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Abstract

Weakly-supervised learning (WSL) has shown
promising results in addressing label scarcity
on many NLP tasks, but manually designing
a comprehensive, high-quality labeling rule
set is tedious and difficult. We study interac-
tive weakly-supervised learning—the problem
of iteratively and automatically discovering
novel labeling rules from data to improve the
WSL model. Our proposed model, named PR-
BOOST, achieves this goal via iterative prompt-
based rule discovery and model boosting. It
uses boosting to identify large-error instances
and then discovers candidate rules from them
by prompting pre-trained LMs with rule tem-
plates. The candidate rules are judged by hu-
man experts, and the accepted rules are used
to generate complementary weak labels and
strengthen the current model. Experiments
on four tasks show PRBOOST outperforms
state-of-the-art WSL baselines up to 7.1%, and
bridges the gaps with fully supervised mod-
els.Our Implementation is available at https:
//github.com/rz-zhang/PRBoost.

1 Introduction

Weakly-supervised learning (WSL) has recently at-
tracted increasing attention to mitigate the label
scarcity issue in many NLP tasks. In WSL, the
training data are generated by weak labeling rules
obtained from sources such as knowledge bases,
frequent patterns, or human experts. The weak la-
beling rules can be matched with unlabeled data to
create large-scale weak labels, allowing for train-
ing NLP models with much lower annotation cost.
WSL has recently achieved promising results in
many tasks including text classification (Awasthi
et al., 2020; Mekala and Shang, 2020; Meng et al.,
2020; Yu et al., 2021b), relation extraction (Zhou
et al., 2020), and sequence tagging (Lison et al.,
2020; Safranchik et al., 2020; Li et al., 2021b).

Despite its success, WSL is limited by two ma-
jor factors: 1) the labeling rules, and 2) the static

learning process. First, it is challenging to provide
a comprehensive and high-quality set of labeling
rules a priori. Labeling rules are often human-
written (Ratner et al., 2017; Hancock et al., 2018),
but the process of writing labeling rules is tedious
and time-consuming even for experts. A few works
attempt to automatically discover labeling rules
by mining labeled data (Varma and Ré, 2018), or
enumerating predefined types. However, the pre-
extracted rules are restricted to frequent patterns or
predefined types, which are inadequate for training
an accurate model. Second, most existing WSL
methods are static and can suffer from the noise
in the initial weak supervision (Ratner et al., 2017;
Zhou et al., 2020; Yu et al., 2021b; Meng et al.,
2020; Zhang et al., 2022). As the labeling rule
set remains fixed during model training, the ini-
tial errors can be amplified, resulting in an over-
fitted end model. Interactive rule discovery has
been explored in two recent works (Boecking et al.,
2021; Galhotra et al., 2021), which solicits human
feedback on candidate rules to refine the rule set.
Unfortunately, their rule forms are limited to sim-
ple repetitive structures such as n-grams (Boecking
et al., 2021), and the huge rule search space makes
an enumerating-pruning pipeline not scalable for
large datasets (Galhotra et al., 2021).

Due to the above reasons, state-of-the-art WSL
methods still underperform fully-supervised meth-
ods by significant gaps on many NLP tasks. As
shown in a recent study (Zhang et al., 2021),
the best WSL methods fall behind the best fully-
supervised methods in 15 out of 18 NLP bench-
marks; and the average performance gap is 18.84%
in terms of accuracy or F1 score.

To bridge the gap between weakly-supervised
and fully-supervised approaches, we propose an
iterative rule discovery and boosting framework,
namely PRBOOST for interactive WSL. Compared
to existing works on WSL and active learning, PR-
BOOST features three key designs:
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First, we design a rule discovery module that
uses rule templates for prompting pre-trained lan-
guage models (PLMs). By feeding difficult in-
stances and rule templates into PLMs, the mod-
ule distills knowledge from PLMs via prompting
and generates candidate rules that capture key se-
mantics of the input instances. Compared to prior
works based on n-grams (Boecking et al., 2021),
our prompt-based rule discovery is more expressive
and applicable to any tasks that support prompting.

Second, we design a boosting-style ensemble
strategy to iteratively target difficult instances and
adaptively propose new rules. In each iteration,
we reweigh data by the boosting error to enforce
the rule discovery module to focus on larger-error
instances. This avoids enumerating all the possi-
ble rules and implementing post-filtering for novel
rules, but directly targets rule discovery on large-
error instances to provide complementary informa-
tion to the current model.

Third, we strategically solicit human feedback to
evaluate the candidate rules. Humans are asked to
judge whether a candidate rule should be accepted
or abstained. The accepted high-quality rules are
then used to generate new weak labels that are
fed into boosted model training. As the prompt-
generated rules are highly interpretable, the rule
evaluation is simply a binary choice task for hu-
man experts and thus effortless. Unlike traditional
active learning methods that annotate individual in-
stances, such a rule-level annotation is more label-
efficient because the annotated rules can match
large amounts of instances.

We compare our method with supervised,
weakly-supervised and interactive learning base-
lines on four tasks: relation extraction, ontology
classification, topic classification, and chemical-
protein interaction prediction. The results show: 1)
Our method outperforms state-of-the-art weakly-
supervised baselines by up to 7.1%; 2) The rule-
level annotation helps the model achieve higher
model performance compared to the instance-level
annotation under the same budget; 3) The machine-
discovered and human-evaluated rules are of high
quality, which consistently refine the weak labels
and the model in each iteration.

Our key contributions are: (1) a prompt-based
rule discovery framework for interactive WSL,
which provides flexible rule representation while
capturing subtle semantics in rule generation; (2)
an iterative boosting strategy for discovering novel

rules from hard instances and strengthening the
model by an ensemble of complementary weak
models; (3) an interpretable and easy-to-annotate
interactive process for rule annotation; (4) compre-
hensive experiments demonstrating the effective-
ness of our framework.

2 Related Work

Weakly-Supervised Learning WSL has recently
attracted much attention in various NLP tasks.
Despite their promising performance on various
tasks, manually designing the rules can be time-
consuming. Moreover, the noise and incomplete-
ness of the initial rules could be propagated in
model training (Zhang et al., 2021). A few works
attempt to reduce human efforts in manually design-
ing labeling rules by discovering rules from data.
For example, Snuba (Varma and Ré, 2018) gen-
erates heuristics based on a small labeled dataset
with pre-defined rule types; TALLOR (Li et al.,
2021a) and GLaRA (Zhao et al., 2021) study rule
expansion for NER problem based on lexical infor-
mation and then select rules based on a hand-tuned
threshold. However, these methods discover rules
in a static way and are constrained to task-specific
rule types. In contrast, our framework discovers
rules iteratively from the entire unlabeled dataset,
which can refine the rule set and enlarge its diver-
sity on-the-fly.
Interactive Learning Our work is related to ac-
tive learning (AL) as both involve human anno-
tators in the learning process. However, the key
difference is that AL labels instances based on var-
ious query policies (Holub et al., 2008; Shen et al.,
2017; Zhang et al., 2020; Ein-Dor et al., 2020; Mar-
gatina et al., 2021; Yu et al., 2021a), while our
method does not annotate individual instances, but
uses annotated rules to match unlabeled data. This
makes our method more label-efficient in lever-
aging human feedback for creating large-scale la-
beled data. To the best of our knowledge, only a
few works have studied interactive WSL (Boeck-
ing et al., 2021; Galhotra et al., 2021; Choi et al.,
2021; Hsieh et al., 2022) as in our problem. How-
ever, they either use simple n-gram based rules
(Boecking et al., 2021; Hsieh et al., 2022) that fail
to capture sentence-level semantics, or suffer from
a huge searching space for context-free grammar
rules (Galhotra et al., 2021). Unlike these works,
our method uses flexible rule representations based
on prompts, and also uses boosting for targeted rule
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discovery to avoid enumerating all possible rules
and performing post-filtering for novel rules.
Language Model Prompting Our work is also re-
lated to prompt-based learning for PLMs, which
converts the original task to a cloze-style task
and leverages PLMs to fill the missing informa-
tion (Brown et al., 2020; Liu et al., 2021a). Prompt-
ing has been explored in various tasks, including
text classification (Hu et al., 2021; Han et al., 2021;
Schick and Schütze, 2021a,b), information extrac-
tion (Lester et al., 2021; Chen et al., 2021) and text
generation (Dou et al., 2021; Li and Liang, 2021).
Recent works focus on generating better prompt
templates or learning implicit prompt embeddings
(Gao et al., 2021; Liu et al., 2021b,c). However,
none of these works studied prompting for gen-
erating weak labels. Our work is orthogonal to
them since we do not aim to optimize prompts for
the original task, but uses prompts and PLMs as a
knowledge source for rule discovery.

3 Preliminaries

Problem Formulation Weakly-supervised learn-
ing (WSL) creates weak labels for model training
by applying labeling rules over unlabeled instances
Du. Given an unlabeled instance x ∈ Du, a label-
ing rule r(·) maps x into an extended label space:
r(x)→ y ∈ Y ∪ {0}. Here Y is the original label
set for the task, and 0 is a special label indicating
x is unmatchable by r. Given a set R of labeling
rules, we can apply each rule in R on unlabeled
instances to create a weakly labeled dataset D′l.

However, the initial weak labelsD′l can be highly
noisy and incomplete, which hinder the perfor-
mance of WSL. We thus study the problem of in-
teractive WSL: how can we automatically discover
more high-quality labeling rules to enhance the
performance of WSL? Besides Du and D′l, we also
assume access to a small set of clean labels Dl
(|Dl| � |Du|), and the task is to iteratively find a
set of new rules for model improvement. In each
iteration t, we assume a fixed rule annotation bud-
get B, i.e., one can propose at most B candidate
rules Rt = {rj}Bj=1 to human experts for decid-
ing whether each rule should be accepted or not.
The accepted rulesR+

t are then used to create new
weakly labeled instances D′t. From D′t ∪ D′l, a
model mt : X → Y can be trained to boost the
performance of the current WSL model.
Rule Representation Multiple rule representa-
tions have been proposed in WSL for NLP tasks.

For example, keyword-based rules are widely used
to map certain keywords to their highly correlated
labels (Boecking et al., 2021; Meng et al., 2020;
Mekala and Shang, 2020; Liang et al., 2020). Reg-
ular expression is another common rule format,
which matches instances with pre-defined surface
patterns (Awasthi et al., 2020; Yu et al., 2021b;
Zhou et al., 2020). Logical rules (Hu et al., 2016;
Li et al., 2021a) perform logical operations (such
as conjunction ∧ and negation ¬) over atomic rules
and can thus capture higher-order compositional
patterns.

We adopt a prompt-based rule representation
(Section 4.1), which is flexible to encompass any
existing rule representations. Our prompt-based
rule relies on a rule template τ(·) for the target
task, which contains a [MASK] token to be filled
by a PLM M along with an unlabeled instance
x. From the rule template τ , each candidate rule
can be automatically derived by r = g(M, τ,x).
Such a prompt-based rule representation is highly
flexible and can be applied to any NLP tasks that
support prompting (see examples in Table 1).

4 Methodology

Overview PRBOOST is an iterative method for
interactive WSL. In each iteration, it proposes can-
didate rules from large-error instances, solicits hu-
man feedback on candidate rules, generates weak
labels, and trains new weak models for ensembling.
Figure 1 shows the process in one iteration of PR-
BOOST, which relies on three key components:

1. Candidate rule generation. This component pro-
poses candidate rules to be evaluated by human
annotators. Using the small labeled dataset Dl,
it measures the weakness of the current model
by identifying large-error instances on Dl, and
proposes rules based on these instances using
PLM prompting.

2. Rule annotation and weak label creation. This
component collects human feedback to improve
the weak supervision quality. It takes as input
the candidate rules proposed by the previous
component, and asks humans to select the high-
quality ones. Then the human-selected rulesRt
are used to generate weak labels for the unla-
beled instances Du in a soft-matching way.

3. Weakly supervised model training and ensemble.
We train a new weak modelmt+1 on the updated
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Large-error Instance 𝒙𝒆𝒊
Microsoft is an American technology corporation founded by Bill Gates.

founded
started
called







Rule1: PERSON [founded] ORGANIZATION

Prompt Template 𝒙𝒑𝒊

[Input] The PERSON Bill Gates [MASK] the ORGANIZATION Microsoft.

Rule2: PERSON [started] ORGANIZATION

Clean Data 𝒟𝑙 Data Weights 𝒘𝒊

Unmatched Data 𝒟𝑢 Rule-matched Data 𝒟𝑟

Model 𝑚𝑡−1

Model 𝑚𝑡

Self-training

Model Ensemble

𝒑 MASK = ෝ𝒗 𝒙𝒑𝒊) Human-selected Rules ℛ+

ℛ+

1. Candidate Rules Generation

2. Interactive Rule Evaluation

3. Weakly Supervised Model Training & Ensemble

Human Annotators 

𝒟𝑟 ∪ 𝒟𝑡−1

Figure 1: Overall framework for PRBOOST. In each iteration, PRBOOST (1) identifies large-error instances
from the limited clean data and converts each large-error instance to a prompt template for prompting-based rule
discovery; (2) presents candidate rules to human experts for annotation and uses accepted rules to generate new
weak labels; (3) trains a new weak model with self-training and ensembles it with the previous models.

weakly labeled dataset Dr. Then we self-train
the weak model mt+1 and integrate it into the
ensemble model.

4.1 Candidate Rule Generation

Target rule proposal on large-error instances
We design a boosting-style (Hastie et al., 2009)
strategy for generating prompt-based candidate
rules. This strategy iteratively checks feature
regimes in which the current model mt is weak,
and proposes candidate rules from such regimes.
We use the small labeled datasetDl to identify hard
instances, i.e., where the model tends to make cu-
mulative mistakes during iterative learning. The
discovered rules can complement the current rule
setR and refine the weak labels, so the next model
mt+1 trained on the refined weakly labeled data
can perform better in the weak regimes.

We initialize the weights of the instances in Dl
as wi = 1/|Dl|, i = 1, 2, · · · , |Dl|. During the
iterative model learning process, eachwi is updated
as the model’s weighted loss on instance xi ∈ Dl.
Specifically, in iteration t ∈ {1, · · · , n}, we weigh
the samples by

wi ← wi · eαtI(yi 6=mt(xi)), i = 1, 2, . . . , |Dl|. (1)

In Equation 1, αt is the weight of model mt,
which will be used for both detecting hard instances

and model ensembling (Section 4.3). We compute
αt from the model’s error rate on Dl:

αt = log
1− errt

errt
+ log(K − 1), (2)

where errt is given by

errt =

|Dl|∑
i=1

wiI (yi 6= mt (xi)) /

|Dl|∑
i=1

wi. (3)

Intuitively, a sample xi receives a larger weight
wi (Equation 1) if the model ensemble consistently
make mistakes on xi. A large error is often caused
by poor coverage (unlabeled instances matched by
few or no rules) or dominating noise in the local
feature regimes (rule-matched labels are wrong).
The weights can thus guide the rule generator to tar-
get the top-n large-error instances Xe = {xei}ni=1.
By proposing rules from such instances, we aim to
discover novel rules that can complement the cur-
rent rule set and model ensemble most effectively.

Prompt-based rule proposal For a wide range of
NLP tasks such as relation extraction and text clas-
sification, we can leverage prompts to construct
informative rule templates, which naturally leads
to expressive labeling rules for WSL.

Motivated by this, we design a rule proposal
module based on PLM prompting. We present con-
crete examples of our prompt-based rules in Table 1.
The input instance comes from the large-error in-
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Input : Microsoft is an American technology corporation founded by Bill Gates.
Prompt : [Input] The Person Bill Gates [Mask] the Organization Microsoft.

Rule : {Entity Pair == (Person, Org)} ∧ {[Mask] == founded} ∧ {st,j ≥ threshold}→ per:found
Input : Marvell Software Solutions Israel is a wholly owned subsidiary of Marvell Technology Group.

Prompt : [Input] The Marvell Software Solutions Israel is a [Mask].
Rule : {[Mask] == subsidiary ∨ corporation ∨ company} ∧ {st,j ≥ threshold}→ Company
Input : Liverpool short of firepower for crucial encounter. Rafael Benitez must gamble with Liverpools

Champions League prospects tonight but lacks the ammunition to make it a fair fight.
Prompt : [Mask] News: [Input]

Rule : {[Mask] == Liverpool ∨ Team ∨ Football ∨ Sports} ∧ {st,j ≥ threshold}→ Sports

Table 1: The examples of prompt-based rules for relation extraction, ontology classification, and news topic clas-
sification. Here [Input] denotes the original input, [Mask] denotes the mask token, and ∧, ∨ are the logical
operators. We use bold words to show the ground-truth label of the original input.

stances identified on the clean dataset Dl. For each
task, we have a task-specific template to reshape the
original input for prompting PLMs. The resulting
prompt typically includes the original input as the
context and a mask token to be filled by the PLMs.
The final rule encompasses multiple atomic parts to
capture different views of information. Each rule is
accompanied by a ground-truth label of the original
input instance, such a label will be assigned to the
unlabeled instances matched by this rule.

For example, as shown in Table 1, the prompt of
the relation extraction task can be "entity [MASK]
entity", which rephrases the original input using
relation phrases while keeping the key semantics.
Take news topic classification as another example,
by filling the masked slot in the prompt, PLMs pro-
pose candidate keyword-based rules for topic clas-
sification. Different from the rules extracted from
surface patterns of the corpus (e.g., n-gram rules),
such a prompt-based rule proposal can generate
words that do not appear in the original inputs—this
capability is important to model generalization.

Given a large-error instance xei ∈ Xe, we first
convert it into a prompt by xpi = τ(xei). Such
a prompt consists of the key components of the
original input and a [MASK] token. By inherit-
ing the original input, we construct context for the
[MASK] token to be predicted by a pre-trained
LMM. To complete the rule, we feed each xpi
toM to obtain the probability distribution of the
[MASK] token over the vocabulary V:

p(MASK = v̂ | xpi) =
exp (v̂ · M(xpi))∑

v∈V
exp (v · M(xpi))

, (4)

whereM(·) denotes the output vector ofM, v is
the embedding of the token in the vocabulary V ,
and v̂ is the embedding of the predicted masked
token. We collect the top-k predictions with highest
p(MASK = v̂ | xpi) to form the candidate rules.

By filling the rules based on xei with the prompt
predictions, we obtain the candidate rule set in
iteration t, denoted asRt = {rj}Bj=1.

4.2 Rule Annotation and Matching
Interactive rule evaluation As the candidate rules
Rt can be still noisy, PRBOOST thus presentsRt
to humans for selecting high-quality rules. Specifi-
cally, for each candidate rule rj ∈ Rt, we present
it along with its prompt template xpj to human ex-
perts, then they judge whether the rule rj should be
accepted or not. Formally, rj is associated with a la-
bel dj ∈ {1, 0}. When a rule is accepted (dj = 1),
it will be incorporated into the accepted rule set
R+ for later weak label generation.
Weak Label Generation After human evaluation,
the accepted rules R+

t are used to match unla-
beled instances Du. We design a mixed soft-
matching procedure for matching rules with unla-
beled instances, which combines embedding-based
similarity and prompt-based vocabulary similarity.
The two similarities complements each other: the
embedding-based similarity captures global seman-
tics, while the prompt-based similarity captures
local features in terms of vocabulary overlapping.
Given a rule rj ∈ R+

t and an unlabeled instance
xu ∈ Du, we detail the computations of the two
similarities below.

First, the embedding similarity is computed as
the cosine similarity between the rule and instance
embeddings (Zhou et al., 2020):

saj = (eu · erj )/(‖eu‖ · ‖erj‖), (5)
where eu is the instance embedding of xu and erj
is the rule embedding of rj , both embeddings are
obtained from a PLM encoder.

Next, to compute the prompt-based similarity,
we feed τ(xu) into the prompting model (Equation
4) and use the top-k candidates of the [MASK] po-
sition as the predicted vocabulary for instance xu.

749



We measure the vocabulary overlapping between
Vu and Vrj as

sbj =| Vu ∩ Vrj | /k, (6)
where Vu is the vocabulary of instance xu and Vrj
is the vocabulary of rule rj . Note that for the un-
labeled instance, we have |Vu| = k, while for the
rule, we have |Vrj | ≤ k because human annotators
may abstain some candidate predictions.

The final matching score is computed by com-
bining the above two similarities:

sj = αsaj + (1− α)sbj . (7)
The instance xu is matched by the rule rj if sj is

higher than the matching threshold σ obtained on
the development set. When xu is matched by mul-
tiple rules that provide conflicting labels, we use
the one with the highest matching score to assign
the weak label. If ∀j ∈ 1, · · · , k, the matching
score sj is lower than σ, we abstain from labeling
the instance xu.

4.3 Model Training & Ensemble

In iteration t, with the new rule-matched data Dr,
we obtain an enlarged weakly labeled dataset Dt =
Dt−1 ∪ Dr. We fit a weak model mt on Dt by
optimizing:

min
θ

1

|Dt|
∑

(xi,ŷi)∈Dt

`CE (mt(xi), ŷi) , (8)

where ŷi is the weak label for instance xi, and `CE

is the cross entropy loss.
While the weakly labeled dataset has been en-

larged, there are still unmatched instances in Du.
To exploit such unlabeled and unmatched instances,
we adopt the self-training technique for weak
model training (Lee, 2013). The self-training pro-
cess can propagate information from the matched
weak labels to the unmatched instances to improve
the model mt. Following previous models (Xie
et al., 2016; Yu et al., 2021b), for each instance
xi ∈ Du, we generate a soft pseudo-label ỹij from
the current model mt:

ỹij =
q2ij/fj∑

j′∈Y(q2ij′/fj′)
, fj =

∑
i

qij (9)

where qi = mt(xi) is a probability vector such that
qi ∈ RK , and qij is the j-th entry, j ∈ 1, · · · ,K.

The above process yields a pseudo-labeled D̃u.
We update mt by optimizing:

Lc(mt, ỹ) =
1

|D̃u|

∑
x∈D̃u

DKL(ỹ‖mt(x)), (10)

where DKL(P‖Q) =
∑

k pk log(pk/qk) is the
Kullback-Leibler divergence.

Finally, we incorporate the self-trained weak
model into the ensemble model. The final model is
a weighted ensemble of the weak models:

fθ(·) =
n∑
t

αtmt, (11)

where a weak model mt with a low error rate errt
will be assigned a higher coefficient αt according
to Equation 2.

5 Experiments

5.1 Experiment Setup
Tasks and Datasets We conduct experiments
on four benchmark datasets, including TA-
CRED (Zhang et al., 2017) for relation extraction,
DBPedia (Zhang et al., 2015) for ontology clas-
sification, ChemProt (Krallinger et al., 2017) for
chemical-protein interaction classification and AG
News (Zhang et al., 2015) for news topic classifica-
tion. For the initial weak supervision sources, we
use the labeling rules provided by existing works:
Zhou et al. (2020) for TACRED, Meng et al. (2020)
for DBPedia, and Zhang et al. (2021) for Chemprot
and AG News. The statistics of the four datasets
are shown in table 5. For the development set, we
do not directly use the full development set as sug-
gested by the recent works (Gao et al., 2021; Perez
et al., 2021). This prevents the model from taking
the advantage of the massive number of labeled
data in the development set. Instead, we create a
real label-scarce scenario and keep the number of
sample in validation set Dv the same as the limited
clean labeled set Dl, namely |Dv| = |Dl|.
Baselines We include three groups of baselines:
Fully Supervised Baseline: PLM: We use the pre-
trained language model RoBERTa-base (Liu et al.,
2019) as the backbone and fine-tune it with the
full clean labeled data except for ChemProt. On
ChemProt, we choose BioBERT (Lee et al., 2020)
as the backbone for all the baselines and our model
to better adapt to this domain-specific task. The
performance of fully supervised methods serves as
an upper bound for weakly-supervised methods.
Weakly Supervised Baselines: (1) Snorkel (Rat-
ner et al., 2017) is a classic WSL model. It aggre-
gates different labeling functions with probabilistic
models, then fed the aggregated labels to PLM for
the target task. (2) LOTClass (Meng et al., 2020)
is a recent model for weakly-supervised text clas-
sification. It uses label names to probe PLMs to
generate weak labels, and performs self-training
using the weak labels for classification. (3) CO-
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Method (Metrics) TACRED (F1) DBpedia (Acc.) ChemProt (Acc.) AG News (Acc.)

Supervised Baselines
PLM w. 100% training data 66.9 (66.3/67.6) 99.4 79.7 94.4
PLM w. limited training data† 32.9 (40.8/27.6) 98.0 59.4 86.4

Weakly Supervised Baselines
Rule Matching 20.1 (85.0/11.4) 63.2 46.9 52.3
Snorkel (Ratner et al., 2017) 39.7 (39.2/40.1) 69.5 56.4 86.2
LOTClass (Meng et al., 2020) — 91.1 — 86.4
COSINE (Yu et al., 2021b) 39.5 (38.9/40.3) 73.1 59.8 87.5
Snorkel + fine-tuning† 40.8 (41.0/40.6) 97.6 64.9 87.7
LOTClass + fine-tuning† — 98.1 — 88.0
COSINE + fine-tuning† 41.0 (40.4/41.7) 97.9 65.7 88.0

PRBOOST 48.1 (42.7/55.1) 98.3 67.1 88.9

Table 2: Main results on four benchmark datasets. †: we use different proportions of clean data for fine-tuning as
described in Section 5.1. We use gray background to show the results of WLS baselines fine-tuned on the clean
data. We highlight the best fine-tuned results with purple font, and the best WSL results with blue font.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 4 (d) Iteration 10

Figure 2: T-SNE visualization (Van der Maaten and Hinton, 2008) of rule-matched data that mis-classified by the
model on AG News dataset. The four classes are represented by different colors, and the black cross denotes the
rule-matched data.

SINE (Yu et al., 2021b) is a state-of-the-art method
on fine-tuning PLMs with weak supervision. It
adopts self-training and contrastive learning to fine-
tune LMs with weakly-labeled data.
Interactive Learning Baselines: (1) Entropy-
based AL (Holub et al., 2008) is a simple-yet-
effective method for AL which acquires samples
with the highest predictive entropy. (2) CAL (Mar-
gatina et al., 2021) is the most recent method for
active learning. It selects samples has the most
diverge predictions from their neighbors for an-
notation. (3) IWS (Boecking et al., 2021) is an
interactive WSL model. It firstly generates n-gram
terms as candidate rules, then selects quality rules
by learning from humans’ feedback. Note that IWS
is designed for binary classification, which makes it
hard to adapt to classification with multiple labels.

Evaluation Protocol To propose rules on large-
error instances, we assume access to a dataset Dl
with a limited number of clean labeled data. For our
method, such a clean dataset is only used for identi-
fying large-error instances. For fair comparison, for
the WSL baselines, we further fine-tune them using
the same clean data and compare with such fine-
tuned results. Specifically, we use 5% clean data

for TACRED and ChemProt, 0.5% for AG News
and 0.1% for DBPedia. We then implement a 10-
iteration rule proposal and weak model training. In
each iteration, we identify the top-10 large-error
instances and propose 100 candidate rules in total
(i.e., 10 candidate rules per instance). Each rule is
annotated by three humans, and the annotated rule
labels are majority-voted for later weak label gen-
eration. Following the common practice (Zhang
et al., 2017, 2021), we use F1 score for TACRED
and accuracy for other datasets.

5.2 Main Results

Table 2 shows the performance of PRBOOST and
the baselines on the four datasets. The results show
that PRBOOST outperforms the weakly supervised
baselines on all the four datasets. When the weakly
supervised baselines are not fine-tuned on Dl, PR-
BOOST outperforms the strongest WSL baseline
by 8.4%, 7.2%, 7.3%, 2.4% on the four bench-
marks. Even when the WSL models are further
fine-tuned using clean labeled data, PRBOOST still
outperform them by 2.4% on average. Compared
against supervised baselines, PRBOOST is signif-
icantly better than the fine-tuned model on TA-

751



2 4 6 8 10
Iterations

82
83
84
85
86
87
88
89

M
od

el
 A

cc
ur

ac
y

PRBoost
IWS

CAL
Entropy

Figure 3: Results of interactive methods on AG News

CRED, ChemProt and AG News when the training
data is limited. For the model fine-tuned with 100%
training data, we narrow the gap to fully supervised
learning, compared to other WS approaches.

Comparing the performance gains across
datasets, the performance gap between PR-
BOOST and the baselines is the largest on TACRED,
which is the most challenging task among the four
with 41 different relation types. ChemProt is the
smallest dataset with only 5400 training data, so the
gain is larger when the WSL methods are fine-tuned
with clean labels. The performance gaps among
different methods are small on DBPedia, especially
after they are fine-tuned using clean labeled data.
DBpedia, being a relatively simple dataset, using
only 0.1% clean data for fine-tuning RoBERTa al-
ready achieves 98% accuracy, and the other WSL
methods after fine-tuning perform similarly.

It is worth noting that PRBOOST performs
strongly across all the tasks because we can easily
design a task-specific prompt template to adapt to
each task. In contrast, some WSL baselines are
difficult to apply to certain tasks. For example,
LOTClass achieves strong performance for DBpe-
dia and AGNews as its weak sources are tailored
for text classification. However, it is hard to apply
it to relation extraction tasks. Similarly, IWS per-
forms well on binary classification problems using
n-gram based rules, but the method is only designed
for binary classification, making it unsuitable for
complex multi-class tasks.

5.3 Rule Annotation Agreement and Cost

In this set of experiments, we benchmark model
performance and annotation cost against interac-
tive learning baselines (detailed in Appendix D):
IWS, CAL, and Entropy-based AL. As shown in
Figure 3, PRBOOST outperforms IWS that also
features rule-level annotation by 1.2% with very
close annotation cost. Our method outperforms the
best interactive baseline CAL by 1.1% in terms of
accuracy, while using about 0.6× annotation cost.
While annotating model-proposed rule or instances,
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Figure 4: Rule performance and model accuracy v.s.
iterations on AG News.

we asked all the three annotators to time their anno-
tation. On average, it takes each annotator less than
3 seconds to annotate one rule, while it takes nearly
10 seconds to annotate one instance. Rule-level
annotation is much more efficient than instance-
level annotation because 1) we show the prompt
rather than the original instance to humans, which
is shorter and easier to read; 2) upon scanning the
prompt, the annotators can swiftly select qualified
rules as they only differ at the [MASK] position.
This shows that rule-level annotation is an efficient
and suitable paradigm for interactive WSL.

Iteration 1 2 3 4 5 6 7 8 9 10 Overall

P̄ .89 .90 .93 .90 .87 .92 .91 .91 .87 .90 .90
P̄e .63 .59 .73 .71 .62 .73 .66 .56 .68 .68 .65
κ .71 .77 .73 .66 .65 .71 .75 .79 .60 .68 .71

Table 3: Annotation agreement measured by the Fleiss-
Kappa κ on AG News. P̄ measures annotation agree-
ment over all categories; P̄e computes the quadratic
sum of the proportion of assignments to each category.

For the annotation agreement, we compute
Fleiss’ kappa κ (Fleiss, 1971) to evaluate the agree-
ment among multiple human annotators. This
statistic assesses the reliability of agreement among
multiple annotators. κ = 1 indicates complete
agreement over all the annotators, and no agree-
ment results in κ ≤ 0. As shown in Table 3, we
obtained an average κ = 0.71, which means the
annotators achieve substantial agreement. For each
iteration, the κ ranges between [0.60, 0.79] indicat-
ing the stability of the annotation agreement.

5.4 Rule Quality in Iterative Learning
In this set of experiments, we evaluate the quality
of the rules discovered by PRBOOST. Figure 2 vi-
sualizes the discovered rules on AG News dataset.
We observe that 1) the rules can rectify some mis-
classified data, and 2) the rules can complement
each other. For the first observation, we can take
Figure 2(a) and Figure 2(b) for example. In iter-
ation 0 where new rules have not been proposed,
it is obvious that some green data points and pur-
ple data points are mixed into the orange cluster.
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After the first-round rule proposal, PRBOOST has
already rectified parts of wrong predictions via rule-
matching. This is because our rule proposal is tar-
geted on the large-error instances, such adaptively
discovered rules can capture the model’s weakness
more accurately compared to the simply enumer-
ated rules. For the second observation, we found
that more mis-classified data points get matched
by the newly discovered rules as the iteration in-
creases. It demonstrates PRBOOST can gradually
enlarge the effective rule set by adding complemen-
tary rules, which avoids proposing repetitive rules
that can not improve the rule coverage.

Figure 4 shows the changes in rule accuracy,
rule coverage, and model performance in the itera-
tive learning process on AG News. As shown, the
model’s accuracy increases steadily during learn-
ing, which is improved from 86.7% to 88.9% after
10 iterations. This improvement arises from two
key aspects of PRBOOST. First, the enlarged rule
set continuously augments weakly labeled data,
which provides more supervision for the weak
model training. Second, the model ensemble ap-
proach refines the previous large errors step by step,
resulting in increasing ensemble performance.

Regarding the rule coverage and accuracy, we
observe the coverage of the rule set is improved
from 56.4% to 77.8%, and rule accuracy from
83.1% to 85.6%. Such improvements show that
PRBOOST can adaptively propose novel rules to
complement the previous rule set, which can match
more instances that were previously unmatchable.
Note that the increased rule converge has not com-
promised rule accuracy, but rather improved it. The
reason is two-fold: (1) the human-in-the-loop eval-
uation can select high-quality rules for generating
new weak labels; (2) for the instances with wrong
initial weak labels, PRBOOST can discover more
rules for the same instances and correct the weak
labels through majority voting.

5.5 Ablation Study

We study the effectiveness of various components
in PRBOOST and show the ablation study results
in Figure 5. We have the following findings:

First, the boosting-based iterative rule discovery
strategy is effective. For the "w/o ensemble" set-
ting, we fix the annotation budget B but discover
candidate rules from large-error samples in one
iteration. The results show the superiority of the
iterative strategy in PRBOOST , which brings 1.2%
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Figure 5: Ablation study on AG News. The three hori-
zontal lines represent the no-iterative methods. We use
COSINE as the initial WS baseline. For the supervised
baseline, we fine-tune RoBERTa on 5% clean data.

performance gain. PRBOOST iteratively identifies
the current model’s weaknesses and proposes rules
to strengthen itself, therefore it adaptively discov-
ers more effective rules than static rule discovery.

Second, ensembling alone without new rule dis-
covery is not as effective. For the "w/o rule" variant,
we do not propose new rules, but ensemble multi-
ple self-trained weak classifiers instead. The final
performance drops significantly under this setting
by 1.5%. It demonstrates the newly proposed rules
provide complementary weak supervision to the
model. Although simply ensembling multiple weak
classifiers also helps WSL, it is not as effective as
training multiple complementary weak models as
in PRBOOST.

Third, self-training benefits learning from new
weak labels. For the "w/o self-training" setting, we
do not use the self-training technique when learning
each weak classifier. The performance deteriorates
by 0.6%. This is because part of the data are still
unmatched after we propose new rules, and self-
training leverages the unlabeled data to help the
model generalize better.

6 Conclusion

We proposed PRBOOST to iteratively dis-
cover prompt-based rules for interactive weakly-
supervised learning. Through a boosting-style
ensemble strategy, it iteratively evaluates model
weakness to identify large-error instances for new
rule proposal. From such large-error instances, its
prompt-based rule discovery module leads to ex-
pressive rules that can largely improve rule cover-
age while being easy to annotate. The discovered
rules complement the current rule set and refine
the WSL model continuously. Our experiments on
four benchmarks demonstrate that PRBOOST can
largely improve WSL and narrow the gaps between
WSL models and fully-supervised models.
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A Dataset Details

Weak sources For each dataset above, we have
an existing weak source that uses labeling rules to
generate weakly labeled data.

1. TACRED: We use the rules in Zhou et al. (2020)
for the relation extraction task. Their rules are
in the form of relation phrases, which include
the entity pair and a keyword.

2. DBPedia: We use the keywords provided
in (Meng et al., 2020) as the labeling rules. Such
keywords are indicative to the categories, where
the words for the same category have close se-
mantics.

3. AGNews, ChemProt: We use the rules in Zhang
et al. (2021) as the labeling fucntions. They also
extract lexical patterns for weak supervision.

B Hyper-parameters

We show the hyper-parameter configuration
in Table 6. We search the batch size in
{8, 16, 32, 64, 128}, AND the coefficient α be-
tween [0, 1] with an interval of 0.25. For the op-
timizer, we use AdamW (Loshchilov and Hutter,
2019) and choose learning rate from {5×10−6, 1×
10−5, 2×10−5}. We keep the number of iterations
as 10 for all the tasks and show the top-10 candi-
date rules to solicit human feedback. ChemProt is a
special case where we present the top-20 candidate
rules, because this task is more domain-specific
than the others, and the involved human annotators
have no relevant domain background.

C Implementation Setting

We test our code on the System Ubuntu 18.04.4
LTS with CPU: Intel(R) Xeon(R) Silver 4214 CPU
@ 2.20GHz and GPU: NVIDIA GeForce RTX 2080.
We implement our method using Python 3.6 and
PyTorch 1.2 (Paszke et al., 2019).

D Interactive baselines

For interactive learning, We include an interactive
weak supervision framework IWS (Boecking et al.,
2021), the most recent AL method CAL (Margatina
et al., 2021) and the entropy-based AL as base-
lines. Our goal is 1) to compare the annotation cost
of rule-level annotation and instance-level annota-
tion; 2) to compare the model performance with
the same annotation budget.

Because IWS is designed for the binary classi-
fication problem, we revise its implementation by
integrating multiple binary predictions for multi-
class tasks. Specifically, we obtain the predicted
probability over all categories from each classifier,
and select the category with the highest probability
as the final prediction. When the number of cate-
gory is large, this approach becomes cumbersome
as training multiple classifiers is time-consuming.
Therefore, we only run IWS on AG News, which
has 4 categories. We report the results of these in-
teractive methods in Section 5.3 and the following
Appendix E.

E User Study
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Figure 6: Annotation cost of interactive methods mea-
sured by annotation time on AGNews. Both PR-
BOOSTand IWS use rule-level annotation, while AL
baselines use instance-level annotation.

In this user study, we aim to measure the annota-
tion cost and the inter-annotator agreement during
the rule annotation process. We ask three human
annotators to participate in the 10-iteration exper-
iment. In each iteration, humans are asked to an-
notate 100 candidate rules. We count the time in
each iteration and their binary decisions on each
candidate rule. The averaged annotation time is
compared in Section 5.3 and we present more de-
tails in Figure 6.

The rule-level annotation agreement is measured
by the Fleiss’ kappa κ defined as

κ = (P̄ − P̄e)/(1− P̄e), (12)
where P̄ measures the annotation agreement over
all categories, and P̄e computes the quadratic sum
of the proportion of assignments to each category.
The results in Section5.3 demonstrate that human
annotators can achieve substantial agreement on
rule-level annotation.

The rules to be annotated are generated from
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Rule Label

If [Mask] prediction is in {Economic, Deal, Business, Market} Business
If [Mask] prediction is in {Microsoft, Tech, Software} Sci/Tech
If [Mask] prediction is in {African, Global, World} World
If [Mask] prediction is in {NFL, Sports, Team, Football} Sports

If entity pair == (Organization, Organization) and [Mask] prediction is in {formerly, called, aka} org:alternate_names
If entity pair == (Person, Organization) and [Mask] prediction is in {founded, established, started} org:founded_by
If entity pair == (Person, Title) and [Mask] prediction is in {president, head, chairman, director} org:top_members
If entity pair == (Person, City) and [Mask] prediction is in {moved to, lived in, grew in} per:city_of_residence

Table 4: More rule examples on the text classification dataset AG News and the relation extraction dataset TACRED.

Dataset Task Domain # Class # Train # Test

TACRED Relation Extraction Web Text 41 68,124 15,509
DBPedia Ontology Classification Wikipedia Text 14 560,000 70,000
Chemprot Chemical-protein Interaction Prediction Biology 10 5,400 1,400
AG News News Topic Classification News 4 120,000 7,600

Table 5: Dataset statistics.

Hyper-parameter TACRED DBpedia ChemProt AG News
Maximum Tokens 128 256 512 128

Batch Size 32 32 8 32
Learning Rate 2× 10−5 10−5 10−5 10−5

Dropout Rate 0.2 0.1 0.1 0.1
# Iterations 10 10 10 10

α 0.5 0.25 0.5 0.25
k 10 10 20 10

Table 6: Hyper-parameter configurations.

open-source PLMs and public data. We believe
this rule-level annotation process will not amplify
any bias in the original data. We do not foresee any
ethical issues or direct social consequences.

F Model Ensemble

In practice, we keep αt for each weak model as
same during the model ensemble. Equation 11
weights each weak model mt by a computed co-
efficient αt. Intuitively, the weak model mt with
higher αt impacts the ensemble results more. This
paradigm is proved to be effective under fully-
supervised settings, but we found it is not directly
applicable in WSL. Since we initialize a model
m0 on the given weak source and it can achieve
a relatively strong performance (much better than
random guess), i.e., the error rate err0 is low. It
makes a high α0 based on Equation 2, so the ini-
tialized model will dominate the following predic-
tion, thus limiting the effectiveness of the model

ensemble. Therefore, we assign the same weight
to each weak model but still follow the design of
identifying large-error instances. This is reason-
able as the weight wi computed by Equation 1 still
reflects the model weakness and can guide the rule
proposal. By discovering rules based on the large-
error instances, we iteratively complement the fea-
ture regimes through the model training on rule-
matched data and strengthen the ensemble model.
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