is extend-
able to greater numbers of characters. Similarly, the
location retrieval model is also conditioned on the
same things—producing, in this case, 4 neighbors
to the initial location (resulting in worlds that are
5 locations large). These locations are connected
to the initial location and a character can move be-
tween them by using commands such as go west,
go up etc.. Once these characters and locations
are added to the world, the object retrieval model
predicts the set of objects that are required to be
distributed for each location given all the character
information present in it. The final game environ-
ment instance is complete once this object set has
been added.
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3 Curriculum Learning

Generating Curriculums. We generate curricu-
lums by building off of our procedural LIGHT
game instance generation pipeline. We make the
observation that the original quests in LIGHT are
heavily skewed towards certain quest types—with
the majority involving goals and short motivations
that contain objectives related to getting an object,
and hitting or hugging another character (Figure 3).
We further note that the first verb in the short moti-
vation forms the basis of the quest for that agent.

Actions in LIGHT, and more generally in text
games, are executed in the game engines on the ba-
sis of verbs—engine subroutines are linked to verbs
with nouns forming arguments—and as such are
primarily responsible for changing the state of the
world. For example, get sword invokes the get sub-
routine that places an object, in this case a sword,
in the character’s surrounding into their inventory.
As the quest is generated early in the pipeline, with
the world and the rest of the components being con-
ditioned on it, we can say that the first verb in the
short motivation is an important dimension along
which we can assess the distribution of individual
LIGHT game instances. Thus, concretely, the verb
counts from the short motivation aggregated over
a set of quests represents the primary dimension
along which we measure the distribution of quests.

Parametrizing Curriculum Difficulty. Given
the relative imbalance of this multinomial distri-
bution, as seen in Figure 3, we hypothesize that
a LIGHT agent only learns to do well on certain
types of objectives and not others—memorizing
trajectories for less seen quest types, i.e. those
found in the tail of the distribution. Preliminary
evidence for this hypothesis is also seen in Prab-
humoye et al. (2020), where they show a positive
correlation between the number of instances of a
particular type of quest during training and the final
test goal-achievement performance. Based on these
observations and our initial hypothesis, we use this
particular dimension to parametrize curriculum dif-
ficulty for training LIGHT agents—quest types that
are rarer in the initial training data will be harder
for the agent to generalize to in a zero-shot setting.

Intuitively, we seek to create curriculums that
contain a diverse set of game instances with quest
types that are not often found in the initial training
data. Our earlier observations let us hypothesize
that this will enable the LIGHT agent to more ef-
fectively learn from rare instances of quests as op-
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Figure 3: Normalized top-20 verb count distribution of
short motivations of the LIGHT-Quests dataset.
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Figure 4: Normalized top-20 noun count distribution of
short motivations of the LIGHT-Quests dataset.

posed to memorizing the corresponding trajectories.
To this end, the generated curriculums each consist
of a pool of quests with steadily decreasing quest
type imbalance. In our case, this imply that the
flatness of the multinomial distribution increases
until it tends towards being uniform with respect
to the categorical quest type variable. This is done
by running the procedural generation pipeline itera-
tively until the number of instances for the highest
count quest type is within n of the lowest count
quest type. The total number of additional gen-
erated instances is held fixed across curriculums,
only the task distribution of quest types within each
curriculum changes.

Figure 6 shows that decreasing n has the in-
tended effect of decreasing imbalance with respect
to verb types. Generating using this pipeline has
the added effect of increasing diversity within the
pool of each available quest type. One measure
of diversity within the pool of a single quest type
is the types of nouns contained within the short
motivations—these generally correspond to the
characters, locations, and objects mentioned. Fig-
ure 6 shows that decreasing imbalance in the verb
types for a short motivation also results in decreas-
ing imbalance in noun types, once again corre-
sponding to decreasing n. Short motivation gen-
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Persona  
+

Motivation

Full
action/dialogue

history
Setting

Encoder

Action & Dialogue
Policy Networks

Update

Game
Engine

Action Utterance

LIGHT
Environment

DMPartner

LIGHT
Agent

Update

Reward Reward

Figure 5: Architecture and training pipeline for the
LIGHT RL Agent (Ammanabrolu et al., 2021).

eration is one of the first steps in the pipeline, i.e.
the rest of the pipeline is conditioned on it, and
as such increasing the flatness of the distribution
there has the effects of increasing distribution for
downstream components.

A2C Curriculum Training. Overall training is
done via A2C (Mnih et al., 2016) a policy gradi-
ent algorithm that maximizes long-term expected
reward by comparing the advantage A(st, a

∗
t ) of

taking an action at in a state st to the average value
of taking any valid action as predicted by the critic
V (st). The setup and network architectures used
are similar to Ammanabrolu et al. (2021) and are
summarized in Figure 5. At every step, the LIGHT
agent receives as input the text describing the set-
ting, the character’s persona & motivation, and the
full dialogue history. This is then encoded using a
transformer based encoder and sent to the action
and dialogue policy networks which output an ac-
tion/dialogue utterance. These are then passed into
the LIGHT environment which process them and
returns rewards to be used by the agent.

Rewards. As seen in Figure 5, all actions, either
those of the agent-in-training or the partner agent,
are processed by the engine, checking for goal state
completion—hence known as act goals. For ex-
ample, if the LIGHT agent had the motivation to
acquire a sword, the goal could be completed via
a: self act completion: where the agent acquires a
sword itself by picking it up, stealing it, convinc-
ing the partner to drop theirs so you can pick it
up, etc. partner act completion: where the agent
uses dialogue utterances to convince their partner
to achieve the goal for them (e.g., by persuading the

Pipeline Step Model Hits@10 F1 Ppl
World Generation

Location Biencoder 0.543 0.153 -
Object Biencoder 0.563 0.154 -
Character Starspace 0.653 0.289 -

Quest Generation
Short Motive BART - 0.488 7.55
Goal Action BART - 0.763 3.75

Table 1: Procedural generation evaluation showing met-
rics for each individual model in the pipeline.

partner to give them the sword). The naturalness of
the dialogue utterances is further rated by a learned
Dungeon Master (DM), a transformer-based ranker
model trained on human demonstrations to score
how relevant the utterance is given the character’s
persona and motivation. Further training details are
provided in Appendix A.1.

4 Evaluation

We conduct two separate evaluations: the first mea-
sures the effectiveness of the various models in the
procedural environment generation pipeline as well
as the effectiveness of the pipeline as a whole. The
second provides zero-shot ablations of the LIGHT
RL agents trained on the resulting curriculums and
answers the questions (1) how does the relative
difficulty of the training quests effect test perfor-
mance?; (2) how does the diversity of the environ-
ments during training effect test performance?; and
(3) how are the results of the previous questions
affected by pre-training?

4.1 Procedural Generation Evaluation

All of the models in the pipeline described in Sec-
tion 2 are trained using only the training set of the
original LIGHT and LIGHT-Quests data. LIGHT-
Quests inherits characters, locations, and objects
from the original LIGHT dataset and adds on moti-
vations and goals in the form of quests. Thus, the
character, location, and object retrieval models are
evaluated on the LIGHT unseen test set and the
motivation and goal generation models are evalu-
ated on the LIGHT-Quests test set. We report the
standard array of metrics: hits@10 and F1 ranking
prediction score for retrieval models; and F1 (as
a harmonic average of BLEU-1 (Papineni et al.,
2002) and ROUGE-1 (Lin, 2004)) and perplexity
for generative models. Hyperparameters for all
models are found in Appendix A.6.

Analysis. Table 1 presents the results of this
evaluation. There are two primary trends to note:
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Figure 6: Top-20 distribution of verbs (top) and nouns (bottom) in the short motivation of the curriculum of quests
starting from the original generated curriculum on the left to the flattened, generated curriculum on the right as a
function of n (Section 3). The y-axis of the reflects normalized overall count in the pool of quests.

(1) character retrieval is easier than retrieving lo-
cation and objects; and (2) goal action generation
is easier than motivation generation. We hypothe-
size that the first trend is a direct consequence of
the fact that generated motivations and goals regu-
larly contain the names of the characters involved
but mostly leave implicit information such as the
objects required—e.g. the action hit dragon as a
knight would require a weapon such as a sword to
be equipped first. The second trend stems from the
fact that goal actions can often be thought of as con-
densed version of the short motivation—number of
tokens required to generate goal actions is far less
than short motivations. This implies that the goal
action model is akin to a summarization model as
opposed to the short motivation model which has
the more difficult task of generating the motivation
with only initial persona and location information.

4.2 Curriculum Learning Evaluation

This evaluation tests the LIGHT RL agent’s abil-
ity to zero-shot generalize to unseen environments.
For all experiments in this study, agents were each
zero-shot evaluated on 211 human demonstrations
from the LIGHT-Quests test set for a single episode
per quest across three independent runs. They were
measured on the basis of whether or not they were
able to achieve their goals in the environments con-
ditioned on their personas: act goals measuring
their ability to act consistently, and speech goals
reflecting their ability to speak naturally. The study
ablates across three dimensions in order to answer
the posed research questions relating to: (1) cur-

riculum difficulty, (2) curriculum diversity, and (3)
agent pre-training.

Curriculum Difficulty. To measure the overall
effectiveness of the distribution tuning technique
shown in Section 3, we vary the parameter n used
to measure curriculum difficulty—note that a lower
n corresponds to a flatter distribution and so is
higher difficulty. As seen in Fig. 6, we generate
pools of quests with steadily increasing difficulty
with varying n based on the range of the origi-
nal untuned distribution—with the agents being
trained on each pool separately as well as all of
them in sequence through a curriculum. Agents
received 107 total environment interactions per par-
allel A2C agent in a batch of 16. For the curriculum
learning method, the agent received 2.5×106 inter-
actions per pool of quests starting with the initial
pool of untuned quests and then sequentially with
n = 64, 16, 2 resulting in a total of 107 total envi-
ronment interactions per parallel A2C agent.

Curriculum Diversity. The variations in the
combinations of quests and worlds themselves seen
at training time has potential to effect zero-shot per-
formance (Samvelyan et al., 2021). We introduce
two baselines that change the relative diversities
of resulting quests in the curriculums, to contrast
with our proposed procedural generation pipeline.
Generated quest details are found in Appendix A.5.

• Sampled Curriculums. Inspired by Chawla
et al. (2002); Graves et al. (2017), we ex-
plore an alternate method of creating curricu-
lums by simply oversampling the same rare
quests found in the tails of the distributions.
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This method does not generate new environ-
ments via the pipeline, instead choosing to
sample rarer instances of quests with a higher
weight when initializing each parallel A2C ac-
tor. This means that the distribution of verbs
looks similar to what it is in Figure 6 but
the quests within a pool are repeated multi-
ple times and so contain no new diversity.

• Randomly Generated Curriculums. On the
other side of the diversity spectrum, we test
a method that follows the same steps as the
pipeline proposed in Section 2 with the modi-
fication that the selection process for each step
in the pipeline is random. The characters, ob-
jects, location are randomly selected and the
generated motivations per character are con-
ditioned on these randomly created worlds.
This results in a significantly higher diversity
of quests per pool—at the expense of the rela-
tive coherence of the overall environment.

Pre-training. We test two model types, drawing
from Ammanabrolu et al. (2021), to determine if
pre-training effects curriculums learning.

• Scratch. No pre-training is done, the encoder
is a 3-layer randomly initialized transformer
and trained along with the policy networks.

• Adaptive. Pre-training is done on the tasks
introduced in Ammanabrolu et al. (2021) by
training a 12 layer transformer with 256 mil-
lion parameters using a cross-entropy loss
as seen in Humeau et al. (2020). These
weights are then transferred to the encoder
used during RL training then frozen with 3
randomly initialized-layers appended. The en-
coder is multi-task trained on both pushshift.io
Reddit (Baumgartner et al., 2020) and the
commonsense dataset ATOMIC-LIGHT (Am-
manabrolu et al., 2021), giving the agent gen-
eral priors on how to act and speak. It is then
fine-tuned in LIGHT, giving the agent further
domain specific priors. Specific task details
are provided in Appendix A.1.

Analysis. Table 2 presents the results of this
evaluation. We first report that the overall propor-
tion of a pool of procedurally generated environ-
ments that contain achievable quests or goals for a
single curriculum is 0.89. This metric provides a
proxy for measuring the accuracy of the alignment
process and the overall error rate of the pipeline.
The high achievability rate means that only a small
proportion of LIGHT RL A2C agents will waste

Expt. Act Goals Speech Goals All Goals
Scratch Encoder

No Curr. 0.418 0.118 0.103
Sampled

only n=64 0.392 0.113 0.097
only n=16 0.431 0.116 0.099

only n=2 0.435 0.124 0.111
curriculum 0.460 0.145 0.138

Randomly Generated
only n=64 0.221 0.011 0.009
only n=16 0.223 0.011 0.009

only n=2 0.257 0.016 0.012
curriculum 0.263 0.024 0.017

Generated
only n=64 0.426 0.121 0.107
only n=16 0.433 0.129 0.112

only n=2 0.432 0.130 0.112
curriculum 0.477 0.163 0.155

Adaptive Encoder
No Curr. 0.420 0.330 0.303
Sampled

only n=64 0.431 0.336 0.312
only n=16 0.450 0.340 0.317

only n=2 0.456 0.339 0.321
curriculum 0.473 0.358 0.344

Randomly Generated
only n=64 0.267 0.110 0.092
only n=16 0.271 0.125 0.116

only n=2 0.289 0.168 0.153
curriculum 0.335 0.221 0.207

Generated
only n=64 0.445 0.341 0.330
only n=16 0.469 0.367 0.359

only n=2 0.471 0.366 0.357
curriculum 0.506 0.382 0.373

Table 2: Zero-shot goal achievement rates on a scale
of 0-1, averaged over 3 random seeds with standard
deviations not exceeding 0.02. The “All Goals” col-
umn refers to quests where the agent has simultane-
ously achieved both types of goals within the allotted
one episode. The parameter n refers to the difference
between the number of instances for the highest and
lowest count quest types. All pair-wise comparisons
made are statistically significant.

environment interactions learning from quests that
cannot be completed—increasing this rate even fur-
ther would likely also improve sample efficiency.

Further, we see that just the distribution tuning
by itself shows no significant gains in performance
over the baselines trained on the original data and in
fact loses performance in certain cases. In contrast,
learning from the individually tuned quest pools
in a sequential curriculum increases performance
significantly. This appears to indicate that LIGHT
RL agents need to be trained with quests pools of
steadily increasing difficulty—starting immediately
on a set of quests with a high proportion of rare,
generated quests can degrade performance.

The significantly increased performance of the
procedurally generated curriculums over the sam-
pled and randomly generated curriculums indicates
the relative importance of diversity within a single
quest type—but only up to a certain extent. The
sampled quests contain multiple instances of the
same quest type but the generated ones have higher
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variability—leading to an increased observation
space, ensuring that the agent cannot simply mem-
orize trajectories. On the other hand, randomly
generated quests have even higher variability but
sacrifice relative coherence—it is more likely that
the world contains unlikely scenarios, e.g. a desert
and swamp being located right next to each other—
resulting in significantly decreased performance.

We’d finally like to note that the adaptive pre-
trained model takes advantage of the generated
curriculums and distribution tuning more than the
non-pre-trained scratch encoder, showing consis-
tenly higher performance across the board. We
hypothesize that this is likely a consequence of the
adaptive model having greater model capacity—the
pre-training enabling it to learn generalizable rep-
resentations of the generated environments. Over-
all, trends in performance are independent of pre-
training—both the scratch and the adaptive pre-
trained model benefit significantly from learning
from the procedurally generated curriculums.

5 Related Work

Text-based Game Playing and Generation. Re-
cent text game playing works have focused on tack-
ling three primary challenges: (1) how to represent
agent knowledge to effectively operate in partially
observable environments (Adhikari et al., 2020;
Sautier et al., 2020); (2) scaling RL algorithms to
handle combinatorial natural language state-action
spaces (Zahavy et al., 2018; Ammanabrolu and
Hausknecht, 2020; Jang et al., 2021); and (3) giv-
ing agents commonsense priors to better reason
about the world (Murugesan et al., 2020, 2021)

On the flip side, we have procedural generation
of games with works such as Short and Adams
(2017); Risi and Togelius (2019); Khalifa et al.
(2020) that focus on creating content especially for
2D visual games via search or reinforcement learn-
ing based methods. Ammanabrolu et al. (2020b,a)
use knowledge graphs to ground language and pro-
duce worlds and quests separately for text games
from existing corpora such as stories. Fan et al.
(2019) leverage LIGHT to learn to generate inter-
active fiction worlds on the basis of locations, char-
acters, and objects—this work is closest in spirit to
our own World Generation module later on. They
all focus on either generating or playing games.

Goal oriented Dialogue. Sub-tasks within the
overall task of goal oriented dialogue, such as
dialogue state management (Singh et al., 2000;

Pietquin et al., 2011; Fatemi et al., 2016) and re-
sponse generation (Li et al., 2016) have used RL
to boost performance. As noted by Ammanabrolu
et al. (2021), the negotiation tasks of (Yarats and
Lewis, 2017; Lewis et al., 2017), where two agents
are trying to convince each other to perform certain
actions, are related to the tasks in LIGHT-Quests.
These works all lack environment grounding.

Curriculum Learning. Curriculums in rein-
forcement learning have traditionally been used
to set goals of steadily increasing difficulty for an
agent (Bengio et al., 2009; Schmidhuber, 2013).
The difficulty of these curriculums are generally
measured difficulty via proxy of agent perfor-
mance (Narvekar et al., 2020)—methods either
choose to adversarially set goals of steadily increas-
ing difficulty (Sukhbaatar et al., 2018; Racaniere
et al., 2019; Dennis et al., 2020; Campero et al.,
2021) or to maximize learning performance based
on environment instances an agent finds difficult
historically (Graves et al., 2017; Portelas et al.,
2020). While we were inspired by these works,
they all focus on searching for goals for agents
which can be difficult to scale to complex tasks
such our own natural language motivation-based
goals. We’d also like to note that most works us-
ing procedural generation to benchmark RL agents
such as Cobbe et al. (2020); Küttler et al. (2020);
Samvelyan et al. (2021) rely on the underlying
richness of the game engines to generate novel en-
vironments as opposed to learning to generate.

6 Conclusions

We focus on the problem of improving zero-shot
generalization abilities of goal-driven RL agents to
act and speak via natural language. An (obviously)
key component of achieving this is to train the RL
agents on a balanced training dataset that matches
the test data in distribution. As this is an unlikely
scenario in most real-world applications, we make
the observation that we can artificially augment our
pool of training environments by generating cur-
riculums to mimic this. In our text game domain,
with goal-driven situated natural language agents,
we hypothesize—and gather supporting evidence
suggesting—that an effective way to parametrize
such distributions is by looking at the primary verbs
within an agent’s motivation and bringing the dis-
tribution of verb types as close to uniform as possi-
ble. Curriculum training significantly increases an
agent’s ability to generalize to novel scenarios.
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7 Broader Impacts

As noted by Urbanek et al. (2019) and Am-
manabrolu et al. (2021), the ability to speak and
act in these textual fantasy worlds has implications
for domains beyond text-games. Text games are a
platform where agents can interact in a relatively
isolated environment and learn to interactively com-
municate effectively through natural language in a
situated manner. Our methods use both large lan-
guage models and deep reinforcement learning and
are prone to the pitfalls that other contemporary
methods using these techniques face, especially in
the areas of dialogue and text game systems. We
mitigate this first pitfall by restricting our current
system to a retrieval based dialogue, ensuring that
we can filter out non-normative dialogue usages
beforehand, though we will note that the system
can be extended to generative systems as described
in Prabhumoye et al. (2020). Further, the LIGHT
dataset is crowdsourced and contains data biases
that can be attributed to the crowdworkers tasked
with creating the data. Dinan et al. (2020) pro-
vides an in depth discussion regarding the inherent
dataset biases, such as gender bias in the distri-
bution of characters, in LIGHT and techniques to
mitigate them—we follow these methods to reduce
their effects on both the environment generation
and agent training procedures.
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A Appendix

A.1 LIGHT Environment Details
Formally, we adapt the definition of text-based
games as seen in (Côté et al., 2018; Hausknecht
et al., 2020) to LIGHT. They are partially observ-
able Markov decision processes (POMDPs), repre-
sented as a 7-tuple of 〈S, T,A,Ω, O,R, γ〉 repre-
senting the set of environment states, conditional
transition probabilities between states, the vocabu-
lary or words used to compose action commands or
dialogue utterances (e.g. get sword or Hey, give me
that sword! respectively), observations returned by
the game, observation conditional probabilities, re-
ward function, and the discount factor respectively.

There are 5982 training, 756 validation, and 748
test quests. The average sequence of a human
demonstration is 12.92, with an average action se-
quence length of 2.18 and dialogue of 10.74. There
are 1800 training, 100 validation, and 211 test hu-
man expert demonstrations corresponding to the
same splits as the quests themselves.

The LIGHT environment further allows us to
factorize the overall action space A into A as the
set of possible textual actions or commands (e.g.
get sword, steal coins from merchant), and U as the
set of possible dialogues that can be uttered by an
agent, thus making it a factored POMDP (Degris
and Sigaud, 2013). This in turn means that, for a
given quest q, each expert human demonstration
D(q) = α∗0, α

∗
1...α

∗
n can be factorized into two

sub-sequences of expert demonstrations of actions
and dialogue DA(q) = a∗0, a

∗
1, ...a

∗
n and DU (q) =

u∗0, u
∗
1, ...u

∗
m respectively. The factorized action

spaces A and U are constructed by enumerating
all possible actions/dialogue utterances in the all
human demonstrations in LIGHT-quests.

Figure 7 shows the overall architecture and train-
ing pipeline—our reinforcement learning pipeline
is unchanged from that shown in Ammanabrolu
et al. (2021) with the exception of the curriculum
of quests performed by the agent and the way the
speech rewards are designed. An encoder first takes
in information about setting, persona, motivation
for a single character then passes it onto a switch
module. This switch module is a meta policy that
decides if an agent should act or talk and is trained
to mimic how often human experts act or talk while
performing quests via demonstrations. Two sep-
arate policy networks make a decision on which
action to perform or dialogue to say given the cur-
rent context and a single shared critic attempts to

measure the value of taking an action in a particular
state.

Once an agent acts or talks, the partner agent—in
this case also a polyencoder (Humeau et al., 2020)
trained to react to agents with motivations—also
acts or talks and this information is processed by
the environment. As recommended by Prabhumoye
et al. (2020); Ammanabrolu et al. (2021), we keep
the partner model fixed during the episodes where
the LIGHT agent trains to ensure that it retains
natural English semantics—avoiding the problem
of language drift by learning an emergent language
with that must agree with the partner’s usage (Lee
et al., 2019).

A2C Training. Each parallel A2C agent sam-
ples from the the current pool of available quests—
i.e. the curriculum—for a fixed number of steps k
before switching to the quest pool corresponding
to the next higher level difficulty curriculum. The
initial pool of quests is the training set of LIGHT-
Quests as seen in Ammanabrolu et al. (2021) and
all pools after that correspond to decreasing values
of n used when generating the curriculums (as seen
in Figure 6).

Rewards. Following Ammanabrolu et al.
(2021), we use a learned model–the Dungeon Mas-
ter (DM)—to score the agent’s ability to speak.
The DM used here is a poly-encoder model trained
on collected human quest demonstrations as well
as the original conversations in LIGHT. It is con-
ditioned on quests and motivations and thus able
to provide a (noisy) indication of how natural the
agent’s dialogue utterances are given its immediate
context, similarly to the function of the DM during
data collection.

Given the dialogue portion of a human quest
demonstration DU (q) = u∗0, u

∗
1, ...u

∗
n, of length n,

the DM returns a reward ru of 1
2n if an utterance

was in the demonstration u ∈ DU (q) (for a max-
imum of one time per episode for each utterance
from the demonstration). A further 1

2n is given each
time the utterance is scored as being within the top-
k most likely utterances by the DM. The original
quests all have human demonstrations but the pro-
cedurally generated ones do not. During training,
in cases where a particular LIGHT game instance
does not have corresponding human demonstration,
only the latter reward resulting from an utterance
being within the top-k most likely utterances by
the DM is used. This naturalness objective will be
hence referred to as a speech goal. These rewards
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Figure 7: Expanded overall architecture and training pipeline diagram for the LIGHT RL Agent (Ammanabrolu
et al., 2021).

thus also denser than act goals, helping the agent
learn overall. Further, similarly to the game engine,
the DM also provides a set of M valid utterances
which are the M most likely dialogue candidates
from the candidate set for the current context.

A.2 Encoder Pre-training Tasks

Here, we summarize the pre-training tasks for the
encoders mentioned in Section 4.2. These tasks are
unchanged from those described in Ammanabrolu
et al. (2021).

ATOMIC-LIGHT. ATOMIC-LIGHT is a
(domain-adapted) fantasy commonsense knowl-
edge graph, and as such provides priors for an agent
on how to act consistently in the world. For exam-
ple, given a clause such as “The knight wishes to
slay the dragon, as a result the knight needs to
acquire a sword,” the task would be to predict the
underlined text—a form of knowledge graph com-
pletion (Wang et al., 2017).

Reddit. A further tuning dataset is derived from
an existing Reddit dataset, pushshift.io (Baumgart-
ner et al., 2020) as seen in Roller et al. (2020). This
dataset has been used in several existing dialogue-
based studies and has been shown to result in more
natural conversations (Yang et al., 2018; Mazaré
et al., 2018).

LIGHT-Original. The task itself dervied from
the original LIGHT dataset (Urbanek et al., 2019)
and involves predicting the next action or utterance
given the prior dialogue history as well as the cur-
rent setting and persona for a character. They are
collected in a chit-chat fashion, with no notion of
objectives, and so provide priors on how to gener-
ally act consistently and speak in a fantasy world,
but not directly how to complete quests.

LIGHT-Quests. This dataset provides two pre-
training tasks. (1) Bag-of-action timeline predic-

tion in which, given a quest consisting of setting,
persona, and motivations, any one of the actions
in the timeline must be predicted. (2) Sequential
timeline prediction in which, given a quest consist-
ing of setting, persona, motivations, and the first n
actions in the timeline, the n+ 1th action must be
predicted. (3) Predict the next dialogue utterance
given a human demonstration in a manner similar
to the LIGHT-original tasks.

A.3 Sampled and Randomly Generated
Curriculum Distributions

This section contains the verb and noun distribu-
tions for the sampled and randomly generated cur-
riculums as described in Section 4.2, presented in
the same fashion as Figure 6.

For the randomly generated curriculums, we
present 5 different curriculums—varying the pro-
portion of randomly generated quests per pool from
0% (corresponding to the full procedurally gener-
ated pipeline), to 100% randomly generated, in
increments of 20%. Sections after this present ab-
lation results after training agents on these curricu-
lums to better analyze the effects of randomness
and diversity in zero-shot generalization.
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Figure 8: Distribution of verbs in the short motivation
of the curriculum of quests starting from the original
distribution on top to the flattened and sampled cur-
riculum on the bottom as a function of n (Section 3).
The y-axis of the different nouns reflect their relative
proportion in the pool of quests.
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Figure 9: Distribution of nouns in the short motivation
of the curriculum of quests starting from the original
distribution on top to the flattened and sampled cur-
riculum on the bottom as a function of n (Section 3).
The y-axis of the different nouns reflect their relative
proportion in the pool of quests.
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Figure 10: Distribution of verbs in the short motivation of the curriculum of quests starting from the original distri-
bution on the left to the flattened and randomly generated curriculum on the right as a function of n (Section 3)
with the randomness percentage tuning. The y-axis of the different verbs reflect their relative proportion in the
pool of quests.
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Figure 11: Distribution of nouns in the short motivation of the curriculum of quests starting from the original dis-
tribution on the left to the flattened and randomly generated curriculum on the right as a function of n (Section 3)
with the randomness percentage tuning. The y-axis of the different nouns reflect their relative proportion in the
pool of quests.
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A.4 Effects of Diversity in Procedural
Generation Pipeline on Curriculum
Learning

Table 3 shows the results of a zero-shot evaluation
as described in Section 4.2 on each of the randomly
generated curriculum pools. Agents were trained
on the full curriculum for each of these experiments.
One major trend stands out: the less randomness
during environment generation, the greater the per-
formance. This shows that, while more diverse (as
seen in Table 4), having potentially less coherent
worlds and quests during training hurts agent per-
formance at test time—a case of spurious diversity
in training data.

Expt. Act Goals Speech Goals All Goals
Scratch Encoder

No Curr. 0.418 0.118 0.103
Sampled 0.460 0.145 0.138
100% Randomly Generated 0.263 0.024 0.017
80% Randomly Generated 0.267 0.080 0.062
60% Randomly Generated 0.379 0.112 0.093
40% Randomly Generated 0.422 0.115 0.109
20% Randomly Generated 0.464 0.146 0.143
Procedurally Generated 0.477 0.163 0.155

Adaptive Encoder
No Curr. 0.420 0.330 0.303
Sampled 0.473 0.358 0.344
100% Randomly Generated 0.335 0.221 0.207
80% Randomly Generated 0.364 0.280 0.269
60% Randomly Generated 0.424 0.327 0.293
40% Randomly Generated 0.481 0.370 0.330
20% Randomly Generated 0.508 0.371 0.369
Procedurally Generated 0.506 0.382 0.373

Table 3: Effects of diversity in procedural generation
on curriculum learning. All experiments were averaged
over 3 random seeds. Standard deviations across any
individual result do not exceed 0.02. The “All Goals”
column refers to quests where the agent has simultane-
ously achieved both types of goals within the allotted
one episode. The parameter n refers to the difference
between the number of instances for the highest and
lowest count quest types.

A.5 Curriculum Statistics
This section presents statistics attempting to quan-
tify the diversity and relative coherence of the envi-
ronments in each of the curriculums we test on. We
quantify diversity in terms of the unique entities
present overall in the world as well as the num-
ber of unique uni-,bi-, and tri-grams found in the
generated short motivations and goal texts.

Specifically, unique entities were calculated by
using the count of all the unique objects and charac-
ter which are generated in the procedural generated
short motivations / goals. In addition, the count
of the unique uni-grams /bi-grams /tri-grams repre-
sent the n-grams counts changing with the proce-
durally generated curriculum as a function of n

Procedural Generated Short Motivations, randomness = 0
entities hit %age unigrams bigrams trigrams

untuned 2529 0.93 448 1141 1734
n=64 2527 0.91 446 1173 1789
n=16 2523 0.91 441 1139 1720
n=2 2523 0.91 436 1146 1738

Procedural Generated Goals, randomness = 0
entities hit %age unigrams bigrams trigrams

untuned 2529 0.93 955 5148 8348
n=64 2527 0.93 1061 5032 8126
n=16 2523 0.93 992 4749 7853
n=2 2523 0.94 935 4594 7693
Randomly Generated Short Motivations, randomness = 20

entities hit %age unigrams bigrams trigrams
untuned 2633 0.10 389 1007 1617
n=64 2626 0.12 378 1013 1641
n=16 2607 0.16 372 985 1593
n=2 2614 0.17 349 917 1475

Randomly Generated Goals, randomness = 20
entities hit %age unigrams bigrams trigrams

untuned 2633 0.17 846 3061 5824
n=64 2626 0.15 919 3450 6530
n=16 2607 0.17 827 3311 6422
n=2 2614 0.17 724 2998 5926
Randomly Generated Short Motivations, randomness = 40

entities hit %age unigrams bigrams trigrams
untuned 2604 0.37 478 1239 1968
n=64 2590 0.21 762 1695 2458
n=16 2586 0.61 490 1251 1984
n=2 2584 0.60 476 1237 1972

Randomly Generated Goals, randomness = 40
entities hit %age unigrams bigrams trigrams

untuned 2604 0.13 837 4302 7444
n=64 2590 0.12 970 4870 7750
n=16 2586 0.37 901 4617 7551
n=2 2584 0.36 879 4643 7570
Randomly Generated Short Motivations, randomness = 60

entities hit %age unigrams bigrams trigrams
untuned 2582 0.10 346 831 1262
n=64 2578 0.27 383 910 1384
n=16 2576 0.31 390 920 1395
n=2 2573 0.31 378 893 1356

Randomly Generated Goals, randomness = 60
entities hit %age unigrams bigrams trigrams

untuned 2582 0.09 468 1565 3054
n=64 2578 0.27 612 2862 5549
n=16 2576 0.30 571 2834 5612
n=2 2573 0.31 556 2842 5631
Randomly Generated Short Motivations, randomness = 80

entities hit %age unigrams bigrams trigrams
untuned 2541 0.08 409 1046 1636
n=64 2541 0.17 409 1110 1771
n=16 2540 0.19 406 1075 1710
n=2 2540 0.18 402 1070 1691

Randomly Generated Goals, randomness = 80
entities hit %age unigrams bigrams trigrams

untuned 2541 0.11 516 2781 5804
n=64 2541 0.26 786 4171 7534
n=16 2540 0.28 757 4153 7576
n=2 2540 0.28 719 3979 7372
Randomly Generated Short Motivations, randomness = 100

entities hit %age unigrams bigrams trigrams
untuned 2537 0.11 321 779 1204
n=64 2537 0.30 321 765 1166
n=16 2527 0.29 314 744 1141
n=2 2527 0.30 314 739 1127

Randomly Generated Goals, randomness = 100
entities hit %age unigrams bigrams trigrams

untuned 2537 0.07 397 2363 5232
n=64 2537 0.13 477 3156 6263
n=16 2527 0.13 434 3039 6154
n=2 2527 0.14 427 2993 6114

Table 4: Curriculum learning hit analysis and unique
n-grams counts. The tables show the hit percentage
of the procedually generated entities in short motiva-
tions/ goals among the retrieved entities (objects + char-
acter).The count of unique uni-grams /bi-grams/ tri-
grams represent the n-grams counts changing with the
procedurally generated curriculum as a function of
n (Section 3) with the randomness percentage tun-
ing for the generated short motivations or goals using
BART model.
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(Section 3) with the randomness percentage tun-
ing for both the short motivations and goals gener-
ated by BART. As a sanity check on how coherent
an environment is, we attempt to see if the enti-
ties required to finish a quest even exist within the
world—i.e. a hit percentage that roughly estimates
what proportion of quests in a pool are achievable
end to end. The hit percentage are calculated by
checking if the NOUN extracted from the short mo-
tivations/goals exists in the procedually generated
entities (objects + character) in the same environ-
ment. Counting as 1/0 to represent as existing/not
and divided by the total number of quests to get the
hit percentage in the table.

A.6 Hyperparameters

Hyperparameter type Value

Num. layers 2
Num. attention heads 2
Embedding size 300
Dropout ratio 0.0
Gradient clip 0.1
Optimizer Adam
Learning rate 1 × 10−4

Table 5: Hyperparameters used to train the Biencoder
model to retrieve objects for generating the LIGHT
world. The same trained models were then frozen and
used for further experiments.

Hyperparameter type Value

Embedding size 128
Embedding norm 10
Dropout ratio 0.0
Gradient clip 0.1
Optimizer SGD
Learning rate 0.1

Table 6: Hyperparameters used to train the Starspace
model to retrieve character for generating the LIGHT
world.

Hyperparameter type Value

Num. encoder layers 12
Num. decoder layers 12
Num. attention heads 16
Batchsize 8
Activation gelu
Beam size 1
Beam decay 30
Beam length penalty 0.65
Num. attention heads 2
Embedding size 1024
Dropout ratio 0.1
Gradient clip 0.1
Optimizer SGD
Learning rate 1× 10−4

Table 7: Hyperparameters used to train and test the
BART model for generating short motivations and
goals.

Hyperparameter type Value

Dictionary Tokenizer Byte-pair encoding
Num. layers 12
Num. attention heads 12
Feedforward network hidden size 3072
Input length 1024
Embedding size 768
Batch size 32
Dropout ratio 0.1
Poly-n-codes 64
Gradient clip 1.0
Optimizer Adam
Learning rate 1× 10−6

Table 8: Hyperparameters used to pre-train the adaptive
encoder as described in Humeau et al. (2020).

Hyperparameter type Value

General
Discount γ 0.99
Valid Action loss coefficient 10
Action entropy coefficient 0.01
Valid Speech loss coefficient 40
Speech entropy coefficient 0.04
Batch size 32
Gradient clip 1.0
Steps per episode 100
Policy Networks (Actors)
Num. Layers 3
Feedforward network hidden size 768
GRU hidden size 768
Value Predictor (Critic)
Num. Layers 2
Feedforward network hidden size 768
Appended Encoder
Num. layers 3
Num. attention heads 3
Feedforward network hidden size 768

Table 9: RL experiments hyperparameters unchanged
from Ammanabrolu et al. (2021).
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